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Abstract

technology and its application in biomarker discovery.

Detection of biomarkers indicating disease development is critically important for the early detection of disease,
particularly in complex diseases such as cancer where early detection may determine the treatment protocol and
outcome. Monoclonal antibodies have been routinely used in protein detection and several biomarker discovery
platforms are built using antibodies as capture and detection reagents. However, several limitations with antibodies
have led to the search for new reagents. Oligonucleotide-based reagents, called aptamers, are emerging as promising
alternatives to antibodies. Aptamers show several advantages over antibodies, and several aptamer-based biomarker
discovery applications are increasingly being reported. In this paper, we discuss the recent developments in aptamer

Keywords: Aptamers; Thioaptamer; Bead-based selection; Cancer
biomarkers; X-aptamers

Introduction

Biomarkers are broadly defined as indicators of a biological state.
The majority of biomarkers are recognition molecules found in blood
and other body fluids, and serve as critical screening tools in disease
detection, diagnostics and prognostics. Since a variety of proteins and
other metabolites are secreted into the blood from localized diseased
tissues and the blood flows to all tissues and quickly registers health
status throughout the human body, screening blood (plasma or serum)
forthe detection of biomarkersisamongst the best, non-invasive method
for biomarker detection [1]. This is particularly significant in cancer
detection and diagnostics, as early detection often largely determines
the disease prognosis and patient survival. With biomarkers, detection
can be made at the very early stages of the disease, even when a person
shows no other symptoms [2]. Despite the recent advances in surgical
techniques and targeted therapy, the survival rates for several cancers
(except a few notable childhood cancers) largely remain unchanged
over the last two decades [3]. This is mainly due to the diagnosis made
after the cancer has advanced and spread from the point of origin to
other tissues and organs. Detecting biomarkers from serum samples
provide a non-invasive, cost-effective method for the early detection of
disease development. However, several challenges lie ahead in the field
of biomarker discovery.

Biomarkers are often found at low-abundance, and therefore the
detection method should be highly sensitive and accurate with very
minimal false positive or false negative results. The detection method
should also be sensitive enough to distinguish between different
post-translational modifications and isoforms of the same protein.
Over the last 50 years, monoclonal antibodies have been widely
used in protein detection applications [4,5]. Several mAb-based
platforms have been developed for biomarker discovery. Although the
monoclonal antibodies were game-changers in protein detection and
pose desirable qualities such as high affinity and specificity, there are
several limitations with using mAbs in biomarker discovery. In the
vast majority of biomarker discovery platforms, mass spectrometry is
used as the analytical method of choice to quantitate the target protein.
Since the biomarker is very low in concentration relative to that of the
antibody, the abundant signals from the antibody will interfere with
the detection signals of the biomarker protein, particularly after the
digestion of antigen/antibody complex. Therefore, non-protein based
reagents that do not produce interfering peptide sequences are highly
desired.

Aptamers are emerging as attractive alternatives for monoclonal
antibodies in diagnostic, therapeutic and targeting applications.
Aptamers’ promise was first demonstrated by their high-affinity
binding to a target after in vitro combinatorial library screening,
known as SELEX (Systematic Evolution of Ligands by Exponential
enrichment) [6,7]. Since then aptamers have been extensively sought
and studied as therapeutics [8,9], diagnostics [10-12] and as biosensors
[10,13-15].

Aptamers are structurally distinct, small RNA or DNA
oligonucleotides that mimic antibodies and exhibit high (nM) binding
affinity and selectivity towards their targets [10,11,16]. Although they
are 1/10™ the molecular weight of antibodies, they provide complex
tertiary structures with sufficient recognition surface area to rival
or even surpass the binding affinities of antibodies. Aptamers offer
significant advantages over antibodies, such as: 1) longer shelf life; 2)
simple and inexpensive process for their synthesis and modification;
3) high accuracy, purity and reproducibility in synthesis; and 4) cell or
animal free production processes. While antibodies can be generated
only against antigens (proteins) + aptamers can be generated against
virtually any kind of biomolecules, including proteins, lipids, sugars
and even small molecules. Aptamers are capable of distinguishing
between different modified forms and isoforms of the same protein, a
significant advantage for biomarker discovery. Furthermore, aptamer’s
affinity can also be tuned by optimizing their recognition sequence
and/or manipulating binding reaction conditions. Through established
solid-phase chemical synthetic methods and site-directed chemistries,
aptamers are convenient to label, conjugate, and immobilize [17]
making aptamers ideal molecular recognition tools [17-19].

Chemical Modification of Aptamers

Since native oligonucleotides are susceptible to rapid digestion
by nucleases present in body fluids and cellular extracts, chemical
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modifications are required to increase their resistance to degradation
by cellular enzymes. Several strategies have been developed to increase
the stability of aptamers without compromising the binding affinity and
specificity towards their targets. These strategies include the chemical
modification of the phosphate backbone, sugars and/or the bases, end-
capping at the 3’ or 5" termini [20] and locked nucleic acids [21].

Among the chemical modifications reported for oligonucleotides,
the most common are the sulfur substitution of the phosphate backbone
(for both DNA and RNA) and the modification of the 2’ position of the
ribose sugar (for RNA). The 2’-sugar modifications found to increase
the resistance and the overall stability of the functional oligonucleotides
are the O-Me and Fluoro substitutions, and the locked nucleic acid
(LNA). The LNA modification contains an intramolecular 2’-O to 4-C
methylene bridge, and has been reported to exhibit enhanced secondary
structure stability [22-24]. “Thio”aptamers, in which one (monothio)
or both (dithio) of the non-bridging phosphoryl oxygens are replaced
with sulfur, are attractive choices for aptamer technology (Figure 1).
We have selected both monothio and dithio substituted aptamers
against several targets [25-32]. Thioaptamers pose several advantages
over normal aptamers. Sulfur substitution of the backbone not only
increases the resistance for cellular nucleases, but can if suitably
substituted, increase the binding affinity of the aptamers towards their
targets. Based on our results from theoretical calculations, we suggested
that the increased affinity results from sulfur being a soft anion, and
do not coordinate as well to hard cations like Na*, unlike the hard
phosphate oxy-anion. The thio-substituted phosphate esters then act as
bare anions and since energy is not required to strip the cations from
the backbone, these agents can in principle bind even tighter to proteins
[33]. Thioaptamers are easy to synthesize by chemical or enzymatic
methods, and their sequences can be read out by PCR methods. The
monothio aptamers can be PCR amplified, as the Taqg DNA polymerase
is capable of incorporating up to three different monothio-dNTPs.
For RNA aptamers, T7 RNA polymerase is shown to be capable of
incorporating (aS)-rNTPS to produce monothio phosphate containing
RNA molecules [34]. Both DNA and RNA dithioaptamers can be
chemically synthesized by the standard solid-phase synthetic methods
using commercially available thio-phosphoramidites (Glen Research).

Oligonucleotide aptamers are negatively charged polymers, and
therefore would be weak-binders to negatively charged, acidic proteins
because there are few cationic groups to neutralize anionic surfaces
on the protein. As described above, backbone modifications with
dithiophosphates and monothiophosphates provide some additional

variability to enhance protein-nucleic acid interactions, but we still
have limited variability in the functional groups on the bases. This
limitation can be overcome by introducing positively charged groups
to the oligonucleotide bases. The 5 position of the dT residue can be
easily modified to introduce additional functional groups. Positively
charged, and/ or hydrophobic groups (even bulky groups such as
pyrene) can be introduced at this position.

To be effective capture reagents, aptamers must recognize a broad
surface area of the target proteins. The binding affinity and the specificity
of the aptamers can be further increased by introducing additional
functional groups on the oligonucleotide chain. This can be achieved
by introducing a wide range of substituents (X) to the 5-position of dU
(Figure 1). We have found that the addition of functional groups at the 5
position are well tolerated by Taq and other polymerases in amplifying
the selected sequences. These next-generation aptamers, called “X”-
aptamers, represent a self-folding nucleic acid scaffold that can present
multiple small organic moieties selected from large combinatorial bead
libraries and that is easily read out by PCR. The X-aptamers represent
a protein-binding ligand class that combines the best features of
nucleic acids, proteins and organic drugs and that is readily chemically
synthesizable. Furthermore various synthetic methods can be used to
introduce multiple, complex drug-like molecules into the X-aptamers
(W. He, unpublished). Thus we can create enormously more complex
libraries of X-aptamers in which every base along the chain can have
a differentamino-acid-like side chain or even a complex drug moiety.
Rather than having simply 4 bases or even 20 amino acids, we have
virtually an unlimited range of chemical functional groups that can be
introduced into an aptamer that by its selection will fold into a unique
tertiary structure scaffold to present to the target protein multiple
drug-like hits and amino acid-like side chains with an enormously
more complex range of substituents.

Aptamer selection methods

Unlike antibodies, aptamers are selected by in-vitro methods, by
screening a large library of oligonucleotides against the target to find
the best binding candidates. The selection methods can be broadly
divided into two categories (Figure 2). The SELEX or in vitro selection
method [35], involves iterative cycles of screening (Figure 2a). The
other is a newer, bead-based method where the oligonucleotide library
is synthesized on non-cleavable microbeads and the high-affinity
binders are identified in a single-step screening [36] (Figure 2b).

In a typical SELEX experiment, an initial oligonucleotide library
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X-modified thioaptamer.

Figure 1: Chemical structures of modified aptamers. (A) Normal oligonucleotides (B) Mono-thio substituted thioaptamer (C) Di-thio substituted thioaptamer (D)
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containing ca. 10" unique sequences is designed and chemically
synthesized. The sequence has a 30-40 nucleotide random region,
flanked by PCR primer regions (18-22 residues each). This DNA pool
is first denatured at 95°C and subsequently cooled in a binding buffer to
fold into stable structures and subsequently incubated with the target.
The bound sequences are partitioned from the unbound and weakly
bound sequences by membrane filtering or other such separation
methods. The bound aptamers are eluted from the targets, amplified
by PCR and taken to the next cycle of the screening. At each iterative
cycle, the stringency of the selection is progressively increased by
increasing the ratio of aptamers pool to the target in order to increase
the competition between the aptamers and the target [37]. The iterative
cycle of the selection process is continued until convergence towards a
single or few sequences with high affinity to the target is obtained. The
PCR of the aptamer pool is sub-cloned and plasmids with individual
aptamers inserts are isolated and sequenced and analyzed. The selected
aptamer sequences are synthesized and their binding affinities and
specificities characterized. Most aptamers are selected by similar
manual protocols, including thioaptamers. However, automation of
the SELEX protocol is also described for several targets [38-41].

Aptamers can also be selected against whole cells. The Cell-SELEX
method is used to select aptamers targeting cancer and other diseased
cells [42-45]. The Cell-SELEX is also the method of choice for aptamer
selection in instances where a clear target is not known, or the target
is hidden or shielded from the surface. Aptamers are selected against
the cell surface where the target protein is present in their native
conformation and/or with post translational modifications retaining

their biological function. The Cell-SELEX method may generate a pool
of aptamers against many protein targets on the cell surface, generating
a molecular signature to the cells that can be useful in cancer diagnosis
and treatment. In the selection process, similar to the traditional SELEX,
an initial random library is incubated with target cells and control
cells. The library is first screened against the control (normal) cells to
filter out the sequences that bind to the control cells. The unbound
sequences are separated and screened against the diseased cells. The
selection cycles are continued similar to the SELEX procedure until the
selected sequences show convergence.

The enrichment of the pool can be monitored with a fluorescently
labeled DNA pool and the cells sorted by flow cytometry or manually
by fluorescent microscopy. The pool is sub-cloned and the sequences
of the enriched pool identified to determine any convergence of the
pool towards the target cells. Selected sequences from a converged pool
are synthesized either chemically using the standard phosphoramidite
chemistry or enzymatically by PCR from the plasmids with fluorescent
or dye labels at either the 5 or 3’ end and their binding affinities and Kd
values be determined by flow cytometry. Several high affinity aptamers
have been identified successfully using the Cell-SELEX method
indicating that aptamers can be generated with complex targets such as
tumor cells and tissues [44]. The targets can also be identified with the
aptamers in the tissue samples. A fluorophore labeled aptamer can also
bind to tissue containing the target protein.

Bead-based selection

While a wide-range of chemical modifications can be incorporated
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Figure 2: (A) Scheme showing the Cell-SELEX procedure. The aptamer library is counter-selected against normal cells; the unbound aptamer library pool is collected
and incubated with the target tumor cells; the aptamers bound on the tumor cells are released by heat denaturation. The iterations are continued for N times until the
binding sequences are selected and identified. (B) Scheme showing Bead-based Aptamer selection process. The bead-based aptamer library is incubated with the
protein mixture and the bound beads are sorted by Flow-Cytometry. The proteins are identified by MALDI-TOF mass spectrometry. Sequences on the beads can be
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into the oligonucleotides to increase the diversity of the library, some
of the modified oligonucleotides cannot be amplified by PCR methods,
posing problems for aptamer selection by SELEX or other enzymatic
amplification methods. Bead-based methods have been developed to
overcome this limitation. Since bead based oligonucleotides are not
PCR-amplified, the modified sequences need only to serve as a template
for the polymerase to readout the sequence into a normal backbone
oligonucleotide. We have developed a unique ‘split and pool” synthesis
methodto create acombinatoriallibrary of oligonucleotides, on micron-
scale beads, with any type of backbone modification [36]. Selection of
aptamers from the bead-based library is carried out through a distinct
process from the SELEX process. The bead based library is incubated
with the fluorescently tagged protein, and the protein-bound aptamer
beads are sorted by flow-cytometry (FACS) [36]. Alternatively, proteins
can be labeled with biotin and the bound aptamer beads can be sorted
by magnetic selection using streptavidin coated magnetic nanoparticles
(Invitrogen). The sequences of the aptamers on the selected beads can
then be read-out by PCR amplification and sub-cloning. The bead-
based process is much faster (hours) and the high affinity binders can
be selected within one round. The added advantages in the bead-based
process are 1) diverse chemical modifications (such as X-aptamers and
dithiophosphate backbone modifications) can be introduced into the
oligonucleotides 2) incubating soluble target with the immobilized
thioaptamer library and therefore no direct competition between
strong and weak binding candidates [27,35].

Aptamer-based biomarker discovery platforms

Since the first report in 1996, of using oligonucleotides to detect
proteins in immunoassays [46], significant progress has been made in
utilizing aptamers in detection assays [53]. A sandwich assay called
ELONA, oligonucleotide-based aptamers replaced antibodies as either
capture or detection reagents [47,48,58]. Recently, several groups have
reported aptamer-based biomarker discovery platforms with multi-
plexing capabilities. Gold and co-workers have recently described
biomarker discovery system that is capable of simultaneously measuring
thousands of proteins from serum or plasma samples. Using their
system, they discovered 58 potential biomarkers for chronic kidney
disease [49]. The same group using their patented aptamers, called
SOMAmers [50,51], reported a large scale study of screening serum
samples to discover biomarkers for non-small cell lung cancer. These
two reports showcase the significant improvements in the development
of highly sensitive, aptamer-based biomarker discovery platforms.
Aptamer-facilitated biomarker discovery (AptaBiD) technology [52]
was reported to detect biomarkers differently expressed on cell surfaces.
Through multi-round selection of single-stranded DNA aptamers,
biomarkers are isolated from cells and subsequently identified by mass
spectrometric methods [54-57].

Novel aptamer-based technologies continue to evolve and there is
little doubt that they will provide enormous opportunities in the future
for both biomarker discovery and detection.
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