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sulphate (HS) proteoglycans [8]. The integrin binding is mediated 
by a highly conserved arginine-glycine aspartic acid (RGD) motif 
located in GH-loop of VP1. The principal receptor used by field 
strains of FMDV to initiate infection is αvβ6 integrin which is 
due to its epithelial cell restricted expression [9-12]. The other 3 
integrins recognized as receptors for field strains of FMDV are 
αvβ 1, αvβ 3 and αvβ 8 [13-15]. The role of these 3 integrins 
in pathogenesis is not clear and αvβ3 has been found as a poor 
receptor for FMDV [16]. However, cell culture adapted viruses 
often use heparansulphate (HS) as receptors and can initiate 
infection via an integrin-independent process [8,17-19].

After binding to the receptor, virus is endocytosed by clathrin 
dependent endocytosis into endosomes and then acidic pH of 
endosomes dissociates the capsid to release viral RNA [20]. The 
hydrophobic regions of capsid fuse with the endosomal lipid 
bilayer leading to a pore formation and then subsequently release 
of viral RNA into cytoplasm [21]. The viral RNA is later on 
translated into viral structural and non-structural proteins [22]. 
After FMDV infection, primary replication occurs in the mucosa-
associated lymphoid tissue (MALT) of the nasopharynx and 
thereafter in the pulmonary alveolar septa. As viraemia approaches 
in 24-48 hours [23], the replication increases in the lungs and 
decreases in the nasopharynx [9,10,23]. Then lesions appear in 
the mouth and feet of susceptible animals. The viraemic phase is 
defined by vesiculation and erosion of epithelia of mouth, feet, 
teats, prepuce and ruminal pillars [24,25]. It has been shown that 
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INTRODUCTION

Foot-and-Mouth Disease (FMD) is a highly contagious and 
economically important disease of domestic and wild cloven 
hoofed animals. The disease is caused by foot-and-mouth disease 
virus (FMDV) which belongs to genus Aphthovirus of the family 
Picornaviridae [1]. 

The mechanism of spread of FMDV is primarily in the form 
of aerosolised droplets, saliva or through indirect contact by 
personnel or contaminated surfaces [2]. However, infection 
can also happen via skin or mucous membranes, but these are 
inefficient means of entry, unless abrasions or cuts are present 
[3,4]. Cattle sheep and goats can exhale up to 5.2 log 10 TCID50 
virus/day and pigs up to 8.6 log 10 TCID50 virus/day which shows 
that infected pigs are bigger source of infection than infected 
ruminants [2,5]. In comparison to pigs, ruminants excrete less 
number of viruses in breath but are more susceptible than pigs to 
infection through respiratory route. Ruminants can be infected 
experimentally by airborne exposure of 10 TCID50 whereas pigs 
get infected by 103 TCID50 viruses [5,6]. However, the infective 
experimental oral doses for pigs are 104-105 TCID50 viruses and 
for ruminants 105-106TCID50 viruses [7] which shows that they 
are relatively insensitive to experimental infection by oral route. 
The incubation period for FMDV is from 2 to 14 days. 

FMDV enters cells through binding to surface receptors of host 
cells. The major receptors for FMDV are integrins and heparan 
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ABSTRACT

Foot-and-mouth disease (FMD) is an important transboundary disease of domestic and wild cloven hoofed animals. 
Both, innate and adaptive immunity play an important role in combating FMDV infection. Interferons, CD4+ 
helper cells and CD8+ cells are the key factors in developing anti-FMDV immunity inside host’s body. In this review 
a detail of FMDV pathogenesis and anti-FMDV immunity has been discussed in detail. 
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Natural killer (NK) cells obtained from FMDV restimulated bovine 
PBMC (peripheral blood mononuclear cells) of vaccinated cattle, 
have been shown to be cytotoxic against FMDV-infected target 
cells [54]. In addition, γ δ T-cells have been shown to proliferate 
and produce cytokines in response to FMDV antigen [55]. 

Dendritic cells (DCs) are the major antigen presenting cells in 
mammals and plasmacytoid DCs (pDCs) produce significant 
amounts of IFN-α early after infection [56]. Studies in humans 
and mice have demonstrated that DCs have roles in linking innate 
and adaptive immune responses [57]. Various subsets of porcine 
dendritic cells including plasmacytoid dendritic cells (PDC), 
monocyte-derived dendritic cells and bone marrow-derived dendritic 
cells have shown to be susceptible to infection [58]. 

FMDV is highly sensitive to type 1 IFNs in vitro [59] and FMDV 
Leader proteinase (Lpro) and 3C block the expression of type 
1 IFN in vitro [60-62]. This blocking of interferon may help the 
virus to replicate and disseminate effectively [63]. It has been 
demonstrated that FMDV replication in cell culture is inhibited 
by IFN-α and delivery of IFN-α protects swine from subsequent 
FMDV challenge [59,64]. IFN-α and/or IFN-β mRNA production 
after experimental infection has been reported in skin [65], nasal 
associated lymphoid tissue [66], mononuclear cells of lung [67], 
and epithelial cells of bovine tongue, coronary band and dorsal 
soft palate [66]. Recently, Segundo et al., reported that Ad5-
boIFN-λ 3 induced systemic antiviral activity and boIFN-λ3 has 
potential as a biotherapeutic candidate to inhibit FMDV or other 
viruses in cattle. 

ADAPTIVE IMMUNE RESPONSE

Adaptive (acquired) immunity includes both humoral and cell 
mediated immunity (CMI). It involves antigen presenting cells 
(APCs) such as macrophages and dendritic cells, the activation 
and proliferation of antigen specific B cells and T cells and the 
production of antibody molecules, cytotoxic T lymphocytes 
(CTLs) and cytokines. 

Humoral immunity

There is a strong correlation between the circulating humoral 
antibody titre against FMDV and protection against the virus 
[51,68]. The first neutralising antibody is IgM, appearing after 
3-4 days of infection/vaccination, peaking after 10-14 days and 
thereafter declining [69,70]. IgG appears 4-7 days post infection/
vaccination, and becomes the major neutralising antibody after 
2 weeks [71,72]. The titre of IgG1 is reported to be higher than 
IgG2 [34]. IgM followed by IgA and IgG are the major antibody 
subclasses found in the upper respiratory tract [34]. IgM and IgA 
mediated neutralising activity has been observed in the pharyngeal 
fluid after 7 days of virus exposure [73]. However the presence 
of IgA antibody in early stage of infection was considered to be 
the leakage of tissue fluid and serum whereas presence of IgA 
antibody in the pharyngeal fluid after 20 days of infection was 
reported to be synthesized at mucosal surface rather than serum 
transudation. Salt et al. [72] considered the possibility of mucosal 
IgA detection in the oropharyngeal fluids of persistently FMDV 
infected animals and later on developed an IgA assay to detect the 
persistently infected (carrier) cattle and demonstrated that IgA is 
the indicator of oropharyngeal replication of FMDV. 

The production of antibody after FMDV infection has been 
demonstrated to be T cell independent in both mice [74] and 

cattle are non-infectious until 0.5 days after appearance of clinical 
signs and the infectious period is usually shorter (1.7 days) [26]. 
After clearance of the virus from lesion sites, some ruminants 
may develop chronic asymptomatic infection called the carrier 
state [5,27]. 

Animals from which live FMDV can be recovered after 28 days 
of infection are referred as carriers [28,29]. Carriers have been 
recorded in cattle [30], African buffalo [31], sheep [32], and 
goats but not in pigs [33]. Carriers have been recognized for all 
serotypes of FMDV and in both experimentally and naturally 
infected animals [33]. The maximum duration observed for the 
carrier state in African buffalo, cattle, sheep and goats is 5 years, 
3.5 years, 9 months and 4 months, respectively [3,34]. 45%-
50% of FMD-infected ruminants may turn into virus carriers. 
Although pigs can clear infection and do not turn into carriers 
[3], however, in some studies live virus was been isolated till 14 
days of infection from tissues like tonsil, spleen, thymus and 
lymphnodes [35]. FMDV RNA was detected in the nasopharynx 
[36], dorsal palate [36] and tonsils [37] of FMDV infected pigs up 
to 33 days, 48 days and 36 days post infection, respectively.

Apart from oropharynx, FMDV may persist in other organs like 
mammary gland, testicles, pituitary, pancreas and thyroid [38-42]. 
Tonsil is the prominent site of persistence of FMDV in sheep 
[43,44]. 

FMDV structural proteins have been located till 38 days post 
infection in the germinal centres of lymphoid tissue of cattle [45] 
and these FMDV particles located in the lymphoid tissue could 
be a possible source of infectious material encountered during 
probang sampling of infected cattle [45].

There is no experimental evidence of virus transmission from 
carrier cattle or sheep to uninfected animals [46]. The only 
evidence available for virus transmission from a carrier to a 
susceptible animal is from African buffalo to cattle during the 
outbreaks in Zimbabwe in 1989 and 1991 [47]. Furthermore, it 
has been reported that FMD transmission can occur sexually 
from infected buffalo harbouring virus in oesophageal-pharyngeal 
(OP) fluids to uninfected cattle [48]. 

IMMUNE RESPONSE

Immune defense against FMDV has been related to circulating 
antibody titres and humoral antibody responses are the most 
important factor which protects animal against FMD [49-
51]. The antibodies are produced by B lymphocytes by their 
interaction with Th lymphocytes. Hence, both humoral and cell 
mediated immunity play important role in providing protection. 
In addition, the innate immune response also protect animals 
during early FMDV infection [52].

INNATE IMMUNE RESPONSE

The main components of the innate immune system are 
macrophages and dendritic cells. Macrophages play an important 
role in early phases of FMDV infection. Macrophages infected 
with FMDV have been observed to play role in acute infection 
[53] acting as infectious carriers and disseminating virus to other 
parts of body. Infection in these virus infected macrophages can 
be cleared within 10-14 hours in vitro. Macrophages are considered 
to play role in immune responses through opsonisation and 
subsequently destruction of virus.
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cattle [74,75]. The induction of IgG after FMDV immunization 
has been shown to be T-cell-dependent in a murine experimental 
model [71,76]. However, T cells have been shown to play a 
role in induction of antibody responses in ruminants which 
is demonstrated by FMDV specific CD4 T-cell proliferation 
after infection/vaccination [77-79]. The NSPs of FMDV have 
many T-cell epitopes [77,79] which might elicit prolonged 
immune response in infected animals [80]. The presence of 
non-replicating FMDV antigen in the light zone of the germinal 
centre of mandibular lymph node may elicit long-term antibody 
response in infected animals [45]. Pega et al. [81] demonstrated 
a rapid local antibody response on aerosol exposure to FMDV, 
where all the infected animals developed antibody secreting cells 
after 4 days of infection in all the lymphoid organs along the 
respiratory tract. Recently the role of CD4+ cells in induction 
of neutralizing antibodies against FMDV infection and isotype 
switching has been demonstrated by Carr et al. [82]. They found 
that after depletion of CD4+ cells in vaccinated animals there 
was significant decrease in the titre of neutralizing antibodies and 
delay in the isotype switching from IgM to IgG suggesting the 
possible role of CD4+ in induction of humoral immunity against 
FMDV. 

Cell-mediated immunity

The cellular immune response is evoked by CD8+ cytotoxic T-cells 
and CD4+ helper T-cells [83]. The Th1 secrete interferon gamma 
(IFNγ), IL-2 and tumour necrosis factor beta (TNFβ) which 
stimulates phagocytosis to remove the intracellular microbes 
[84]. It has been reported in mice that Th1 cells promote an 
IgG2 antibody response [84]. The Th2 cell identifies the antigen 
presented by B lymphocytes and secrete IL-4, IL-5, IL-6, IL-10 
and IL-13 which stimulates production of IgG1 antibody [85]. 

Although it is a well-known fact that protection against FMDV 
infection is provided by virus neutralizing antibodies, however, 
specific antibody response does not always provide clinical 
protection against FMDV infection [49]. Intriguingly, in many 
cases animals are found protected even in the absence of humoral 
response against FMDV [86]. Hence it has been suggested that a 
cell mediated immune response is required for protection against 
FMDV infection [87]. Both CD8+ and CD4+ antiviral responses 
have been observed after FMDV infection, however, the role of 
these responses in providing protection is unclear [88,89]. 

The T cell response to FMDV is cross reactive between FMDV 
serotypes hence it forms an important tool for the vaccine design 
[90-93]. It has been shown that the CD4+ cell mediated T cell 
response is required for providing protection against FMDV 
infection by the production of antiviral antibodies [88,89,94]. 
Hence, IFN-ϒ has been used for measurement of antigen-specific 
T cell activation [95]. The proliferation and production of IFN-ϒ 
from lymphocytes derived from FMDV infected animals have 
been demonstrated after restimulating with vaccine antigen 
[79,82,96]. Moreover, a memory CD4+ T-cell population has 
been detected in vaccinated cattle [97,98]. Recently a positive 
correlation has been found between IFN-ϒ and vaccine induced 
protection [68]. It was found that CD4+ T cells are the major 
proliferating cells and produce interferon gamma in stimulated 
cells of vaccinated and subsequently infected animals [68]. 

The FMDV specific MHC-I restricted CD8+ T cells response 
has been detected in cattle using a sensitive IFN-restimulation 
ELISpot assay [99]. Recently a highly conserved putative cross 

reactive cytotoxic CD8+ T-cell epitope was detected in the VP1 
protein of FMDV [100]. The cell-mediated immune response 
against FMDV has been demonstrated by induction of IFN-γ [94]. 
Also, induction of FMDV-specific CD8+ cytotoxic T lymphocytes 
killing of MHC matched target cells in an antigen specific manner 
has been demonstrated [101]. Recently, Zhang et al. [102] reported 
that IL-2 and GM-CSF can be used as adjuvants with VP1 to 
enhance both humoral and cell mediated immune responses. 
Proliferation of CD8+ cells has been demonstrated starting from 
10-14 days post vaccination up to 3-4 weeks following FMDV 
infection [87]. However, the role of CD8+ immune responses 
could be limited due to the rapid decrease in MHC 1 expression 
that occurs with FMDV infection. This has been demonstrated in 
vitro with MHC-1 expression down to about 53% that of normal 
at 6 hours post infection [103]. 

During FMDV infection, impairment of T-cell function has been 
observed. During acute phase of infection transient lymphopenia 
has been observed in swine [104] with T cell function returning to 
normal after 4-7 days of infection [105]. It has been demonstrated 
that incorporation of T cell epitope along with B cell epitope in 
a peptide based vaccine followed by vaccination and subsequent 
challenge leads to significant reduction in virus excretion and 
clinical score [106]. Moraes et al. [107] found that inclusion of 
2B peptide in adenovirus vectored based vaccine increased CD8+ 
and CD4+ response which correlates with protection.

CONCLUSION

Thus, both innate and adaptive immunity play an important role 
in providing anti-viral immunity against FMDV. The humoral 
anti-FMDV response is T cell dependent and in some of the 
instances in the absence of humoral antibody response the cell 
mediated immune response has been found to be active. 
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