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Introduction
Since the advent of induced pluripotent stem (iPS) cell technology 

by Yamanaka and colleagues in 2006, demonstrating that mouse 
embryonic fibroblasts can be reprogrammed to an embryonic–like 
state by forced gene expression of Oct3/4, Sox2, c-Myc and Klf4 using 
retroviral vectors [1], several methods of generating iPS cells have been 
developed. In an important step forward, Yamanaka subsequently 
reported the generation of iPS cells from human somatic cells using the 
same factors, providing the stepping stone for human disease modeling 
in vitro and opening up the potential of cellular reprogramming for 
regenerative medicine [2]. The work was quickly validated by several 
groups, either using retroviral vectors with the original reprogramming 
factors on fetal, neonatal and adult human primary cells [3] or lentiviral 
vectors to demonstrate that Oct4, Sox2, Nanog and Lin28 are sufficient 
to reprogram human somatic cells [4]. Numerous protocols now exist 
for iPS cell generation and subsequent differentiation into diverse 
lineages, including cardiac cells. It will be important for the continued 
refinement and standardization of reprogramming techniques to 
focus on human therapeutic application, especially in the context of 
cardiovascular regenerative medicine. 

iPS Cell Generation Techniques 
While early work focused on generating iPS cells through genetic 

alterations and foreign transfer of DNA into target cells, several more 
recent methodologies were developed to remove potentially mutagenic 
molecules in their creation. Transient plasmid delivery through the 
use of non-integrating Epstein-Barr nuclear antigen-1 (EBNA1)-
based episomal vector to reprogram human foreskin fibroblasts to 
pluripotency has been reported [5]. However, the oncogene SV40 
large T was included in some combinations and the work was not 
demonstrated in adult cells, diminishing its clinical applicability [5]. 
Additionally, Yamanaka and colleagues recently reported the use of 
p53 suppression and non-transforming L-Myc to generate human iPS 
cells with episomal plasmid vectors at high efficiency [6]. However, 
transient p53 suppression may have unknown consequences on long-
term cellular proliferation, survival and genomic stability. In developing 
a method that requires only a basic molecular biology background, 
minicircle vectors that are of eukaryotic origin were constructed to 
generate transgene free iPS cells from human adipose stem (hAS) cells 
[7]. Still, the reprogramming efficiency remained at a modest 0.005% 
using hAS cells and was ten-fold lower in neonatal fibroblasts [7]. A 
non-integrating Sendai virus-based method has also been reported 
as a safer way to establish iPS colonies; however, altering Sendai 
virus vectors can present as a technical hurdle for most applications 
[8]. Another method relied on the host-factor independent piggyBac 
transposon/transposes system to efficiently reprogram adult human 
fibroblasts to pluripotency and demonstrated the traceless removal of 
the reprogramming factors [9]. 

Working to address the pitfalls associated with viral integration 
methods, Rossi and colleagues utilized synthetic modified mRNA to 
repetitively transfect target cells with the reprogramming factors, 
giving rise to ES-like colonies by day 16 and at a 36-fold greater 
efficiency compared to retroviral methods [10]. Nonetheless, this 
relied on a technically complex protocol that required many rounds of 
treatment, which makes reproducibility more difficult. Protein based 
methods have successfully been used to generate stable iPS cells by 
fusing the original reprogramming factors to cell penetrating peptides, 
which eliminates the inherent risks of virus-based reprogramming 
[11]. Nevertheless, this method is marked by several shortcomings; 
namely, the significantly reduced reprogramming efficiency of 
0.001% versus 0.01% with viral based methods, the doubled time of 
iPS colony formation of 8 weeks versus 4 weeks and a challenging and 
cumbersome protocol [11,12]. In moving towards the development of 
an efficient and robust system for generating transgene-free iPS cells 
from adult donors, a single excisable lentiviral cassette containing all 
four reprogramming factors flanked by loxP sites (hSTEMCCA-loxP) 
was created by Kotton and colleagues [13]. This accessible protocol 
achieved up to ~1% reprogramming efficiency in >100 lung-disease 
specific cell lines. Additionally, Cre/loxP technology makes excision 
of transgenes relatively simple. While representing a reliable platform 
for generating stable iPS cell lines, there remains a small theoretical 
risk of insertional mutagenesis by the inactive viral LTR left in the host 
genome after transgene excision [13]. The development of transgene-
free iPS cells is an important advance in the rapidly growing field; 
however, methodologies will have to continue to be developed to 
ensure the consistent, efficient production of iPS cells with no genetic 
abnormalities.

Cardiac Differentiation of Human Pluripotent Stem 
Cells

Several exciting strategies have emerged over the past several 
years for the generation of cardiovascular progenitors from human 
embryonic stem (hES) cells and iPS cells, which facilitates our 
understanding of cardiac disease development and holds great promise 
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for therapeutic application. Spontaneous cardiac differentiation of 
human iPS cells from embryoid bodies has been reported and functional 
characterization of cardiomyocytes derived in this manner has revealed 
their cardiac-specific structural, molecular and functional properties, 
including electrophysiological and drug regulation hallmarks [14,15]. 
Other studies have implicated the role of many growth factors in 
the differentiation of hES cells into cardiomyocytes, including: basic 
fibroblast growth factor (bFGF), bone morphogenic protein 4 (BMP-
4), vascular endothelial growth factor (VEGF) and activin A [16-19]. 
However, the efficiency of spontaneous differentiation of hES cells is 
low at less than 1% [20] and the use of multiple growth factors can 
be quite expensive. This motivated the findings that early treatment of 
hES and iPS cells with BMP-4, at specific concentrations [19], followed 
by late Wnt inhibition by small molecules can efficiently generate 
functional cardiomyocytes [18]. Therefore, it is highly important to 
optimize cardiac lineage development in an efficient, stage-specific and 
standardized manner.

Building upon these fundamental findings of the cardiogenic 
potential of iPS cells, their application for patient-specific cardiac 
disease modeling represents the next step. Particularly, iPS cells from 
patients with long-QT syndrome (LQTS) type 1 and type 2, a heritable 
disease characterized by prolonged ventricular repolarization leading 
to increased chance of death from cardiac arrest due to ventricular 
tachycardia, have been derived [21,22].  Cardiomyocytes derived from 
the iPS cells of LQTS type 1 patients showed molecular characteristics 
of the disease, including prolonged action potentials and diminished IKs 
currents, owing to an R190Q-KCNQ1 mutation [21]. Disease modeling 
with iPS cells has also revealed that the phenotype of cardiomyocytes 
from LQTS type 1 patients is different from those of Timothy syndrome 
patients with regards to ventricular and atrial cardiomyocyte action 
potentials [23]. Overall, the use of diseased-patient iPS cells has set the 
stage for significant discoveries to be made regarding the molecular 
causes of disease and potential therapeutic treatments [21-23]. Similar 
insights have been made into LEOPARD syndrome and its associated 
phenotype, hypertrophic cardiomyopathy, using diseased-patient iPS 
cells [24]. 

The application of iPS cell technology for cardiovascular repair has 
also been tested in an in vivo model of acute myocardial infarction, 
which delivered iPS cells directly to the myocardium of nude mice 
to rescue cardiac performance [25]. Specifically, iPS intervention 
regenerated all three cardiac lineages, including endothelium, smooth 
muscle and myocyte, and improved ventricular wall thickness, 
contractile function, and electrical activity, while reducing fibrotic scar 
tissue [25,26].

Challenges and Future Outlook for Clinical Application
The first challenge will be the development of a reproducible, 

quantifiable and efficient system for generation of hES and iPS cell-
derived cardiac cells. Another challenge will be the demonstration 
of new cardiac muscle formation in vivo using iPS-derived cells and 
the ability to heal scar tissue after myocardial infarction using this 
therapy. Further studies pertaining to the epigenetic memory of the 
tissue of origin that is present in iPS cells [27] will also be needed prior 
to any type of clinical application. Another important outlook will be 
the use of FDA approved small molecules to improve cardiomyocyte 
function, which will facilitate their function in patients. Additionally, 
direct reprogramming of cardiac fibroblasts into cardiomyocytes may 
have important therapeutic implications, but will need to be tested 
further [28]. Finally, the use of three-dimensional models and tissue 

engineering will be extremely important to recapitulate and mimic in 
vivo physiology in disease modeling and drug development.
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