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Abstract
Apoptosis is a natural process where cells that are no longer required can be eliminated in a highly regulated, 

controlled manner. Apoptosis is important in maintaining the mammalian immune system and plays a significant 
role in immune response, positive and negative T cell selection, and cytotoxic death of target cells. When the 
apoptotic pathways are impaired or are not tightly regulated, autoimmune diseases, inflammatory diseases, viral 
and bacterial infections and cancers ensue. An imbalance in the anti-apoptotic and pro-apoptotic factors has been 
implicated in these diseases. Moreover, current therapies directed towards these diseases focus on the modulation 
of the apoptotic death pathways to regulate the immune response. In this review, we will focus on the process of T 
cell activation and apoptosis in autoimmune reactions, in response to tumor progression as well as in response to 
bacterial and viral infections.

Apoptosis – an Ubiquitous T cell Immunomodulator
Anuradha K. Murali and Shikhar Mehrotra*

Departments of Surgery, Medical University of South Carolina, Charleston, SC 29425

Keywords: T cell; Apoptosis; Infection; Autoimmunity; Tumor

Introduction
In order to maintain tissue homeostasis, cells undergo a process 

called programmed cell death or apoptosis. All cells have the ability 
to undergo apoptosis, including normal cells, either because they 
are no longer needed, are diseased, have become senescent or the 
cells are harmful to the organism. The process of apoptosis is seen in 
multicellular organisms during development, homeostasis, defense 
mechanisms, metamorphosis, terminal differentiation and immune 
responses. In this review, we will focus on the process of apoptosis of T 
cells in autoimmunity, in response to bacterial and viral infections, and 
in response to tumor progression. 

Apoptosis is a mechanism by which cells are destined to die as 
a result of either intrinsic signals or extrinsic signals [1]. Intrinsic 
pathway, also known as mitochondrial pathway, involves the interaction 
of pro-apoptotic proteins and anti-apoptotic proteins. Bcl-2 is an anti-
apoptotic protein that is normally expressed on the outer membrane of 
the mitochondria. Internal damage to the cell signals the pro-apoptotic 
molecule, Bax to migrate to the mitochondrial outer membrane, acts 
as an antagonist to the Bcl-2 protein and leads to cytochrome c release 
by making pores in the outer mitochondrial membrane. The released 
cytochrome-c binds to the protein Apaf-1 (apoptotic protease activating 
factor-1) forming the apoptosome complex. The apoptosome complex 
can now bind and activate a protease called caspase-9. As a result of 
caspase-9 activation, downstream caspase-3 and -7 are cleaved and 
activated. The end result of this cascade of signals is the digestion of 
structural proteins in the cytoplasm and degradation of chromosomal 
DNA and phagocytosis of the cell. While the intrinsic pathway is in 
response to internal signals, the extrinsic pathway or the death receptor 
mediated pathway involves interaction of death receptors and its 
specific ligand, leading to the activation of caspases downstream. As 
a result of the receptor-ligand interaction and caspase activation, the 
cells are triggered to undergo programmed cell death. An example of 
the extrinsic apoptosis pathway is the Fas-FasL-dependent signaling 
where FasL binds to Fas, recruiting the Fas-associated death domain 
(FADD) and procaspase-8 to the C-terminus of the death receptor, 
namely Fas. Accumulation of several procaspase-8 molecules triggers 
the autocatalysis of caspase-8, followed by the activation of caspase-3 
and caspase-7, ultimately resulting in the apoptosis of the cell. In 
addition to T cell apoptosis, chronic stimulation of the T cells could 
lead to terminal differentiation of the T cells resulting in an exhausted 

T cell phenotype. Whereas an oxidative environment can result in T 
cell dysfunction and even T cell death, thereby affecting the immune 
response.

T Cell Tolerance vs. Immunity
Immune cells undergo apoptosis as part of the well known 

phenomenon of positive and negative selection of T cells in the 
thymus [2]. As a result of this selection process, self-reactive T cells are 
removed from the T-cell repertoire. T cells that have been exposed to 
antigen and expanded to mount an immune response, called effector T 
cells, can undergo programmed contraction (termed programmed cell 
death - PCD) or a rapid activation-induced cell death (AICD) on TCR 
restimulation to maintain homeostasis and contribute to generation 
of memory T cell. Generally, apoptosis under these conditions do not 
elicit an immune response. However, T cell death in the periphery 
can induce tolerance [3]. Immune cells are exposed to dead cells 
during normal processes such as cell turnover as well as cell injury 
and infection. The ability to elicit an immune response or induce 
tolerance depends on the context in which the T cells see the antigen. 
That is, the mammalian immune system reacts differentially to necrotic 
stimuli and apoptotic stimuli. While inflammation and adaptive 
immunity is seen in response to necrosis, apoptosis leads to immune 
tolerance and is anti-inflammatory [4]. Moreover, by blocking caspase 
activation, signals that would normally elicit a tolerogenic response 
are now converted to immunogenic signals. The immunostimulatory 
molecule HMGB1 (High-Mobility Group Box-1) has been shown to 
be important in distinguishing tolerogenic vs. immunogenic signals 
[4]. Gurung et al. [3] have shown that naïve apoptotic cells induce 
tolerance, whereas apoptotic cells previously activated by antigen can 
induce immunity. They suggest that the expression of CD154 and its 
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interaction with CD40 on dendritic cells is important in generating 
an immunogenic response by apoptotic cells instead of a tolerogenic 
response. Interestingly, clinical trials using monoclonal antibodies 
specific to the CD3 T Cell Receptor (TCR) to treat Type 1 diabetes 
resulted in the induction of regulatory CD8+ CD25+ T cells [5]. They 
further show that immune tolerance in these patients can be attributed 
to the CD8+Foxp3+ T cells detected in the peripheral blood. 

The immune response is also subject to oxidative stress-mediated 
regulation where high concentration of reactive oxygen species 
(ROS) can lead to T cell apoptosis or necrosis. It has been shown 
that T cell subsets are differentially susceptible to oxidative stress-
induced apoptosis [6]. Differences in the expression of oxidative-
stress induced genes and ROS metabolism in the T cell subsets have 
been implicated in regulating their susceptibility to oxidative stress. 
Recent evidence have suggested that myeloid derived suppressor cells 
(MDSCs) induce production of ROS that inhibit ζ-chain expression on 
T cells, resulting in T cell dysfunction [7]. Persistent HCV infection 
is also associated with the accumulation of CD33+ MDSC cells, which 
in turn induce ROS production resulting in the suppression of T cell 
immune response to the HCV that has not been completely delineated. 
However, in addition to ROS-mediated suppression, arginase-1, 
COX-2 and iNOS pathways have been reported as possible candidates 
in MDSC-mediated suppression of T cell immunity [9]. Therefore, 
MDSC-induced production of ROS results in the suppression of T-cell 
mediated immune responses either by inducing T cell dysfunction or 
sensitizing T cells to accelerated death.

T Cell Exhaustion
Initial antigen presentation to naïve T cells with costimulatory 

molecules trigger the differentiation of naïve T cells to effector T cells. 
Subsequent to antigen clearance and post-infection, cytolytic effector 
T cells differentiate further into memory T cells that can survive 
long-term without antigen stimulation. Persistent viral infection has 
been shown to initiate T cell exhaustion, a form of T cell dysfunction, 
where T cells have impaired effector function, express inhibitory 
receptors on the cell surface, and unique transcriptional pathways 
different from effector and memory T cells [10]. Persistent viral-
antigen stimulation leads to the decreased expression of IL-7 receptor 
α−chain, decreased expression of the anti-apoptotic Bcl-2 molecule 
and induces memory T cell exhaustion followed by recurrence of viral 
infection [11]. The prolonged infection could lead to the loss of viral-
specific T cell response. Recent evidence has suggested that inhibitory 
receptor, programmed death 1 (PD-1) regulate T cell activation and 
is over expressed in T cells with exhaustive phenotype in response to 
chronic viral infections [10,12,13]. PD-1 expression is associated with 
increased sensitivity to spontaneous and Fas-FasL mediated apoptosis 
of HIV-specific CD8+ T cells [14] as well as with tumor evasion by 
inducing apoptosis of anti-tumor CD8+ T cells [15]. Previous reports 
have demonstrated that PD-1 ligand (PD-L) on tumor cells induces 
apoptosis of activated, tumor antigen-specific T cells (which express 
PD-1), resulting in the elimination of tumor-specific T cells at the 
tumor site thereby promoting host immune evasion [16]. Moreover, 
the expression of PD-1 and PD-L2 ligand, in a tissue-specific manner, 
can also influence the function of exhausted CD8+ T cells [17]. Based 
on these findings, PD-1 negatively regulates the function of exhausted 
CD8+ T cells and that blockade of PD-1 pathway is effective in restoring 
function of exhausted CD8+ T cells in a tissue-specific manner. 
Youngblood et al. have sown that in response to chronic infections, 
PD-1 expression is under epigenetic regulation, where exhausted 

CD8+ T cells have lost the ability to remethylate PD-1 DNA [18]. As a 
result, continual expression of the negative inhibitory receptor leads to 
impaired T cell function. Molecular studies of T cell exhaustion have 
shown that PD-1 expression is regulated by transcription factor Blimp1 
in response to chronic antigen stimulation [19]. Moreover, Blimp1 is 
an important regulator of CD8+ T cell exhaustion and a repressor of 
memory CD8+ T cell differentiation. In addition, PD-1 induces the 
over expression of suppressor of cytokine signaling-1 (SOCS-1), which 
controls the downstream Jak/Stat signaling pathway effecting cytokine 
expression, in response to chronic HCV infection [20]. PD-1 and 
SOCS-1 are over expressed in patients with chronic HCV infection as 
compared to healthy controls, suggesting that crosstalk between these 
receptor molecules leads to T cell exhaustion by inhibiting the T-cell 
signaling pathway. Interestingly, based on recent evidence, the PD-1 
and SOCS-1 negatively regulate the expression of another Jak/Stat 
pathway-regulated cytokine, IL-12 in monocytes, thereby affecting the 
host immunity to HCV infection during the initial phase of infection 
[21]. Decreased expression of IL-12 leads to impaired Th1 polarization 
and CTL response, resulting in the evasion of host immune response 
to HCV infection. Other inhibitory receptors include cytotoxic T 
lymphocyte-associated antigen-4 (CTLA-4), 2B4, CD160, GP49B, 
Tim3 and lymphocyte activation gene 3 (LAG-3) [10,22-26], all of 
which are important regulators of T cell dysfunction in chronic viral 
infections. Taken together, PD-1 is involved in regulating T cell 
exhaustion in cooperation with other negative inhibitory receptors, 
transcription factors and downstream signaling molecules. Therefore, 
persistent antigen stimulation results in the deletion of antigen-specific 
naïve or memory T cells and promotes chronic viral infections. In 
summary, the molecular mechanism involved in T cell exhaustion, T 
cell dysfunction and T cell apoptosis due to repetitive TCR stimulation 
modulates immune effector response and is an area of intensive 
research. In subsequent sections we discuss the various factors that 
affect apoptosis and in turn modulate infection and immunity.

Apoptosis in Autoimmunity
Apoptosis has been implicated in inducing autoimmune diseases 

including autoimmune thyroid diseases, systemic lupus erythematosus 
(SLE) and rheumatoid arthritis (RA) and multiple sclerosis (MS). 
In autoimmune diseases, auto-reactive T cells bypass the normal 
apoptotic signals resulting in the expansion of cells that attack self-
antigens. Histone deacetylase proteins are important regulators of 
protein acetylation, chromatin remodeling and gene transcription. 
This type of transcriptional regulation is seen in tumor cells and it is 
now reported to occur in pro-apoptotic genes in auto-reactive T cells. 
Recent evidence has suggested that histone deacetylase 3 (HDAC3) is 
unregulated in PBMC of multiple sclerosis patients and as a result of 
this upregulation, self-reactive T lymphocytes are resistant to apoptosis 
[27]. Posttranslational modification is another method of triggering an 
immune response to self-antigens. For example, recent reports have 
suggested that isopartyl modification of cytochrome-c and small nuclear 
ribonucleoproteins (self-antigens), where the aspartic acid residues are 
non-enzymatically modified, can elicit an immune response to self-
antigens in SLE patients [28]. Taken together, this would suggest that 
in autoimmunity, expression of self-reactive T cells is regulated at the 
transcriptional, post-transcriptional and post-translational levels.

Recent evidence suggests that defects in the anti-apoptotic protein 
BCL-2 leads to the development of autoimmune disorders [29,30]. 
Moreover, Fas-FasL (extrinsic) apoptosis pathway and the Bim 
(intrinsic) pathway have significant roles in regulating chronic immune 
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responses and thereby prevent autoimmunity [31,32]. Li et al. [33] have 
suggested that interleukin-7 is important in maintaining peripheral 
T-cell repertoire by inhibiting Bim activity at the posttranscriptional 
level. Based on studies using an animal model of spontaneous 
autoimmune disease, lymphocyte activation gene 3 (LAG-3) deficient 
mice, LAG-3 and PD-1, a negative regulator of activated T cells, work 
synergistically to prevent autoimmunity in mice [34]. Furthermore, an 
autoimmune susceptibility gene, FcRL3 has recently been identified 
in human T regulatory cells (Treg) [35]. While the function of this 
receptor is not known, and hence called an orphan receptor, the over-
expression of this receptor leads to the dysfunction of Treg cells. The 
negative regulation of Treg cells results in autoimmune diseases. The 
FcRL3+ Treg cells resemble memory T cells with overexpression of 
PD-1 receptors where FcRL3 negatively regulates TCR signaling in 
Treg cells resulting in autoimmunity. Based on recent reports, SLE 
patients have increased apoptosis of circulating T cells and reduced 
clearance of apoptotic cells [36]. This increase in number of apoptotic 
cells is associated with increased production of reactive oxygen and 
nitrogen species as well as increased complement activation. This would 
suggest that these patients would benefit from therapies targeting the 
production of reactive oxygen and nitrogen intermediates, thereby 
reducing autoantigen presentation and subsequent autoimmune 
disease. However, the presence of auto-reactive T cells in SLE patients 
could be attributed to the defective regulation of PP2A Bβ, a regulator 
of IL-2 deprivation-induced T-cell apoptosis [37]. As a result of this 
defect in select SLE patients, auto-reactive T cells are resistant to 
apoptosis resulting in autoimmune disease. Contrary to the above 
methods of developing autoimmune diseases, current studies have 
also suggested that soluble Granzyme B, a serine protease expressed by 
cytotoxic T cells and natural killer cells, is responsible for generating 
auto-antigens in SLE [38] and in MS [39]. In brief, upon identifying 
the target cell, the membranes fuse so that the cytotoxic granules are 
released into the target cell to induce apoptosis. This is followed by the 
cooperation of another toxin, perforin. Perforin-granzyme B is now 
released by the cytotoxic T lymphocytes in the cytosol of the target 
cell leading to the death of virus-infected and tumor cells [40]. Thus, 
the difference in susceptibility of auto-reactive T cells to apoptosis is 
an important factor that governs their turnover and is responsible for 
autoimmune pathology.

Apoptosis in Viral Infection
One mechanism to counteract the pathogenesis of viral infections 

is to limit viral replication and spread by triggering the innate immune 
response. In response to viral infections, the host produces interferon-
gamma (IFN-γ) to inhibit virus replication. Another common 
response to virus infection is to initiate suicide of the infected cell via 
premature apoptosis [41,42]. This study further suggested that the 
process of triggering premature apoptosis in the infected cell requires 
the interaction of interferon regulatory transcription factor-3 (IRF3) 
and pro-apoptotic protein, Bax. IRF3 and Bax are translocated to the 
mitochondria, followed by the activation of the intrinsic apoptotic 
pathway, killing the virus-infected cell. In an attempt to counteract 
the effects of interferon production by the host, virus-infected cells 
have the ability to interfere with IFN-γ induction and IFN JAK-STAT 
signaling [43]. Examples of this type of regulation are seen with NS1 
protein of influenza-A virus [44], the NS3/4A of hepatitis C virus [45], 
and the V protein of paramyxovirus [46]. Moreover, current phase III 
clinical trials are testing the feasibility of NS3/4A protease inhibitors, 
telaprevir (VX-950) and boceprevir (SCH-503034), to treat hepatitis 
C infections. While it is known that interferon-stimulated gene 56 

(ISG56) regulates virus-triggered signaling of IFN1 production, it has 
also been implicated in regulating cellular anti-viral responses [47]. 
Therefore, ISG56 inhibits viral replication and protein translation, and 
is a key regulator of cellular anti-viral responses. 

The coxsackievirus B (CVB3) uses a mechanism to suppress 
host-initiated antiviral signaling by cleaving mitochondrial antiviral 
signaling protein (MAVS) and Toll/IL-I receptor domain-containing 
adaptor inducing interferon-beta (TRIF) in order to evade host 
immune system [48]. These molecules are cleaved by the CVB3-
derived 3Cpro cysteine protease. As a result, 3Cpro cysteine protease can 
suppress type I IFN and apoptotic signals whose purpose is to clear 
the CVB3 infection. In persistent herpes virus infections, BID and 
BIM pro-apoptotic proteins are involved in the regulation of activated 
CD8+ T cell death in vivo [49]. BID has been shown to act as a link 
between the extrinsic and intrinsic apoptotic pathways so that T cell 
immune responses are shutdown in conditions of chronic, persistent 
antigen exposure. Recent studies have also highlighted the role of 
small non-coding RNAs in translational regulation of viral transcripts. 
These small non-coding RNAs, known as microRNAs (miRNA), are 
approximately ~22 nucleotide in length, bind to messenger RNA and 
repress translation of the messenger transcript in viral pathogenesis. 
Interestingly, molecular techniques have identified 21 miRNAs and 
400 mRNA that were differentially expressed in response to the HIV1 
infection [50]. Based on these results, miRNAs are important in 
regulating the host cellular genes during the HIV-1 infection thereby 
changing the host’s response to the infection. Moreover, HIV-1- 
derived TAR miRNA has been shown to protect the HIV-1 infected 
cell from apoptosis by down-regulating two apoptosis related genes, 
namely ERCC1 (Excision repair cross complementing-group1) and 
IER3 (Immediate Early Response 3) [51]. ERCC1, the excision repair 
enzyme, and IER3 protects cells from extrinsic type of apoptotic 
pathways. IER3 plays an important role in the induction of apoptosis 
in response to serum starvation and DNA damage. Similarly, KSHV–
derived miRNA have been shown to induce IL-6 and IL-10 cytokines 
by macrophages and monocytes, thereby promoting tumor progression 
and suppressing anti-tumoral immune responses [52]. KSHV-derived 
miR-K12-3 and miR-K12-7 have been identified as key regulators of 
IL-6 and IL-10 production by targeted suppression of C/EBPβ p20 
(LIP) expression. LIP is a dominant-negative transcriptional repressor 
of other isoforms of C/EBPβ. Therefore, KSHV-derived miR-K12-3 
and miR-K12-7 up-regulate IL-6 and IL-10 production, which 
results in impaired dendritic cell maturation, inhibits Th1-, NK- and 
macrophage-derived cytokine production, influences T cell activation. 
Moreover, IL-6 has been shown to enhance angiogenesis in a VEGF- 
and FGF-mediated manner. Qin et al. [53] have also demonstrated that 
KSHV-derived miR-K12-11 up-regulates expression of xCT, enhances 
reactive nitrogen species (RNS) secretion by macrophages and protect 
these cells from RNS-induced cell death. Therefore, KSHV-derived 
miR-K12-11 promotes survival of KSHV-infected cells even under 
oxidative stress-promoting conditions. Taken together, virus-infected 
cells evade the host’s immune response by inhibiting apoptosis of the 
virus-infected cells by regulating either host derived cytokines, reactive 
oxygen and nitrogen species, apoptotic pathways and excision repair 
enzymes. Based on the previous examples, it is quite clear that viral 
infection can not only affect T cell function, but also evade apoptosis by 
regulating the host lytic molecules that are involved in viral clearance.
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Apoptosis in Bacterial Infections
The ability to evade apoptosis upon establishing an infection in the 

host is a requirement for bacterial survival. There are several bacterial 
mechanisms to accomplish this once cells are infected with bacteria. 
For example, bacteria can target macrophages and neutrophils and 
initiate apoptosis of these immune cells so that the bacterially infected 
cells survive and proliferate. That is, the macrophages and neutrophils 
can no longer attack the bacteria-infected cells. In contrast, there 
is current evidence that bacteria can also prevent apoptosis during 
infection. For example, Chlamydia have the ability to prevent apoptosis 
by preventing host-derived pro-apoptotic proteins, Bax and Bak 
from entering the mitochondria [54]. As a result of this mechanism, 
cytochrome-c is not released and therefore downstream caspase 
signaling is inhibited in the infected cells. Chlamydia can also target 
pro-apoptotic proteins, such as Bik, Puma and Bim, for degradation 
by a protease known as chlamydial proteasome-like activity factor 
(CPAF). It is also possible for Chlamydia to regulate extrinsic pathway 
of apoptosis by upregulating inhibitor of apoptosis proteins (IAPs). 
By preventing apoptosis of the Chlamydia-infected epithelial cell, the 
infected cells will continue to divide, undergo DNA synthesis and 
mitosis post-infection. Thereby ensuring that Chlamydia infected host 
cells continue to undergo cell division and prevent apoptosis of the 
infected cell. In contrast, Chlamydia-infected macrophages can induce 
apoptosis of activated T cells by secreting tumor necrosis factor-alpha 
(TNF-α) [55]. As a result of this apoptosis induction in host T cells, 
persistent Chlamydial infection is promoted. While it is known that 
CD8+ T cells are the primary cells that are activated in response to 
viral, bacterial infections, parasitic infections and tumor cells, current 
research has identified, B-cell lymphoma/leukemia 11b or Bcl11b as 
a critical transcription factor for CD8+ T cell immune response [56]. 
The results of this study further suggest that this zinc finger protein is 
required for antigen-dependent clonal expansion and cytolytic activity. 
Moreover, Bcl11b may regulate expression of perforin and granzyme B 
in response to bacterial infection. Other mechanisms can also regulate 
T cell activation and cell-mediated immunity. For example, Xie et al. 
[57] have suggested that T cell-mediated immunity and TCR/CD28 
signaling in response to Listeria monocytogenes infection, is impaired in 
the absence of TNFR-associated factor 3 (TRAF3). There are examples 
of obligate intracellular bacteria that inhibit apoptosis by promoting 
cell survival pathways. While Ehrlichia chaffeensis inhibit apoptosis 
by up-regulating NF- κB, as well as anti-apoptotic genes, namely bcl-
2 [58], Rickettsia rickettsii inhibit apoptosis by upregulating NF- κB, 
up-regulation of anti-apoptotic proteins, inhibition of cytochrome-c 
release and caspase activation [59]. Therefore, bacterial infections can 
take advantage of the host cell survival pathways and thereby allowing 
bacteria to replicate and evade the host immune response.

Apoptosis in Tumor Response
Tumor cells have developed mechanisms to evade the host 

immune system including downregulation of MHC class I molecules, 
secretion of immunosuppressive factors, and downregulation of co-
stimulatory molecules. Recent reports have confirmed that tumor 
cells express B7-H1 co-stimulatory molecule, but normal tissues do 
not express B7-H1 [16]. Interestingly, B7-H1 has been described to 
regulate cellular and humoral immune responses through the PD-1 
receptor on activated T and B cells. The end result would be to increase 
apoptosis of tumor reactive T cells. Moreover, Sakuishi et al. [60] have 
identified CD8+ tumor-infiltrating cells (TILS) that express PD-1 and 
T cell immunoglobulin mucin 3 (Tim-3), referred to as exhausted T 

cells, which exhibit another form of immunosuppression. These T 
cells fail to proliferate, and cannot function as effector cells, that is, 
they fail to elicit a cytotoxic response to antigen stimulation, which 
results in unhindered tumor growth. By eliminating the exhausted 
T cell phenotype, via targeting of the Tim3 and PD-1 pathways, 
it is possible to effectively restore cytotoxicity function of these T 
cells in the tumor environment. Tumor cells can evade immune 
surveillance by modifying the surface antigen expression and promote 
immunosuppression. Tumor cells have also been shown to express 
galectin-1, which promotes tumor growth, angiogenesis and T-cell 
apoptosis [61]. Interestingly, the study establishes the importance 
of tumor-derived galectin-1 rather than host galectin-1 in tumor 
progression by regulating intratumoral immunomodulation via T-cell 
apoptosis. Another example of an immune escape mechanism is 
seen in colorectal cancers, where death receptor signaling is executed 
from tumor to T cell [62]. While tumor cells express TRAIL, the 
tumorinfiltrating immune effector cells, either IFN-γ-producing CD8+ 
effector T cells or CD56+ NK cells, express TRAIL-R1. The TRAIL and 
TRAIL-R1 interaction leads to the apoptosis of the CD8+ effector T 
cells, thereby evading the host immune system. Reports also suggest 
that CD8+ effector T cells infiltrating the tumors over-express Fas and 
cross-linking this molecule with its ligand, Fas ligand (FasL), on tumor 
cells leads to the apoptosis of the CD8+ effector cells, again resulting 
in the evasion of immunosurveilance and allowing tumor progression 
[63]. Based on in vitro studies, colon cancer cells over-expressing 
FasL can trigger apoptosis in T lymphocytes expressing Fas [64]. This 
would further support the process of inducing immune tolerance 
by initiating apoptosis of Fas-sensitive anti-tumor immune effector 
T lymphocytes. Immune evasion can also occur by tumor-induced 
signal transducer and activator of transcription 3 (STAT3) constitutive 
signaling in tumor cells and the tumor-associated immune cells [65,66]. 
STAT3 signaling is activated in the nonmalignant cells in the tumor 
microenvironment as a result of tumor-associated factors including IL-
10, IL-6, β2-microglobulin and VEGF. The antigen-presenting cells in 
the tumor, dendritic cells (DC), are negatively regulated by the STAT3 
signaling resulting in the inhibition of DC maturation, decreased 
MHC II expression, decreased CD80/86 expression and decreased 
secretion of IL-12. As a result of this negative regulation by STAT3, 
there is a reduction in T cell cytotoxic activity and IFNγ production, an 
increase in the number of tumor-associated Treg cells. Together, they 
regulate anti-tumor response by the immune cells. While it is known 
that constitutive activation of STAT3 promotes angiogenesis and 
metastasis, other downstream targets of STAT3 signaling have been 
identified which includes CD46, a complement-regulatory protein 
[67]. CD46 expression is up-regulated in normal and tumor cells to 
prevent complement-mediated cytotoxicity. Therefore, STAT3 is a key 
mediator of tumor immune evasion at multiple levels. A significant 
number of CD4+CD25+ regulatory T cells were found in peripheral 
blood of patients with breast cancer as compared to the number these 
cells in the peripheral blood of patients with benign breast cancer and 
healthy volunteers [68]. Moreover, the increase in the number of Tregs, 
increased apoptosis of competent T cells, as well as the tumor size was 
associated with the expression of indoleamine 2,3-dioxygenase (IDO), 
which is required for the metabolism of tryptophan in the kynurenine 
pathway. This particular study has suggested that IDO is important 
in inducing tumor tolerance by up-regulating Treg cells and the 
subsequent apoptosis of competent cytotoxic T cells, thereby allowing 
the tumor to grow without triggering an immune response in the 
patient. In conclusion, molecular mechanism of immune surveillance 
is an important area of research that could shed some light into how 
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apoptosis of competent cytotoxic T cells, in the presence of Tregs, leads 
to tumor progression.

microRNA in T cell function
As discussed in previous sections, microRNA’s (miRNA) can 

play an important role in modulating the host microenvironment, 
where tumor cells as well as virus-and bacteria-infected cells evade 
apoptotic signals regulated by innate effector molecules. However, T 
cell function could also be modulated by miRNA and could result in 
modulating the disease outcome. Recent studies have demonstrated 
the importance of miRNA’s in the posttranscriptional regulation of 
gene expression, including genes associated with T cell activation. 
Curtale et al. [69] have shown that miRNA-146a plays a significant role 
in the activation of T-cell mediated immune response. They further 
suggest that miRNA-146a is important in regulating AICD, it acts as an 
antiapoptotic factor, targets the Fas-associated death domain (FADD), 
impairs both activator protein 1 (AP-1) activity and Interleukin-2 (IL-
2) production upon TCR activation. Based on these results, it is evident 
that miR-146a is involved in the modulation of adaptive immunity. 
The importance of miRNA in regulating the differentiation of helper 
T cells has also been reported [70]. Based on these findings, miR-29 
is also important in regulating IFN-γ production by T helper cells as 
well as the proliferation of helper T cells. Other miRNAs have been 
implicated in the negative regulation of T cell immunity, such as 
miRNA-155 [71]. MiR-155 is an oncogenic miRNA that is induced in 
dendritic cells upon maturation and has the ability to repress T cell 

activation. MiRNA-155 may negatively regulate the expression of 
molecules required for lymph node migration, antigen presentation 
and T cell activation. Interestingly, Grigoryev et al. [72] have identified 
71 differentially expressed miRNAs that can potentially regulate T 
cell activation. In addition to identifying two miRNAs, miR-155 and 
miR-221, as having anti-proliferative roles during T cell activation, 
they report several target genes for miR-155 and miR-221 including 
PIK3R1 (Phosphatidylinositol 3-kinase regulatory subunit alpha), IRS2 
(Insulin receptor substrate 2, an adaptor of tyrosine kinase), IKBKE 
(Inhibitor of nuclear factor kappa-B kinase subunit epsilon) and FOS 
transcription factor. Taken together, these studies suggest significant 
role of miRNAs in regulating transcription of genes associated with T 
cell activation.

Pharmacological & Molecular Approaches to Modulate 
Apoptosis in Disease State

The ability to modulate apoptotic pathways in several diseases has 
been the focus of current pharmacological and molecular therapies. 
Table 1 illustrates various signaling molecules discussed above that 
are involved in regulating immune function and could be potentially 
targeted to improve various disease states. Patients with chronic 
hepatitis C infection develop fibrosis of the liver as a result of activated 
T cells, activated stellate cells and ultimately, apoptosis of the infected 
hepatocytes [73]. Moreover, HCV infection leads to apoptosis of 
activated CD4+ and CD8+ T cells via Fas-FasL apoptotic pathway, 
thereby promoting chronic HCV infection by evading the host 

Signaling Molecule Involved in Regulating Reference #

miR-146a AICD [69]
miR-29 Helper T cell differentiation [69]
miR-155, miR-221 T cell activation [71,72]
miR-K12-3, miR-K12-7 IL-6 and IL-10 production [52]
PD-1 T cell exhaustion [10, 12, 13]
Blimp-1 T cell exhaustion [19]
CTLA-4,2B4, CD160, GP49B T cell exhaustion [10, 22-26]
LAG-3 T cell exhaustion [10, 22-26]
IRF-3 and Bax T cell apoptosis [41, 42]
NS1 protein host immune system [44]
NS3/4 A host immune system [45]
V protein T cell apoptosis [46]
ISG56 IFN1 production [47]
3Cpro cystein protease IFN1 production [48]
TAR miRNA host ERCC1 and IER3 [51]
CPAF Bik, Puma and Bim degradation [54]
TRAF3 T cell activation [57]
NF-κB, bcl-2 T cell apoptosis [58]
NF-κB, cytochrome c T cell apoptosis [59]
B7-H1 apoptosis of tumor-reactive T cells [16]
Tim-3 immunosuppression, T cell

exhaustion [60, 10, 25]

Galectin-1 T cell apoptosis [61]
TRAIL-R1 host immune system [62]
Fas host immune system [63]
STAT-3 immunosurveillance [65, 66, 67]
IDO immunosurveillance [68]
Fas-FasL T cell apoptosis [74]
XIAP apoptosis [78,79, 82]
Bcl-2, Bcl-XL, Bcl-W apoptosis [83]

Table 1: Signaling Molecules and their role in T cell Regulation.
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immune response [74]. Therapies directed to treat chronic HCV by 
limiting activated T cell apoptosis include caspase-inhibitor GS-9450 
[75], and oral IDN-6556, another caspase inhibitor used to prevent 
apoptosis of hepatocytes in HCV infected patients [76]. However, the 
effect of IDN-6556 on apoptosis of activated T cells was not addressed 
in this study. Therefore, it is possible for IDN-6556 therapy to prevent 
apoptosis of hepatocytes and promote immune response by inhibiting 
apoptosis of activated T cells in HCV infected patients. The type of 
treatment administered is dependent on the type of viral infection. 
For example, HIV infected cells require a different approach to control 
viral replication and enhance immune response to HIV infection. 
By administering protease inhibitors to AIDS patients, neutrophils, 
polymorphonuclear leukocytes, and HIV-infected and uninfected 
CD4+ T cells are resistant to apoptosis signals by direct inhibition of the 
Calpain-Bax-associated apoptosis pathway [77]. This would increase 
the number of reactive T cells and thereby allow activation of host 
immune system. 

Cancer cells can evade apoptotic signals by over-expressing an 
anti-apoptotic protein called XIAP, X-linked inhibitor of apoptosis. 
Current pre-clinical and clinical trials have used anti-sense oligo-
nucleotides directed toward XIAP to treat non-small cell lung cancer, 
pancreatic cancer, breast cancer, thereby making the cancer cells 
sensitive to chemotherapy and radiation therapy [78,79]. Under some 
circumstances, for example in response to chemotherapy, namely 
anthracyclins and oxaliplatins, cancer cells undergo immunogenic 
apoptosis where they trigger a protective immune response [29,80,81]. 
Dendritic cells engulf the apoptotic cancer cells and tumor cell-derived 
antigens are presented to tumor specific CD8+ T cells, which are now 
instrumental in preventing tumor progression. Cells that undergo 
immunogenic apoptosis express calreticulin on the surface of the 
cell, which is normally expressed in the endoplasmic reticulum. In 
contrast, cancer cells that are defective in presenting calreticulin on 
the surface are resistant to anticancer therapies like anthracyclines 
and oxaliplatins. For example the human neuroblastoma cell line, 
SH-SY5Y, fail to present calreticulin on the surface in response to 
anthracyclin treatment. Therefore, the ability of cancer cells to present 
calreticulin on the surface will determine its sensitivity to anthracyclin 
treatment. Current apoptosis-based therapies to treat cancer include 
caspase inhibitors, monoclonal antibodies directed towards TRAIL-
receptors, CD95/Fas, TNF-α and anti-sense constructs against TNF-α, 
XIAP anti-sense oligo-nucleotides, XIAP RNAi and anti-survivin 
constructs, all of which are at either preclinical or phase I clinical trials 
[82]. Recently, BH3-mimetic therapy has been used to target pro-
survival proteins, such as Bcl-2, thereby overcoming the resistance 
to apoptosis in hematological malignancies [83]. While Navitoclax 
and ABT-737 are examples of BH3-mimetics with affinity to Bcl-2, 
Bcl-XL and Bcl-w pro-survival proteins, Obatoclax and AT-101 BH3-
mimetics induce cytotoxicity in tumor cells expressing Bcl-2 as well as 
Bcl-XL, Mcl-1, Bax and Bak. Interestingly, these BH3-mimetics have 
been used as single agents as well as in combination with conventional 
chemotherapeutic drugs to treat chronic lymphocytic leukemia (CLL), 
small lymphocytic lymphoma, NK/T cell lymphoma and follicular 
lymphoma (FL), acute myeloid leukemia (AML), myelodysplastic 
syndrome (MDS), systemic mastocytosis and Hodgkin’s lymphoma. 
Taken together, BH3-mimetics are used to overcome tumorassociated 
resistance to apoptosis and thereby limit tumor progression. 

While kinase inhibitors and monoclonal antibodies have been used 
in clinical trials to treat tumors, new approaches to treat cancer include 
dendritic cell (DC) tumor vaccines and immunomodulatory agents that 

enhance the host’s tumor-specific T cell immune response. DC cancer 
vaccines are used to induce effector T cell differentiation and cytokine 
production specifically targeting the tumor [84]. However, DC, at 
the tumor site, is subjected to tumor induced immunosuppresion 
by abnormal macrophages, myeloid-derived suppressor cells and 
Treg cells. Therefore, it is important for DC vaccines to circumvent 
the immunosuppressive tumor microenvironment in order to elicit a 
tumor-specific T cell-based immune response. For example, a phase 
III sipuleucel-T immunotherapy clinical trial to treat patients with 
castration resistant prostate cancer has some promise in eliciting a DC-
directed anti-tumor response [85]. Sipuleucel-T is a cellular vaccine 
where autologous peripheral blood mononuclear cells are activated 
with a recombinant fusion protein PA2024. PA2024 fusion protein 
consists of human granulocyte/macrophage-colony stimulating factor 
(GM-CSF) and human prostatic acid phosphatase (PAP), and prostate 
antigen. Sipuleucel treatment targets cells that express GMCSF- receptor, 
resulting in the activation and maturation of DC precursors. While 
overall patient survival was improved, the time to disease progression 
did not change with sipuleucel treatment. Other DC vaccine based 
therapies to induce tumor-antigen directed immune response include 
MHC class I and II-restricted peptide-loaded DC vaccines [86,87], DC 
co-transfected with mRNA encoding melanoma specific antigens and 
soluble human glucocorticoid-induced TNFRrelated protein-ligand 
(GITR-L) and anti-CTLA-4 mAb [88] and DC transfected with the 
hTERT subunit of telomerase to treat pancreatic cancer [89].

Pharmacological agents that expand tumor-reactive T cells, NKT, 
NK cells and IFN-γ-producing killer DC, such as bryostatin, have shown 
to be effective as anti-tumor agents in animal models and in clinical 
trials. Adoptive cellular therapy was used to treat breast cancer in 
transgenic murine models where tumor-reactive T cells were expanded, 
ex-vivo, with bryostatin 1/ionomycin and cytokines IL-7/IL-15 + IL-2 
[90]. Bryostatin is a protein kinase C modulator that mimics the CD3/
TCR complex signaling resulting in the activation and proliferation 
of tumor-reactive T cells. Interestingly, these expanded T cells, which 
include memory and effector T cells, are resistant to MDSC-induced 
immunosuppression. Furthermore, Bryostatin 1 treatment has been 
used in combination with other cytotoxic chemotherapeutic agents, 
such as vincristine, to effectively treat select patients with non-Hodgkin 
lymphoma (NHL) who relapsed after autologous stem cell transplant 
[91]. In vitro studies using human B-cell lymphoma cell line, WSU-
DLCL2, has suggested that administration of bryostatin/vincristine 
combination leads to the suppression of the anti-apoptotic protein Bcl-
2 expression and the upregulation of the tumorsuppressor protein, p53 
[92]. Suggesting that this combination is effective in eliciting an anti 
tumor response. However, in this phase II clinical trial where patients 
with NHL were subjected to bryostatin1/vincristine treatment, the 
researchers could not unequivocally correlate clinical response with an 
increase in apoptotic frequency of T cells. Based on these results, further 
research in correlating clinical outcomes with apoptotic frequency 
of peripheral blood T cells is indicated. Nonetheless, current clinical 
trials have suggested that bryostatin can be used in combination with 
gemcitabine [93], fludarabine [94] and cisplatin [95] to effectively treat 
non-hematologic tumors, chronic lymphocytic leukemia and indolent 
NHL and refractory non-hematological tumors, including melanoma, 
sarcoma and head and neck, ovarian, cervical, esophageal pancreatic, 
renal and lung tumors. Taken together, bryostatin has the potential 
to effectively regulate T cell anti-tumor response in combination with 
other cytotoxic agents. 

Ex-vivo expansion of human FOXP3-expressing Treg cells, 
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using pharmacological agents, is another area of research that has 
recently gained considerable interest, largely due to the plasticity of 
human Tregs cells. The immunosuppressive human Treg cells are 
capable of differentiating into FOXP3-negative, IL-17- and IFN-γ−
secreting inflammatory/effector T cells depending on the cytokine 
microenvironment, thereby making it difficult to expand human 
FOXP3-positive Treg cells, ex-vivo [96]. Golovina et al. [97] have 
demonstrated that All-transretinoic acid (ATRA) in combination 
with rapamycin can expand human peripheral bloodpurified Tregs 
and that rapamycin plays a significant role in T cell homeostasis and 
T cell function. While rapamycin inhibits the expansion of effector 
T cells by inhibiting the mammalian target of rapamycin (mTOR) 
pathway, FOXP3+ Tregs have the ability to overcome this rapamycin-
mediated inhibition and therefore, have the ability to expand, ex-vivo 
in response to rapamycin and ATRA. Taken together, FOXP3+ Treg 
are resistant to rapamycin since FOXP3 expression induces yet another 
signaling molecule, Pim2, a serine/threonine kinase that promotes 
resistance to rapamycin-mediated apoptosis [98]. Moreover, ex-vivo 
expanded Tregs retained the suppressive activity in the presence 
of ATRA and rapamycin and these Tregs can be used to effectively 
regulate autoimmune reactions in vivo. For example, rapamycin has 
been shown to reduce the severity of experimental osteoarthritis in 
an autophagy-activation manner [99]. Impaired autophagy results in 
the overproduction of ROS, abnormal gene expression and cell death. 
Interestingly, mTOR plays a significant role in inhibiting autophagy. 
This would then suggest that rapamycin has the ability to regulate 
ROS production and cell death by blocking mTOR signaling while 
promoting autophagy activation. Therefore, rapamycin treatment 
reduces the severity of osteoarthritis in mouse models by activating 
autophagy and inducing the expansion of immunosuppressive Treg, 
in vivo. Rapamycin therapy has also been used to restore insulin 
production by pancreatic β cells in patients with long-term type 1 
diabetes by regulating the autoimmunity in these patients [100] as well 
as to induce immune tolerance in murine transplatation models, where 
rapamycin prevents or delays allograft rejection [101]. Taken together, 
the immunosuppressive drug, rapamycin can restore the function 
of Treg cells, maintain T cell homeostasis and regulate autoimmune 
reactions.

Conclusion
Apoptosis is a key component in health and disease. Normal 

development of the nervous system and immune system requires 
apoptosis of unwanted neuronoal cells and immune cells, respectively. 
Understanding the molecular mechanisms of apoptosis will provide 
insight into the associated disease processes and may help in designing 
therapeutic regimens. While some conditions are attributed to 
upregulation of apoptosis, other conditions are due to decreased 
apoptosis of immune cells. Furthermore, apoptosis signaling pathway 
has several checkpoints and by elucidating the molecular basis for 
dysregulation of apoptosis in the disease states one can design more 
effective therapies to treat the diseases. Taken together, translational 
outcome of basic research on the molecular mechanisms of apoptosis 
in immunoregulation is warranted.
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