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Introduction
 Graphene, the amazing two-dimensional carbon nanomaterial, 

has attracted extensive interest in recent years and emerged as the 
most intensively studied material [1]. In 2004, Geim and Nosovelov at 
Manchester University successfully isolated single layer graphene by 
the mechanical cleavage of graphite crystal [2]. This ‘‘thinnest’’ known 
material exhibits extraordinary electronic, chemical, mechanical, 
thermal and optical properties which bestowed graphene as a miracle 
material of the 21st Century.  From applicative perspectives, graphene 
holds a great promise with the potential to be used as energy-storage 
materials, in nanoelectronics, in catalysis, biomedical, in polymer 
composites and many more [3-5]. 

Structurally, graphene is a one-atom-thick planar sheet of sp2-
bonded carbon atoms that are densely packed in a honeycomb crystal 
lattice. The high versatility of properties and numerous projected 
applications have triggered the development of graphene synthesis 
using various methodologies and substrates. Several production 
techniques for mass production of graphene encompassing bottom-
up and top-down methods ranging from the mechanical exfoliation of 
high quality graphite to the direct growth on carbides or suitable metal 
substrates and from the chemical routes using graphene oxide have 
been developed [5]. Amongst, graphene derivatives i.e graphene oxide 
(GO) and reduced graphene oxide (RGO) obtained from chemical 
oxidation process contains substantial oxygenated functional groups 
that even after sufficient reduction, cannot be completely removed [6]. 
The resulting graphene oxide contains abundant oxygen functional 
groups on both the basal planes and edges (Figure 1). Similar to 
carbon nanotubes, these functional groups can offer a platform for 
various chemical reactions [7].  Hence, graphene offers a wide range 
of possibilities to synthesize graphene-based functional materials with 
potential in numerous applications including catalysis. 

 Recently, owing its surface decorated myriad oxygenated functions 
and conductivity with very high surface area, use of graphene materials 
either as metal-free catalysts or as supports for immobilizing active 
species for facilitating synthetic transformations is emerging as an 
area of great potential [8,9]. The boundless growth of graphene in 
catalysis has been evidenced by the number of annual publications 
on “graphene” and “graphene and Catalysis” as depicted in figure 2 
which shows the annual number of publications using “Graphene” 
and “Graphene and Catalysis” provided using Scopus database. These 
numbers indicate the very rapid growth of graphene publications and 

the parallel growth of publications related to catalysis applications of 
graphene which accounts about a quarter of all graphene publication.

This advancement underlines the colossal potential of graphene 
to replace the precious metals used in common catalysts, and 
can be increasingly used in organic synthesis for various selective 
transformations of simple and complex molecules in time to come. 

In the following sections we briefly shed light on applications of 
graphene materials in different field of catalysis and also discussed the 
current trends in the field.

Graphene as a Carbocatalyst 
The use of heterogeneous carbon materials for the transformation 

or synthesis of organic or inorganic substrates are often termed as 
carbocatalysts. Recently, the use of metal free catalysts based on 
carbonaceous materials attracting a great deal of interest. Graphene 
based materials such as graphene oxide (GO) are considered as a 
new class of carbocatalysts and opened a series of novel application 
possibilities in chemical synthesis. Since, Bielawski and co-workers 
[10] demonstrated the ability of graphene-based materials to facilitate
a number of synthetically useful transformations, the concept of
“carbocatalysis” being widely explored and considered as an intriguing 
new direction in chemistry and materials science. The surface bound
oxygenated functional groups on the aromatic scaffold of GO is
believed to allow ionic and nonionic interactions with a wide range
of molecules. Numerous transformation, including the oxidation
of alcohols and alkenes into their respective aldehydes and ketones,
as well as the hydration of alkynes have carried out using graphene
as a carbocatalyst. Recent reviews by Garcia et al. [8] (Figure 3) and
Loh et al. [11] comprehensively accounted a recent progress in the
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field of graphene enabled carbocatalysis. It is observed that the GO 
with myriad oxygen atoms on its surface can function as an efficient 
oxidant during anaerobic oxidation and undergo reduction at the end 
of the first catalytic cycle. Moreover, reduced graphene oxides with 
its residual oxygenated species continue to activate molecular oxygen 
during aerobic oxidation.

Bielawski and co-workers have significantly contributed on use 
of graphene materials in various catalytic applications [12], including 
the oxidation of sulfides and thiols, C–H oxidation, Claisen–Schmidt 
condensation, polymerization of various olefin monomers, ring 
opening polymerization of various cyclic lactones and lactams, and 
dehydration polymerization in the synthesis of carbon reinforced poly 
(phenylene methylene) composites [13]. These contributions opened a 
fascinating and new catalytic approach, inspiring many researchers to 

explore graphene materials for catalytic performance in added catalytic 
transformations.

The demonstrated activity of graphene as a carbocatalyst can be 
further extended towards other methodologies by the exploitation of 
surface modifications and edge defects of GO. The structural features 
of graphene may offer a wide array of conversion and selectivity by 
tailoring the morphology and functionalities on the surface. 

Doped Graphene in Catalysis
Graphene materials doped with different heteroatoms are also 

being explored as effective metal-free catalysts in various reactions 
[14]. Amongst, nitrogen (N) doped graphene have been extensively 
studied, the introduction of N considered to modify the local electronic 
structures of graphene which in turn facilitate the catalytic processes. 
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Figure 1: Structural model of single layer graphene oxide and reduced graphene oxide.
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Figure 2: Annual Number of Publication returned from a Scopus Search using “Graphene” and “Graphene and Catalysis” as keywords.
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The N doping was commonly achieved by reacting GO with ammonia 
[15], aniline, lithium nitrides [16] or by direct CVD [17] and arc 
discharge methods [18]. Normally, the nitrogen insertion is in the 
form either direct substitution or in pyridinic, pyrrolic structures 
[19]. N-graphenes mostly found its applications in oxygen reduction 
reaction (ORR) associated with fuel cells [20-22].  Dai and co-workwers 
[23] demonstared that the N-graphene act as excellent metal free 
catalyst for (ORR) associated with alkaline fuel cells. The N-graphene 
exhibited a very high ORR activity through due to four electron 
transfer process which is observed to be comparable or even better than 
commercial Pt/C. N-graphene was also reported to exhibit high activity 
and selectivity for the oxidation of arylalkanes in aqueous phase, 

affording high value-added products for biomedical applications [24]. 
Other catalytic applications of N-graphene involve reductions of nitro 
compounds [25,26], peroxides [27] and oxidation of glucose [28] and 
benzyl alcohols [29].

Similar to N-Graphene, sulfur doped graphene was also used as 
a metal free catalyst with high stability and selectivity in ORR. Other 
catalytic applications of sulfated graphene involve esterification of 
acetic acid [30], dehydration of xylose [31] etc.  S-graphene proved to 
be a good water tolerant catalyst with high activity for the hydrolysis 
reactions. In addition, doping of graphene by phosphorus [32], boron 
[33], silicone [34] iodine [35] or dual elements (Figure 4) [36] is also 
reported and demonstrated in various catalytic applications. 

Graphene in Photocatalysis
Another important application of graphene based materials that 

are in photocatalysis. Various reactions, including degradation of 
pollutants, selective organic transformations and water splitting 
to clean hydrogen energy were accomplished using graphene as a 
photocatalyst Figure 4a [37]. Hence, it is clear that graphene can 
serve as a new family of promising photocatalysts. The hybridization 
of graphene with various metal photocatalysts can improve the 
photocatalytic performance owing to the extended light absorption 
range, high adsorption capacity, specific surface area and superior 
electron conductivity of graphene. Similarly, GO can be hybridized 
with organic dyes or organocatalysts to facilitate the photosensitization 
through charge transfer across the graphene interface to produce 
synergistic effects that enhance catalytic conversion. 

Kamat and coworkers [38] revealed the viability of using a 
graphene as an electron-transfer medium. It was demonstrated that 
the graphene can store and transport the electrons through a stepwise 
electron transfer process. The electrons were photogenerated in TiO2 
and then transferred to GO; then, part of these electrons were involved 
in the reduction of GO, whereas the remaining were stored in the rGO 
sheets; finally, upon introduction of silver nitrate, the stored electrons 
were used to reduce Ag+ to Ag0. Hence, graphene could be regarded 
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Figure 3: Various organic transformations catalyzed by graphene based carbocatalyst. Reprinted with permission from ref. [8]. Copyright 2014, American 
Chemical Society.
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Figure 4: B, N- and P, N-doped graphene as highly active catalysts for 
oxygen reduction reactions in acidic media. Reprinted with permission from 
ref. [36]. Copyright 2013, Royal Scociety of Chemistry. 
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as an effective tool to be used in the prevention of electron–hole 
recombination by accepting and transporting photoelectrons. Other 
possible applications of graphene-based materials in photocatalysis 
involve mainly the degradation of pollutants [39], and water splitting 
for hydrogen generation as shown in figure 5 [40]. 

Graphene as a Catalyst Support
In addition to their activity as a carbocatalyst, graphene based 

materials are widely used as supports for catalytically active transition 
metals. Plethora of reactions is being catalyzed using different metal 
nanoparticles [41]. However, some obstacles are still remaining such 
as irreversible aggregation during electrocatalytic cycles, leading to a 
significant loss of nanoscale catalytic effect.  Hence, proper catalyst 

support needed to preserve the intrinsic surface properties. Owing to 
their extremely high specific surface area which improves the dispersion 
of the catalytic metals, improved chemical and electrochemical stability 
at operation temperatures, enhanced electronic conductivity, graphene 
based materials are appealing choice as catalyst support. Hence, 
graphene offers a perfect platform for catalytic molecular engineering. 
In one such example, Kim and co-workers [42] demonstrated that 
gold nanoparticles (Au NPs) dispersed on graphite oxide were able to 
catalyze methanol oxidation (Figure 6). It is demonstrated that the GO 
nanosheets not only serve as structural components of the multilayer 
thin film, but also potentially improve the utilization and dispersion 
of Au NPs by taking advantages of the high catalytic surface area and 
the electronic conduction of graphene nanosheets.  Similarly, graphene 

  
Figure 5: The use of Graphene in a. photocatalysis Reprinted with permission from ref. [37]. Copyright 2012, Royal Society of Chemistry. and b. hydrogen 
generation. Reprinted with permission from ref. [40]. Copyright 2013, American Chemical Society. 
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Figure 6: Schematic of methanol oxidation by gold nanoparticle supported GO. Reprinted with permission from ref. [42]. Copyright 2012, WILEY-VCH Verlag.
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has been used as a support for various metal oxides (ZnO, TiO2, MnO2, 
Fe2O3, Co2O4, etc) [43] and nanoparticles (Pt, Pd, Ag, Au or alloys) [44-
49] to fabricate hierarchical catalyst systems. 

Future Perspectives
Although in its nascent stage, graphene based materials hold 

great promise for facilitating a wide range of transformations and 
may offer extraordinary potential in the design of novel catalytic 
systems. Considering the added value that these materials could have 
as catalysts, their affordability, and the sustainability of their use 
compared to metal-based catalysts, it can be easily anticipated that 
this area will grow considerably in years to come. However, associated 
challenges implicates severe aggregation and restacking of graphene 
nanosheets dominated by π–π stacking interactions, and the low 
stability of supported nanocatalysts due to compatibility issues between 
graphene and nanocatalyst. Moreover, higher surface energies of such 
metallic catalysts may deprive the synergistic effect with graphene 
in effective catalysis.  Further research is also needed to identify an 
optimized catalyst structure/morphology, newer, cost-effective and 
environmentally friendly method for the synthesis of graphene.
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