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Introduction
Drug discovery is a time consuming and cost intensive process. It 

takes around 12-15 years and costs up to €800 million in order to bring 
a new drug in market [1,2]. Most drugs exert their therapeutic effect by 
binding to and regulating the activity of a particular therapeutic target. 
Identification and validation of such targets is a first and important step 
in drug discovery. Currently therapeutic targets can be identified using 
both structural and sequential approaches. Selectivity and specificity 
are not only major challenges in drug design but also important factors 
for withdrawing drug molecules from the market [2,3]. There are 
numerous proteins in the human body and it is practically impossible 
to ascertain whether these drug molecules bind with high affinity only 
to intended target proteins or also interact with other off-targets.

The drug discovery process requires several biochemical and 
genetic assays in order to delineate the effects of drug candidates on 
cellular systems and model organisms [4]. State-of-the-art proteomics/
lipidomics techniques measure the changes in proteins/lipids and their 
isoforms quantitatively upon drug exposure, and are important tools 
at various stages in small drug molecule discovery. Advancement in 
high-throughput technology and better understanding of biology is 
helpful in this aspect. The ‘omics’ technology utilizes high-throughput 
techniques for generating vast amount of data allowing new directions 
in drug discovery [5]. In general the ‘-omics’ suffix has been used to 
denote the study of the entire set of entities in a class. ‘Omics’ data 
provide comprehensive descriptions of nearly all components and 
interactions within a system that are required to enable a system level 
understanding [6]. Genomics, proteomics, toxicogenomics, lipidomics, 
pharmacogenomics, metabolomics and other areas of ‘omics’ 
have become handy tools in modern drug discovery. These ‘omics’ 
technologies are very popular in disease biomarker identification [4,7], 
drug target identification [8-11], and profiling of drug molecules [12-
14].

Proteomics based methods are now popular in drug target 
identification as well as in off-target analysis. Recent technological 

advancement in mass spectrometry (MS) and rapid improvements in 
chromatographic techniques have led to the rapid expansion of the 
proteomics and lipidomics. Recent development in computational 
database search algorithm [15], pathway mapping [16] give new 
dimension in area of biomarker and target identification. Different 
software for MS data processing and analysis are already available but 
they give a lot of false positive and false negative hit, so integration of 
new component to overcome this problem is still needed [6-18]. This 
review encompasses an overview of applications of lipidomics and 
proteomics in drug designing.

Proteomics in Drug Designing
Proteins are the principal targets of small chemical drug 

molecules. Common applications of proteomics in the drug discovery 
include target identification and validation, identification of toxicity 
biomarkers, efficacy estimation and understanding the mode of 
action of the drug molecules and their toxicity. MS based proteomics 
technologies are ideally suited for the discovery of biomarkers in the 
absence of prior knowledge of quantitative and qualitative changes 
in proteins. Following are the major areas in drug discovery where 
proteomics have become popular.

Deconvolution of Drug Targets
Drug target deconvolution is a process involving identification of 

complete spectrums of proteins that are associated with the bioactive 
chemical drug molecules [4,19]. Information about spectrum of target 
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proteins against bioactive drug molecule helps in drug toxicity research 
by identification of off-targets, leading to drug prioritization. It also 
aids in identification of additional unexplored targets of existing drug 
molecules. It is worthwhile to add detailed target deconvolution in 
each drug discovery process. The deconvolution of therapeutic drug 
targets should be done in consecutive steps whereby experiments 
are repeated at least twice and only resultant consensus proteins are 
considered to be valid. Proteins that observed repeatedly in every 
independent experiment using unrelated drugs and/or with matrices 
without immobilized drugs are removed from list. Finally, the most 
frequent proteins those are present in several cell lines, also known as 
‘core-proteome’ proteins are also removed from the final list [20]. 

The direct way to identify the molecular target of a drug candidate 
involves immobilizing the drug molecules on solid matrix, e.g. agarose, 
sepharose or streptavidin magnetic beads [21-24]. Use of complex 
protein mixtures such as cell or tissue or organ lysates, with matrix-
bound drug molecule, captures the target proteins. Matrix and linker 
molecule are selected on the basis of little or no unspecific binding 
of proteins. This also includes a control that involves beads with 
linker without drug molecule. These controls are included for every 
experiment to identify unspecific binders. In past chemoproteomic 
approach based target deconvolution based on classical drug affinity 
chromatography has been successfully used in identification of 
molecular target of immunosuppressants [25,26] and inhibitors of 
histone deacetylation [27]. Protein kinases are major therapeutic 
targets and their involvement in cancer and inflammation has been 
well explored. Although several successful cancer drugs are associated 
with the well-defined protein kinase target profiles, such as Imanitib 
or Dasatinib, several off-targets have been identified for these drugs 
[28,29]. The use of single immobilized kinase inhibitors allows the 
capturing of specific target proteins [30,31] as well as off-targets.

Flesischer et al. [32] used affinity-based proteomics to identify 
nicotinamide phosphoribosytransferase as a target of the potent 
and selective cytotoxic agent CB30865. Huang et al. [33] used 
chemoproteomic approach to identify tankyrases as the target of the 
small molecule XAV939. Filippakopoulos et al. [34] demonstrated that 
the small molecule, JQ1, displaces BET proteins from the chromatin; 
hence this compound is efficient in patient-derived xenograft having 
squamous carcinoma. Dawson et al. [35] used a multitier proteomic 
strategy to characterize BET-dependent histone binding of various 
protein complexes including the super elongation complex (SEC) 
and polymerase-associated factor complex. These success stories 
suggest that chemoproteomic approach enables the identification of 
direct target of drug molecules and provides insights into regulatory 
mechanism depending on protein-protein interactions.

Selectivity Profiling
 Binding mode centric profiling based on the binding/activity of 

a small drug molecule against proteins of particular protein target 
class may help in selectivity and specificity analysis of drug molecules. 
The affinity of a given compound to all members of a target class is 
determined by quantifying the amount of proteins captured by the 
affinity matrix. Precisely, inhibition of binding curves is obtained and 
used for the calculation of apparent Kd value [36-38]. This is a robust 
and reliable approach as proteins are assayed under physiological 
conditions. In addition, the multiplexing capability of MS for protein 
identification can provide ranked affinities of a compound against all 
members of the target class in a single experiment.

In case of protein kinases, the conserved ATP-binding site has 
been used to generate nonselective ATP-competitive affinity matrices 
(e.g. ‘kinobeads’) that allows the determination of IC50 values and the 
selectivity and specificity of drug molecules for up to 150 kinase target 
proteins in a single experimental run [28,29,39]. Such ‘kinobeads’ have 
been successfully applied in selectivity profiling of clinical BCR-ABL 
inhibitors in the chronic myeloid leukemia cell line K562 [28], EGFR 
inhibitors in HeLa cells [37], and 13 other multi-kinase inhibitors in 
chronic lymphoid leukemia cells under clinical investigation [29]. Wu 
et al. [40] used immobilized kinase inhibitors to identify targets in 
head and neck cancer by analyzing the kinase complement across 34 
squamous cell carcinoma cell lines established from patients.

Mode of Action of Drug and Target Validation
Chemoproteomic based target deconvolution of lead molecules 

does not necessarily identify well annotated and characterized proteins. 
Hence an initial challenge is to link these proteins to disease biology 
and to elucidate the mode of action of drug molecules for generating 
the observed response phenotype.

Building of protein-protein interaction networks by affinity 
proteomic approaches can help in characterization of functional roles 
of proteins under experimental conditions. In an ideal condition, 
placing protein into an interaction network identifies a protein directly 
as a player in the disease process under investigation. In addition, 
protein-protein interaction studies can be used to shed light on 
mechanism other than direct inhibition or activation by which a drug 
can modulate target activity. Differential protein complex formation 
with and without compound treatment, either in cell lysate or during 
the purification procedure, allows the identification of compound 
sensitive protein-protein interaction [41]. The generation of large-
scale protein interaction maps also enables the identification of more 
favorable drug target candidates.

Global Proteomic Profiling of Post-translational 
Modifications in Drug Resistance

Proteomic approaches are becoming an important tool to 
characterize the mode of action of enzymes that modulate drug 
compounds. It sheds light on post-translational modification 
of substrate proteins such as phosphorylation, acetylation and 
ubiquitination. Differential phosphorylation proteomic analysis, using 
selective small molecule inhibitors of particular kinases, has been used 
to identify substrates in human cells and characterize the effects of 
kinase inhibition on signaling. Chemogenetic kinase trapping approach 
allows for direct and unequivocal identification of kinase substrates. 
We use genetically engineered ATP-binding pocket that can bind an 
unnatural bulky ATP analog. This analog cannot bind with wild type 
kinase and hence cannot transfer its phosphate group to substrate 
proteins. The use of thio-ATP followed by a covalent capture step and 
identification of modified peptides by MS has been successfully applied 
for the characterization of human CDK1 and CDK proteins [42].

Another current focus of drug discovery effort is identification of 
epigenetic targets that modulate the posttranslational modification 
state of histones. Quantitative proteomics have been successfully used 
to study the effect of small drug molecules by monitoring protein 
acetylation and methylation. Application of proteomic approaches are 
not restricted to the identification of the mode of action but could also 
be applied to the identification of cellular mechanism of drug resistance 
[43].
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Proteomics for Biomarker Discovery
Proteomic based biomarker discovery has gained substantial 

attention in recent years. The identification of prominent biomarkers of 
disease, drug efficacy and drug toxicity is important in drug discovery 
and disease diagnosis. The overall goal of biomarker profiling is to 
identify the list of proteins, which differentially expressed in disease as 
compared to normal cells. For example, Korolainen et al. [44] identified 
26 proteins which show statistically significant changes in Alzheimer’s 
disease. 

The identification of a mechanistic biomarker of drug efficacy can 
be achieved by monitoring the levels of PTMs as phosphorylation 
of kinase proteins, protein acetylation and deacetylation or protein 
fragment by protease activity, quantitative and qualitative proteomic 
analysis by using global proteome profiling. The power of MS-based 
proteomics defines its ability to discover these modifications at a 
large scale and monitors their responses to drug treatment. It also 
estimates quantitative change in the level of proteins by other system 
perturbations [45]. For example, the output of an enzymatic activity as 
pharmacodynamics biomarker is used for monitoring global protein 
levels as a parameter for the effect of applied treatment. 

Proteomic studies on drug selectivity and mode-of-action could 
provide appropriate molecular toxicity biomarkers. Liver toxicity is 
particularly one of most common problems. Global proteomic profiling 
of human hepatocytes or rodent livers treated with a drug could be 
used to identify proteins which undergo abundant changes in response 
to drugs that may be useful as surrogate pharmacodynamic biomarkers 
[46]. It is important to translate such findings from cell line to relevant 
animal models of disease and, eventually, in human context. 

Proteomics are being applied to identify the biomarkers in cancer 
and drug resistance, thereby leading to personalized therapeutic 
strategies of cancer patients. Besada et al. [47] used comparative 
proteomic analysis of the breast tumor xenografts, which are sensitive 
and resistant to tamoxifen. It was observed that twelve proteins are up 
regulated and nine were down regulated. Umar et al. [48] performed 
comparative proteomic analyses on LCM-purified human breast tumor 
cells, which are both sensitive and resistant to tamoxifen. They found a 
set of biomarkers such as extracellular matrix metalloproteinase inducer; 
ENPP1, EIF3E and GNB4 are associated with tamoxifen resistance. 
Recent research suggests that several proteins such as annexin IV and 
claudin-4 are involved in modulating response of cisplatin in ovarian 
cancer are potential biomarker of treatment response.

Any biomarker discovery can produces lengthy list of candidate 
proteins that are detected differentially in case vs controls which 
requires further verification in large number of samples. Verification of 
these candidate proteins requires targeted, multiplexed assays to screen 
and quantify proteins in patient plasma sample with high sensitivity and 
specificity. Because there is no any quantitative assay for the majority 
of human proteins, assays (like enzyme-linked immunosorbent 
assays (ELISA) must be developed for de novo for clinical testing of 
candidate protein biomarkers, and de novo assay development is very 
expensive for testing large number of candidate biomarker. Recent 
advances in proteomics have become an integral part of biomarker 
discovery, quantification and validation of candidates in bodily fluids 
[49,50]. Selected reaction/multiple reaction monitoring (SRM/MRM) 
mass spectrometry holds the promise to overcome this bottlenecking. 
SRM/MRM MS technology has high reproducibility across complex 
samples. Keshishian et al. [51] quantify six biomarkers in serum which 
was previously reported by ELISA. Later on Whiteaker et al. [52] 

reported fabulin-2 as a marker for breast cancer later Nicol et al. [53] 
reported carcinoembryonic antigen as a marker of lung cancer by using 
MRS-MS. Recently Muraoka et al. [54] identified and quantified 5122 
proteins with high confidence in 18 breast cancer patient tissue sample 
by using shotgun proteomics coupled with the isobaric tag for relative 
quantification (iTRAQ) and SRM/MRM. A total of 61 proteins were 
found to be altered by 2-fold or more between high and low-risk breast 
cancer tissues and 49 of these proteins were subsequently verified with 
targeted proteomics using SRM/MRM. Twenty-three proteins were 
shown to be differentially expressed between high and low-risk group. 
Narumi et al. [55] performed large-scale differential phosphoproteome 
analysis coupled iTRAQ technique and subsequent validation by SRM/
MRM of human breast cancer tissues in high and low-risk recurrence 
groups. They successfully quantified 15 probable cancer biomarker 
phosphopeptides by SRM using stable isotope peptides.

Lipidomics in Drug Designing
Lipid molecules within human body are enormously complex 

and they are the fundamental component of biological membranes. 
They also play multiple important roles in biological systems such 
as, formation of cellular membranes, storage of energy and cell 
signaling, these could be expected to reflect much in health and 
disease. Lipidomics is a metabolomics approach targeted on lipids 
that aims for comprehensive analysis of lipids in biological systems. 
Lipidomics research involves the identification and quantification of 
the thousands of cellular lipid molecular species and their interactions 
with other lipids, proteins, sugars and other metabolites. Recently, 
lipidomics caught attention due to the well-recognized roles of lipids 
in numerous human diseases, such as diabetes, obesity, atherosclerosis, 
Alzheimer’s disease etc. Application of lipidomics would not only 
provide insights into the specific roles of lipid molecular species in 
health and disease, but would also assist in identifying the potential 
biomarkers for establishing preventive or therapeutic approaches for 
human health. The major objective of lipidomics is to link the lipid 
metabolites and/or lipid metabolic pathways in complex biological 
systems and to interpret the changes in the lipid metabolism or in the 
regulation of these pathways in metabolic and inflammatory diseases 
from a physiological and/or pathological perspective. Lipidomics is 
usually focused on the measurement of alterations of lipids at system-
level indicative of disease or due to environmental perturbations or in 
response to diet, drugs and toxins as well as genetics [56].	

Recent advancements in MS and innovations in chromatographic 
technologies have largely driven the advancement in lipidomics. The 
major biological significance of lipidomics is the achievement of the 
traditional lipid research in two major point: (i) how to link metabolites 
and/or lipid metabolic pathways in complex biological systems to 
individuals metabolic health; (ii) how to interpret the changes in the 
lipid metabolism or in the regulation of these pathways linked to 
metabolic and inflammatory diseases from the pathophysiological 
perspectives. For this reason, lipidomic investigation usually focus 
on the measurement of alterations of lipid at systems level indicative 
disease, environmental perturbations or response to diet, drug and 
toxins as well as genetics [56]. Often the lipid profiles in clinical 
investigations related to person that are in disease state or have 
specific genetic profiles become the basis for detection of the potential 
biomarkers related to disease or specific gene expression compared to 
control [57,58].

Usually, lipidomic analyses of given sample are performed by 
shotgun and/or targeted approaches depending on the question 
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raised by researcher. Shotgun technology is an analysis of multiple 
lipid classes in one run where lipid extracts are infused directly into 
a mass spectrometer. The advantage of shotgun approach is that it 
enables the identification and quantification of hundreds of lipids in 
less than 30 min/sample, making it suitable for initial screening. Most 
important the shotgun approach has been demonstrated to be highly 
reproducible, matching suitable for good laboratory practice (GLP) 
requirements [59]. In targeted lipidomics, lipid extracts are primarily 
separated by liquid chromatography before monitoring by online 
MS [60]. A lipidomic approach is applicable to all therapeutic area, 
including cardiovascular disease, autoimmune, diabetes, neurological 
disease, cancer, as well as inflammatory diseases [61]. Following are the 
major areas in drug discovery where proteomics have become popular.

Lipidomics for Biomarker Discovery
Lipid metabolic disorder or abnormalities is involved in several 

human diseases such as inborn disease/syndrome, coronary heart 
disease, brain injuries, cancer including all other discussed in last 
paragraph. For example, obesity is very common and most vital 
risk factors of heart diseases and diabetes. High level of low-density 
lipoproteins (LDL) and triacylglycerol and decreased level of high-
density lipoprotein (HDL) are common indicators of abdominal 
obesity. Therefore, monitoring of alteration in lipid metabolites in 
biological samples would be helpful for the identification of lipid 
metabolites indicative of metabolic disorders or disease. Quehenberger 
et al. [62] described MS-based lipidomic tools, which were developed 
by the LIPID MAPS Consortium [63] and used for the systematic 
identification and quantification of human lipidome. They presented 
plasma concentration of more than 500 different lipid species from 
six main lipid categories [64,65]. Jung et al. [66] developed high-
throughput, anticipate that this toolkit will contribute to basic research, 
nutritional research and promote the discovery of new disease 
biomarkers, disease related mechanisms of actions and drug targets. 
Min et al. [67] used qualitative and quantitative profiling of six different 
categories of urinary phospholipids from patients with prostate cancer 
to develop an analytical method for discovery of candidate biomarker 
by using shotgun lipidomics. They used nanoflow chromatography-
electrospray ionization-tandem mass spectrometry and identified 
that one phasphatidycholine, one phosphatidylethanolamines, six 
phosphatidylserines and one phosphatidylinositol show significant 
differences between control and cancer patients. 

Recently Zhou et al. [68] identified plasma lipid biomarkers 
for prostate cancer by using lipiodomics and bioinformatics. They 
used identified 15 lipid candidate marker which can classify disease 
and normal sample with accuracy 97.3%, which demonstrate the 
power of lipidomics in disease biomarker field. Drug toxicity marker 
analysis is another high potential area in high-throughput lipidomics. 
Ximelagatran, an oral thrombin inhibitor was withdrawn from market 
owing to increased risk of sever leaver damage with an unknown 
cause after Sergent et al. [69] lipidomic analysis. Based on their results, 
the investigators concluded that the lipid changes led to the loss of 
membrane integrity and leakage of cellular proteins. Their research 
identified distinct molar phospholipid ratios as novel biomarkers for 
hepatotoxity of ximelagatran drug. Recently Jänis et al. [70] reported 
lipid biomarkers of drug efficacy. Several proprotein convertase 
subtilism/kexin Type 9 (PCSK9) inhibitors are currently being 
developed by pharmaceutical companies because these compound 
have been identified to be a potent lowering drug. Lipidomic analysis 
human carrying a well-characterized PCSK9 loss-of-function mutation 
observed that PCSK9 inhibition lowered plasma concentration of 

certain cholesteryl easters and short chain sphingolipid species much 
more efficiently that did LDL cholesterol. The authors suggested that 
these specific lipid species could be utilized for the characterization 
of novel PCSK9 inhibitors and as sensitive efficacy markers of PCSK9 
inhibition.

Lipidomics in Target Discovery
Lipid play vital role in several biological function, differential 

change in concentration of different lipids can be used as probes of 
functionality of various metabolic pathways in disease. This area is still 
unexplored but we believe that integration of gene expression, flux 
lipidomics and other omics data can play vital role target identification 
in future.

Bioinformatics in Proteomics and Lipidomics
Large amount of proteomics and lipidomics data are now available 

in public domain. Omics bioinformatics is, thus, emerging as well as 
challenging for proteomics and lipidomics. Protein/lipid concentration 
changes in living biological systems reflects regulation at multiple spatial 
and dynamic scales, e.g., cellular biochemical reactions, intracellular 
trafficking of proteins and lipids, cell membrane composition change, 
protein biosynthesis and degradation and lipid metabolism and lipid 
oxidation. In order to address protein/lipid regulation, following are the 
steps required in bioinformatics: (a) data processing and identification, 
(b) statistical analysis of the data, and (c) pathway analysis.

Preprocessing of data

Specific workflow of proteomics data processing depends on the 
specific biological problems. Data pre-processing and identification 
are methods that ameliorate turning raw omics data from experiments 
into a final proteomics/lipidomics dataset that can be interpreted 
and analyzed. This may include tools for automatic data processing, 
identification and mining. Current proteomics dominated by MS based 
approaches, use direct infusion techniques of liquid chromatography 
coupled by MS (LC/MS). For background correction and data 
processing, several free and commercial softwares are available but 
R [71] based e.g. msProcess, PROcess and MATLAB (http://www.
mathworks.com/) based e.g. Backcor are most popular. There are 
several freely available software for processing of mass spectrometry 
data.

OpenMS

OpenMS is an open source framework for LC-MS based proteomics 
[72]. OpenMS offers data structures and algorithms for the processing 
of mass spectrometry data. The library is written in C++ and it will work 
on all major platforms as Windows XP/7/8, Linux, MacOS. OpenMS is 
freely downloadable at http://open-ms.sourceforge.net/.

MZmine

MZmine 2 is improved version of popular MZmine [73] is 
framework for differential analysis of mass spectrometry data, is an 
open-source software for mass-spectrometry data processing, with the 
main focus on LC-MS data [74]. MZmine 2 is freely available at http://
mzmine.sourceforge.net/. MZmine 2 can read and process both unit 
mass resolution and exact mass resolution data in both continuous and 
centroided modes, including fragmentation scans. Web can visualize 
raw data together with peak picking and identification results, which is 
very useful for evaluating different peak detection methods. 

Peak detection in MZmine 2 is performed in a three-step manner; 
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first mass values are detected within each spectrum. In the second step, 
a chromatogram is constructed for each of the mass values which span 
over certain time range. Finally, deconvolution algorithms are applied 
to each chromatogram to recognize the actual chromatographic 
peaks. MZmine 2 can report the quantification results in table form in 
comma separated value (CSV) or using charts, we can download CVS 
result file. There are several modules for further processing of peak 
detection results, including deisotoping, filtering and alignment. Peak 
identification can be performed by searching a custom database or by 
connecting to PubChem Compound database [75]. MZmine 2 also 
contains basic methods for statistical analysis of processed data.

OpenChrom 

OpenChrom is an open source software for chromatography and 
mass spectrometry based on the Eclipse Rich Client Platform (RCP). 
Mass spectrometry data generated, for example, by GC/MS, LC/MS, 
HPLC-MS, ICP-MS or MALDI-MS may be imported directly, without 
prior conversion, for subsequent visualization and evaluation. The 
focus is to handle data files from different GC/MS systems and vendors. 
OpenChrom support of various vendor data formats, data may also be 
imported in common formats such as NetCDF, csv or mzXML. All data 
format converters are provided as separate plug-ins. OpenChrom have 
adaptable graphical user interface and is available for various operating 
systems, e.g. Windows, Linux, Solaris and Mac OS X which is freely 
available at https://www.openchrom.net/

ProteoWizard

The ProteoWizard Library and Tools are a set of modular and 
extensible open-source, cross-platform tools and software libraries 
that facilitate proteomics data analysis. The libraries enable rapid tool 
creation by providing a robust, pluggable development framework that 
simplifies and unifies data file access, and performs standard chemistry 
and LCMS dataset computations. It can read major vendor raw data 
format and other as mzML, mzXML, MGF etc. and convert in different 
file format. ProteoWizard is freely available at http://proteowizard.
sourceforge.net/

XCMS

XCMS is a popular R [71] based Bioconductor [76] package 
developed for processing and visualization of LC-MS and GC-MS data 
[77]. The Xcms package reads full-scan LC/MS data from AIA/ANDI 
format NetCDF, mzXML, and mzData. All data to be analyzed by must 
be converted to one of those file formats. All NetCDF/mzXML/mzData 
format exported file put in same place throughout the analysis. During 
peak identification, Xcms uses a separate line for each sample to report 
the status of processing. It outputs have two numbers separated by a 
colon. The first number is the m/z it is currently processing, and second 
number is the number of peaks that have been identified so far. XCMS 
have several advanced tools for processing, peak detection, filling the 
missing data, retention time correction, analysis and visualization of 
results, selecting and visualizing peaks.

PrepMS

 PrepMS is a simple-to-use graphical application for MS data 
preprocessing, peak detection, and visual data quality assessment. 
PrepMS is a compiled stand-alone application, which are written 
in MATLAB. PrepMS is freely available at http://sourceforge.net/
projects/prepms/

Trans-Proteomic Pipeline (TPP)

TPP is a mature suite of tools for mass-spec (MS, MS/MS) based 
proteomics: statistical validation, quantitation, visualization, and 
converters from raw MS data to our open mzXML format. http://
sourceforge.net/projects/sashimi/

Isobar

Isobar is a tool for analysis and quantitation of isobarically tagged 
MS/MS proteomics data. Isobar provides methods for preprocessing, 
normalization, and report generation for the analysis of quantitative 
mass spectrometry proteomics data labeled with isobaric tags, such as 
iTRAQ and TMT. Isobar is Bioconductor [76] package freely available 
at http://bioconductor.org/packages/release/bioc/html/isobar.html

Target search

This package provides a targeted pre-processing method for GC-
MS. TargetSearch can currently read only NetCDF files. Target scan 
have some advanced features as baseline correction, peak idenfication, 
retention index correction, normalization, library search, metabolite 
profiling, peak and spectra visualization. TargetSearch software is 
freely available at http://www.bioconductor.org/packages/release/bioc/
html/TargetSearch.html

MassSpecWavelet

MassSpecWavelet is R package aimed to process MS data mainly 
based on Wavelet Transforms [78]. The current version only supports 
the peak detection based on Continuous Wavelet Transform (CWT). 
More functions covering baseline removal, smoothing, alignment will 
be added in the future versions. The algorithms have been evaluated 
with low resolution mass spectra (SELDI and MALDI data), we believe 
some of the algorithms can also be applied to other kind of spectra. 
MassSpecWavelet is freely available at http://bioconductor.org/
packages/release/bioc/html/MassSpecWavelet.html

MetAlign

MetAlign is tool for preprocessing of LCS-MS and GC-MS data 
[79]. It is capable of automatic format conversions, accurate mass 
calculations, baseline corrections, peak-picking, saturation and 
mass-peak artifact filtering, as well as alignment of up to 1000 data 
sets. MetAlign software output is compatible with most multivariate 
statistics programs.

MSPtoo

Mass Spectra Preprocessing tool (MSPtool), a user-friendly 
versatile tool for preprocessing MS data [80]. MSPtool provides the 
user with a wide set of MS preprocessing steps by means of an easy-to-
use graphical interface. Also, this tool has been embedded in a time-
series-based framework for MS data clustering.

Other packages 

There are several other R packages for mass spectrometry as 
msProcess, PROcess, caMassClass, FTICRMS, RProteomics, caBIG etc.

Software for Identification
Several specialized database and software are available for lipid, 

peptide identification.

SEQUEST

SEQUEST is a database searching algorithm match experimental 
spectra with theoretical spectra which are generated from peptide 
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sequences in silico, and then calculate scores to evaluate how well they 
match [81]. Then it selects a proportion of top candidate peptides based 
on the rank of preliminary score for cross-correlation analysis. So, for 
each candidate peptide identification, several scores and rankings 
are determined. To distinguish correct identifications from incorrect 
identifications, filters using a set of database searching scores are 
applied

Mascot

Mascot is a probability based scoring method for MS data searching, 
which has a number of advantages; (i) a simple rule can be used to 
judge whether a result is significant or not (ii) scores can be compared 
with those from other types of search, such as sequence homology (iii) 
search parameters can be readily optimized by iteration [82]. 

PeptideProphet

PeptideProfet is another database search tool, made on establishing 
statistical analysis methods to determine the possibility of positive 
identifications [83]. Employing the expectation maximization 
algorithm, the analysis learns to distinguish correct from incorrect 
database search results, computing probabilities that peptide 
assignments to spectra are correct based upon database search scores 
and the number of tryptic termini of peptides

ProFound, PepFrag

ProFound (http://prowl.rockefeller.edu/prowl-cgi/profound.exe) 
is a tool for searching a protein sequence collections with peptide mass 
maps. A Bayesian algorithm is used to rank the protein sequences in the 
database according to their probability of producing the peptide map. 
PepFrag (http://prowl.rockefeller.edu/prowl/pepfrag.html) is a tool 
for identifying proteins from a collection of sequences that matches a 
single tandem mass spectrum. 

InsPecT

InsPecT is a tool to identify posttranslationally modified peptides 
from tandem mass spectra [84]. InsPecT constructs database filters that 
proved to be very successful in genomics searches. InsPecT uses peptide 
sequence tags as efficient filters that reduce the size of the database by 
a few orders of magnitude while retaining the correct peptide with 
very high probability. In addition to filtering, InsPecT also uses novel 
algorithms for scoring and validating in the presence of modifications, 
without explicit enumeration of all variants.

LIMSA

LIMSA (Lipid Mass Spectrum Analysis) is a program for 
quantitative analysis of mass spectra of complex lipid samples. LIMSA 
can do peak finding, integration, assigning, isotope correction and 
quantitation with internal standards. In LIMSA we can search lipids by 
single search or by batch analyze and summarize results. Source code 
of LIMSA is freely available at http://www.helsinki.fi/science/lipids/
software.html. 

Fatty acid analysis tool (FAAT)

FAAT is an algorithm based on Fourier transform mass spectral 
data analysis of from lipid extracts has been developed [85]. FAAT is 
Microsoft Visual Basic based rapid tool it generally takes tens second 
to interpret multiple. FAAT can reduce data by scaling, identifying 
monoisotopic ions, and assigning isotope packets. Unique features 
of FAAT is : (1) it can distinguished overlapping saturated and 
unsaturated lipid species, (2) known ions are assigned from a user-

defined library including species that possess methylene heterogeneity, 
(3) and isotopic shifts from stable isotope labeling experiments are
identified and assigned. FAAT can determine abundance differences
between samples grown under normal and stressed conditions.

Pathways Analysis
Similar to other omics data, high dimensional proteomics and 

lipidomics/proteomics data needs accurate statistical analysis. Several 
statistical methods such as, principle components, correlation, and 
multivariate analysis are used commonly for getting co-regulated lipid 
and proteins. Various R based free packages are available for these 
statistical analyses. Cluster analysis provides a statistical framework 
to get proteins/lipids that separate different sample groups from each 
other, and/or co-vary in a specific study. The major goal of clustering 
method is to group sample, variables, or both into a homogenous 
group. Several freely available R based software are available for both 
supervised and unsupervised clustering such as MASS, PLAS-DA, 
AMORE, hclust, PLS, PLSR etc. 

Statistical methods alone just provide information about key 
metabolites affected within a specific group of samples. Pathway 
analysis takes this information further to identify affected metabolic 
pathway. Such analysis proceeds by combining different omics data, as 
proteomics, lipidomics, transcriptomics etc. KEGG [86], LIPID-MAPS 
[87], human metabolite database (HMDB) [88], human proteome 
research database (HPRDB) [89], plasma proteome database (PPD) 
[90], PubChem [75], and DrugBank [91,92], ChemProt [93] provides 
information of global metabolic schemes, metabolites, enzymes and 
their respective links to drug. Time is ripe to integrate these individual 
components in biological network for advanced drug designing. 
These days, several visualization tools and plugins are available for 
Cytoscape, which can be used for biological network construction. 
Knowledge based and genome-scale pathway reconstruction methods 
are thus needed, which can deal with large-scale metabolites data and 
biochemical reactions.

There are so many tools for MS data processing and analysis, so 
it’s very difficult to conclude which one is best. Each software have 
some advantage and disadvantage, it would be better to use different 
software for different step of analysis rather than single one. In general 
it observed that MZmine 2, XCMS perform better than any other for 
data processing and Wavelet transform based MassSpecWavelet for 
peak identification. For identification, LIMSA for lipid identification 
and SEQUEST and PeptideProphet for peptide identification. In case 
of downstream analysis R based free software such as Limma, hclust, 
PLS, PLSR are best.

Conclusions
Target identification and validation involves identifying proteins, 

whose expression levels or activities change in disease states. These 
proteins may serve as potential therapeutic targets or may be used to 
classify patients for clinical trials. Proteomics technologies may also 
help in identifying protein–protein interactions that influence either 
the disease state or the proposed therapy. Efficient biomarkers are used 
to assess whether target modulation has occurred or not. They are used 
for the characterization of disease models and to assess the effects and 
mechanism of action of lead candidates in animal models. Toxicity 
(safety) biomarkers are used to screen compounds in pre-clinical 
studies for target organ toxicities and followed by their employment 
during clinical trials. 

The use of proteomic approaches contributes significantly to our 
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understanding of the potential biomarker, drug target identification 
and deconvolution, mode of action of drug molecules and mechanism 
of drug resistance. Chemotherapeutic drug resistance in one of major 
problems and advancement in proteomic approaches can play major 
role in cancer drug resistance in near future. With the use of sensitivity 
of analytical method, future research needs to focus on the use of these 
qualitative and quantitative proteomic/lipidomics data of cell lines on 
animal models as well as on humans. Similarly, now genotypic and 
phenotypic data of different human ethnic populations are publically 
available in HapMap database [94,95]. Using the information in the 
HapMap and other genotype and phenotype data, researchers will 
be able to find genes that affect health, disease [96], and individual 
responses to medications [97,98] and environmental factors. It is 
high time for the integration of these genotypic and phenotypic data 
with global proteomics & lipidomics for the development of better 
understanding of disease cause, mode of action of drug molecules, 
adverse and toxicity effect of drugs in the area of advanced drug 
designing. Fortunately we have free computational tools which can 
help in integration of such data e.g. MixOmics, canonical correlation 
analysis (CCA).

Diseases often occur in only few cells. Therefore, direct whole 
proteomic analysis by MS can be difficult because the biomarker signal 
is diluted by the presence of other components of cell. There is an urgent 
need for development and implication of existing statistical methods 
for background noise correction to extract maximum information. At 
present, the existing quantitative proteomics and lipidomics methods 
are not up to mark. An improvement in the existing methods and 
development of new robust methods is the need of time. Recently, 
single cell proteomics gives a new insight about various differentially 
dynamic proteins in individual cells. Cellular response to drugs is a 
highly dynamic process and the overall effect of drug molecules is an 
ensemble of proteome dynamics in individual cells, both spatially and 
temporally. Single cell proteomics provides a way for understanding of 
how seemingly identical cells show different responses to signals and 
drugs. It can be an immense aid in designing better and improved drug 
molecules. 

There are so many available computational tools for lipidomics/
proteomics data analysis, improvement in these software is still needed 
in order to reduce the number of false positive and false negative. In 
recent past people try to solve these problems, but still lot more things 
have to do for sensitivity, specificity improvement [15]. One major 
problem in lipidomics/proteomics area is that each machine will 
provide different mass spectra for same sample, developing new robust 
computational algorithm which can overcome this problem and make 
these data comparable is still needed. Machine learning techniques 
have great potential to recognize pattern in complex dataset, it’s high 
time to utilize these techniques in lipidomics/proteomics based drug 
designing. Change in expression of different metabolites of various 
metabolic pathways in disease can be used to identify druggable 
target enzymes to control the pathway of interest [61]. It is often 
useful to integrate lipidomics and gene expressions might be useful 
for better understanding of multiple changes in complex pathways 
[16,99]. Metabolic tracing experiments (FLUX lipidomics) enables 
the quantitative measurement of molecular metabolism, including 
synthesis and degradation in real time can reveal the kinetics of 
individual molecules. In future we need advanced bioinformatics tools 
for comparative metabolomics, lipidomics [100] and pathway analysis 
[101]. Pathway mapping combined with gene expression analysis and 
flux experiments will help to revel insights into metabolism that might 
be future of target discovery. 
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