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Abstract
Fragility curves depict the relationship between a weather variable (wind speed, gust speed, ice accumulation, 

precipitation rate) and the observed outages for a targeted infrastructure network. This paper describes an empirical 
study of the county by county distribution of power outages and one minute weather variables during Hurricane Irene 
with the objective of comparing 1) ‘as built’ fragility curves (statistical approach) to engineering ‘as designed’ (bottom up) 
fragility curves for skill in forecasting outages during future hurricanes; 2) county specific fragility curves to find examples 
of significant deviation from average behavior; and 3) the engineering practices of outlier counties to suggest future 
engineering studies of robustness. Outages in more than 90% of the impacted counties could be anticipated through 
an average or ‘generic’ fragility curve. The remaining counties could be identified and handled as exceptions through 
geographic data sets. The counties with increased or decreased robustness were characterized by terrain more or less 
susceptible to persistent flooding in areas where above ground poles located their foundations. Land use characteristics 
of the area served by the power distribution system can suggest trends in the “as built” power grid vulnerabilities to 
extreme weather events that would be subjects for site specific studies. 

Keywords: Power outage; Infrastructure vulnerability; Extreme
weather; Hurricane Irene, Classification of impacted areas

Introduction 

Hurricanes, snowstorms, and other adverse weather events 
continuously inflict damage to the electric grid that costs between 
$20 billion and $55 billion annually [1]. The loss of electricity from 
adverse weather events also generates social consequences. Given 
these consequences, different methods can be implemented to 
ensure persistent availability of electricity supply, including strategic 
investments in more robust grid infrastructure, active management of 
grid components, real-time grid condition monitoring and control as 
well as preemptive placement of repair crews before adverse weather 
events. In addition to these hands-on strategies, other approaches 
include the statistical analysis of past power outage data during adverse 
weather events. This top down statistical analysis offers a powerful way 
to identify recurrent patterns in the power outage data, which would 
then allow for a better understanding of the vulnerability of the ‘as built’ 
power grid. 

However, top down statistical methods require extensive data 
validation and risk over-fitting the data thereby explaining past events 
well but not predicting outages in future storms well. Bottom-up models 
such as failure analysis of individual engineered components require 
detailed proprietary information about the distribution topology 
and structure and can be computationally intensive. In this work, we 
explore a hybrid technique that combines county by county outage data 
with statistical outage information to provide spatially granular outage 
estimates in time to support emergency response activities. We identify 
those counties not explained by the statistical methods and apply a data 
driven, empirical approach for those counties. We discuss these counties 
as aggregates, however, to avoid identifying specific vulnerabilities.

Background
Fragility curves provide a powerful approach for understanding 

the relationship between a weather variable as a proxy for total 
environmental damage potential and the level of outages observed for 
a particular area during an extreme weather event. Liu et al., [2] first 
used a statistical model to provide predictions of where power would 

be lost for how many customers under hurricane conditions. In this 
early work, outages were defined as the non-transitory activation of a 
protective device, not as customers actually losing power. Liu [3] also 
recognized that different storms had different damages for similar wind 
or precipitation rates. Liu [3] followed the earlier National Infrastructure 
Simulation and Analysis Center lead of using analog storms from a built 
library of storm scenarios to predict outages by instituting a system 
of storm indicator variables [4]. Han et al., [5] attempted to remove 
the indicator variables by using a bigger set of measurements before 
a hurricane made landfall. However, Han discovered a geo-spatial 
bias; overestimating the damage in rural areas and underestimating 
the damage in urban areas with little increase in skill over the use of 
the indicator variables. Guikema et al., [6] used a method combining 
statistical and data mining approaches to forecast damage to 
distribution poles. However, the State of Maryland’s resiliency study 
indicated that customers losing power was only indirectly correlated 
with physical damage to the distribution system and instead found that 
80% of the outage was caused by distribution substations losing above 
ground connectivity to the wider grid [7]. 

National Infrastructure Simulation and Analysis Center researchers 
combined engineered fragility curves with spatially specific data sets 
of population, equipment, and interdependencies to build bottom-up 
fragility curves beginning in 2003 [4] and extending through Hurricane 
Sandy. Deviations of the total predicted outages from what was observed 
differed only along the storm edges and provided exceedingly close 
correlations for storms causing more than 1 million customers outaged. 
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However, estimates along the edges of the meteorological storm track 
were more uncertain. Although the edges of the storm constitute less 
than 10% of the customers outaged, questions such as how close can 
supplies be pre-positioned or maintaining power to fuel stations on 
evacuation routes are critical to an effective response. This research 
examines whether county by county fragility curves can be developed 
statistically from the power grid’s reaction to major storm events, such 
as Hurricane Irene and combined with engineered curves to provide 
skill in the run up to a major hurricane landfall.

Approach
Hurricane Irene provided a case study for the development of 

county by county fragility curves. Irene was a large and very destructive 
tropical cyclone that affected more than 500 counties on the East Coast 
of the U.S. (see Figure 1). In addition, the time and intensity of many of 
the outages or service interruptions were documented in official utility 
press releases and media reports. Hurricane Irene first made landfall in 
the United States (specifically, on the Outer Banks of North Carolina) 
on August 27, 2011 as a Category 1 hurricane. Although Irene remained 
at hurricane strength over land, it weakened to a tropical storm and 
made yet another landfall in the Little Egg Inlet in southeastern New 
Jersey on August 28. These intensity variations afforded a range of wind 
speeds to which the studied infrastructures were exposed. A few hours 
later, Irene made its final landfall in Brooklyn, New York City. Early 
on August 29, Irene transitioned into an extra-tropical cyclone near 
Vermont/New Hampshire border, after remaining inland as a tropical 
cyclone for less than 12 hours [8]. The path of Irene between August 20 
and 28, 2011 is shown in Figure 1.

Description of datasets and their sources

The two principal datasets, their sources, and the preprocessing 

steps needed to develop the fragility curves were collected using the 
ORNL VERDE System [9]. Number of customers outaged in each of the 
more than 500 counties was acquired through the National Outage Map 
(NOM) system within VERDE maintained at the Oak Ridge National 
Laboratory (ORNL). The NOM is a near real-time system that collects 
power outage information at the utility service area level in the U.S., 
and reports the aggregated data at the county level as a web streaming 
service. The NOM system collects outage information every 15 minutes 
from disparate utility websites across the country. The NOM system 
is part of the real-time visualization and monitoring platform VERDE 
(Visualizing Energy Resources Dynamically on Earth) developed in 
2008 at ORNL [10]. A screenshot of NOM and wind speed/direction as 
seen on VERDE is shown in Figure 2.

A data archive of temporally sequenced NOM data within the 
Eastern Interconnection was preserved and outage data extracted 
between August 21st 2011 and August 30th 2011-the dates Irene was 
over land in the U.S. The extracted data were processed by applying 
inclusion thresholds of a minimum one minute gusts of >2 knots and 
customer outages per county of >1%. This maximum observed outage 
value was matched with the maximum wind speed observed at the 
closest METAR station to the reporting county seat [11]. 

The date and time corresponding to each county’s peak outage was 
then correlated to the recorded one minute wind gust speeds at the 
closest METAR station to provide a ‘customers outage/one minute gust’ 
fragility curve for each county under Hurricane Irene-like conditions. 
To quality check the METAR data, we correlated wind speeds observed 
at METAR stations with wind fields collected by the Warning Decision 
Support System – Integrated Information (WDSS-II) data as recorded 
through the VERDE system. An example of wind speed visualization 
within the VERDE system is shown in Figure 3.

Figure 1: The path of Hurricane Irene between August 20 and 28, 2011 with current location in North Carolina. 
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Figure 2: National Outage Map (NOM) data from the VERDE system.

Figure 3: Example of WDSS-II data within the VERDE system.
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Similar to the NOM data, data preprocessing was required to 
extract the WDSS-II surface observation data and compare it to data 
in the METAR format. The surface observation data were available 
in Keyhole Markup Language (KML) file and uses a METAR format 
to summarize the weather information (a specialized coded format 
for reporting weather information). We extracted the relevant wind 
information from the METAR format using a parsing process provided 
in Microsoft Excel.

Methodology
The methodology used in the creation of fragility curves involves 

three basic steps: the acquisition of relevant datasets, the preprocessing 
of these datasets into a spatial format, and the analysis of the county 
level fragility curves. In this section, we discuss the methodology for 
constructing the fragility curves. 

In this work it was assumed that fragility curves can be expressed 
in terms of two fragility parameters, wind gusts and customers outaged. 
Fragility curves have been developed to represent failure as a function 
of ice accumulation, precipitation, or multiple combinations of these 
events. NOAA has published power outage likelihoods based on 
sustained wind speeds, ice accumulation, [12] and flooding. Based on 
studies by the State of Maryland during Snowmegedden and Hurricane 
Irene, more than 82% of the power outages were caused by wind acting 
on substations’ above ground connectivity [7].

Fragility curves should be site-specific (i.e., region specific). We 
chose each region as a county because emergency supplies and responses 
are organized according to county response plans. For Hurricane Irene, 
529 counties were included in the study area. For Hurricane Isaac, nine 
parishes were included as independent regions. Each county would have 
specific fragility curves depending upon the state of maintenance, land 
use features within the county, and local building projects to protect 
the grid. Therefore, identifying those localities whose robustness can be 
approximated by a default curve and those with enhanced or degraded 
robustness is of particular value to emergency planners.

For our purposes, fragility curves will display the bivariate 
relationship between wind speeds and number of observed power 
outages at a particular time period and for a given area. To create this 
relationship, each county in the NOM data layer is joined with the 
corresponding county in the WDSS-II and METAR data layer using the 
ESRI ArcGIS software packages. The resulting data product consisted of 
a county-level vector file with wind speed one minute gust values and 
maximum observed outages during the nine day study time frame. The 
generic (bottom-up) electric grid fragility curves based on engineering 
robustness relationships developed by EPRI is shown in Figure 4. 
Counties with more robust grids than called for in engineering designs 
will be found to the right of the design curve. Those counties found 
significantly to the left of the design curve will sustain more outages 
than the design basis curve. 

Indicated in Figure 4 are the generic thresholds found in the EPRI 
design defined as the expected percent of customers without power 
for the corresponding one minute gust wind speed [13]. A polynomial 
function of different degrees can be fitted to these points to estimate the 
deviation of the observed data from this curve.

Results
A scatter plot was generated of the data when the wind gust 

threshold of 2 knots and the outage threshold of 1% of county customers 
outaged were exceeded. This scatter plot is shown in Figure 5. The 

engineering design curve was constructed by fitting an exponential 
to the engineering standards for 25%, 50%, and 100% failure. This 
engineering correlation followed the exponential function of y=4.732 
e0.0487x where

y=percent of county customers without power

x=one minute maximum wind gusts at nearest METAR station in 
knots.

The observed correlation followed the form of y=e0.0982x which does 
not significantly diverge from the engineering curve until more than 
30% of the customers are outaged. At high outage levels the statistical 
approach provides higher outage estimates than the engineering curve. 

Through analysis of the QQ plot shown in Figure 6 it was apparent 
that the population of data points consist of at least two populations. 
Of the 262 data points composing the data set, all but fifteen counties 
fall within the 95% confidence interval of the engineered equation, 
or y=4.732 e0.0487x. For these 15 counties, the counties share common 
characteristics of low altitude, containing waterways that exceeded 
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Figure 4: A hypothetical fragility curves. The green box indicates areas with 
robust power grid; the blue box indicates areas having power grid with average 
robustness; and the purple box indicates areas with weak power grid.
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Figure 5: A scatter plot of Hurricane Irene outage vs. wind speed data.
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flood stage during the storm and have not employed underground runs 
of either the distribution system or the transmission system.

For each of these counties, outages were estimated through 
individual county fragility curves. In aggregate, these counties followed 
a fragility curve described by the equation y=5.1519e0.0546x. For these 
counties, we recommend a hybrid approach of using utility reported 
outages where available or the county by county fragility curve.

We applied both the engineering fragility curves to Hurricane 
Isaac as shown in Figure 7. By applying the top down and engineering 
fragility curves to the observed METAR measured gusts on a customer 
averaged basis, we forecasted that 35% of Louisiana Entergy customers 
would lose power at some time during the storm using the top down 
engineering curve and 48% would be outaged using the engineering 
curve as the one minute maximum gusts. County by county data ranged 
from 49 knots (resulting in 80% outaged) to 34 knots (25% outaged). 
Both estimates compare closely with the Entergy estimate of 43% of 
their customers outaged during Hurricane Isaac [14]. 

To further validate the wind based fragility curves we aggregated 
the observed Hurricane Isaac parishes outage information with the 
gust velocities observed during the landfall depicted in Figure 7. The 
comparison of the Isaac curve (blue) did not differ significantly from 
the Irene curve (orange). This slight displacement upward from Irene is 
in line with expectations given the 35% average outage based on Irene 
data and the Entergy estimate of 43%.

These results lend support to the generalized approach of predicting 
potential outages during cyclone events, but argue for a generalized 
fragility curve intermediate between the two results. Further research 
is required to further define the uncertainty factors important to these 
forecasts.

Conclusions
This work supports the wide geo-spatial application of fragility 

curves using an indicator weather variable such as one minute wind 
gust speed. Depicting the relationship between a weather variable 
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Figure 7:  Hurricane Isaac data capture within the VERDE  System.
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Figure 6:  QQ plot for all county aggregated data.
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(such as wind speed, gust speed, ice accumulation, precipitation rate) 
and the observed outages allows emergency response personnel to 
anticipate recovery resources. This empirical study of the county by 
county distribution of power outages and one minute wind gust speed 
during Hurricane Irene supports ‘as built’ fragility curves (statistical 
approach) and shows similar skill as engineering ‘as designed’ (bottom 
up) fragility curves for forecasting outages during future hurricanes 
(Figure 8). County specific fragility curves found a population of about 
5% of counties that deviated significantly from average behavior. The 
engineering practices of outlier counties suggest future engineering 
studies of robustness. Outages in more than 90% of the impacted 
counties could be anticipated through engineering based fragility 
curves. The remaining counties could be identified and handled as 
exceptions through geographic data sets. The counties with increased 
or decreased robustness were characterized by terrain more or less 
susceptible to persistent flooding in areas where above ground poles 
located their foundations. Land use characteristics of the area served by 
the power distribution system can suggest trends in the ‘as built’ power 
grid vulnerabilities to extreme weather events that would be subjects for 
site specific studies. 
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