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Introduction
Gliomas account for about 45% of all primary CNS tumors and 

77% of all malignant primary CNS tumors [1]. Although brain tumors 
constitute only a small proportion of overall human malignancies, they 
carry high rates of morbidity and mortality. The current treatment 
is a multimodal approach combining neurosurgery, fractionated 
radiation therapy and chemotherapy with the DNA methylating agent 
temozolomide [2]. However, mortality is still close to 100% and the 
average survival of patients with GBM is less than 1 year [2-5]. 

Gliomas are divided into different subtypes based on cell line 

from which they originate. The 4-level grading system proposed by 
the WHO is the most widely accepted and widespread [6]. Grade I 
gliomas are benign with a slow proliferation rate and include pylocitic 
astrocytoma. Grade II gliomas are characterized by an high degree of 
cellular differentiation and are prone to malignant progression. They 
include astrocytoma, oligodendroglioma and oligoastrocytoma. Grade 
III lesions include anaplastic astrocytoma, anaplastic oligoastrocytoma 
and anaplastic oligodendroglioma. These tumors show a higher cellular 
density and a notable presence of atypia and mitotic cells. Grade IV 
tumors are the most malignant and the most frequent and include GBM 
and gliosarcoma. These tumors presented microvascular proliferations 
and pseudopalisading necrosis.

Gliomagenesis is characterized by several biological events, such as 
activated growth factor receptor signaling pathways, down-regulation 
of apoptotic mechanisms and unbalance among pro-angiogenic 
and anti-angiogenic factors. The cellular and molecular events that 
initiate and promote malignant gliomas development are, however, 
not completely understood. Tumor cells invasion is a multifactorial 
process, consisting of cell interactions with ECM components and 
with adjacent cells, as well as accompanying biochemical processes 
supportive of active cell movement [1]. Critical factors in tumor cells 
invasion, include the detachment of invading cells, the synthesis and 
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Abstract
Patients affected by cerebral gliomas, despite classical strategies adopted, show a very poor prognosis. Current 

treatment consists of regimens that include surgical debulking, radiation therapy, and systemic chemotherapy. 
However, the median survival after surgery and radiation therapy alone is 9 months, and systemic chemotherapy is 
minimally effective. 

Advances in molecular biology have better depicted the mechanisms involved in the genesis of cerebral gliomas 
and identified specific gene sequences to be targeted in the malignant cell genome. Gene expression can be blocked 
using various strategies. The concept of antisense-mediated gene inhibition has now emerged as a potentially 
powerful alternative or adjunct to conventional cancer chemotherapy. This strategy is able to block selectively glioma 
cells which interfer to gliomagenesis molecular pathways. The antisense molecules, delivered inside the brain, 
penetrate into glioma cells blocking specific genic functions. Antisense oligonucleotides are complementary to the 
target mRNA and this bind cause the block and/or the reduction of the encoded protein synthesis. Genes coding for 
growth factors and their receptors, proto-oncogenes, cellular proteases, kinases, and proteins important in cell cycle 
control and apoptosis represent ideal target for antisense oligonucleotides treatment.

In this study, we report the most relevant findings of antisense oligonucleotides application in gliomas treatment.

Journal of Genetic Syndromes 
& Gene TherapyJo

ur
na

l o
f G

en
eti

c Syndromes &Gene Therapy

ISSN: 2157-7412



Citation: Caffo M, Caruso G, Passalacqua M, Angileri FF, Tomasello F (2013) Antisense Oligonucleotides Therapy in the Treatment of Cerebral 
Gliomas: A Review. J Genet Syndr Gene Ther 4: 194. doi:10.4172/2157-7412.1000194

Page 2 of 10

Volume 4 • Issue 10 • 1000194
J Genet Syndr Gene Ther
ISSN: 2157-7412 JGSGT, an open access journal 

Cancer Genetics

for AONs have been envisioned in many fields including oncology, 
vascular and genetic diseases, cardiovascular disease, hematological 
disease, inflammatory disorders, and in the treatment of the human 
immunodeficiency virus and other viral infections.

In this review clinical and experimental studies about the use of 
AONs in cerebral gliomas treatment are reported.

Antisense Therapy
In eukaryotic organisms, pre-mRNA is transcribed in the nucleus, 

introns are spliced out and then the mature mRNA is exported from 
the nucleus to cytoplasm. The small subunit of the ribosome usually 
starts by binding to one end of the mRNA and is joined there by other 
eukaryotic initiation factors, forming the initiation complex. This 
multi-enzymatic complex scans along the mRNA strand until it reaches 
a start codon, and then the large subunit of ribosome attaches to the 
small subunit so that the translation of a protein begins. This process, 
by which the information of a gene is converted into protein, is referred 
to as “gene expression”. Gene expression can be blocked using three 
principal strategies [16,17]: a) inhibitor approaches based on chemical 
compounds and monoclonal antibodies, b) anti-gene approaches, 
and c) siRNA approach. The anti-gene approaches can be subdivided 
into others three groups: the antisense molecules [18] targeted to 
the complementary sequence in mRNA, (antisense RNA, AONs and 
ribozymes), the triple helix-forming oligomers [19] targeted to the 
double stranded DNA gene, and the sense oligonucleotide designed to 
act as decoys to trap regulatory proteins [20].

RNAi or post-transcriptional gene silencing is a conserved 
biological response that mediates resistance to both endogenous 
parasitic and exogenous pathogenic nucleic acids. RNAi is also 
involved in transcriptional regulation, acting as a process within living 
cells that moderates the activity of their genes. It plays a fundamental 
role in diverse eukaryotic functions including viral defence, chromatin 
remodeling, genome rearrangement, developmental timing, brain 
morphogenesis, and stem cell maintenance [21]. In this mechanism, 
a short sequence of dsRNA specifically downregulates the eukaryotic 
expression of an associated gene [22]. The mediators of the sequence-
specific mRNA degradation process are 21-25 nucleotide interfering 
RNAs generated from long dsRNAs by the DICER ribonuclease 
cleavage. The siRNAs are double stranded molecules, consisting of a 
guide strand that is perfectly complementary to a target mRNA and 
a passenger strand [23]. The siRNA is then incorporated into one or 
more of the Argonaute proteins in RISC where the RNA serves as a 
sequence specific guide for complementary base pairing with the 
target and guides RISC for sequence specific target degradation or 
translational inhibition [23]. The limit in therapeutic use of siRNA 
to modify gene expression is represented from the transient effect. 
These antisense molecules, for the lack of the RNA-dependent RNA 
polymerase, should be require the continuous transfection into target 
cells by plasmid vectors. In the extracellular compartment, siRNAs 
are highly susceptible to degradation by enzymes found in serum 
and tissues. To be effective siRNAs must also reach their target cells 
in the specific tissues that express the aberrant gene. The large size 
and negative charge of naked siRNAs thwarts their diffusion across 
the plasma membrane and prevents intracellular accumulation. 
Meanwhile, siRNA delivery strategies that take advantage of 
endocytosis also must provide for endosomal escape. In the cytoplasm, 
siRNAs remain vulnerable to degradation by intracellular RNAses and 
still need to be recognized by and incorporated into RISC with high 
efficiency. A peculiar distinctive characteristic between RNAi and the 
other antisense approaches is represented by the extreme selectivity. 

deposition of ECM components by tumor cells and mesenchymal cells, 
the release of ECM-degrading activities for remodeling interstitial 
space, and the expression of adhesion molecules on glioma cell 
surfaces that specifically recognize and adhere to ECM components 
[1]. ECM provides the microenvironment for the cells and serves as a 
tissue scaffold, guiding cell migration during embryonic development 
and wound repair. Changes in the ECM components play a crucial 
role in peritumoral invasion forming structural elements for cellular 
attachment and migration, although specific interactions and exact 
mechanisms are unknown. Glioma cells express and release ECM-
degrading enzymes for ECM remodeling and infiltration. The function 
of these proteases is controlled by specific inhibitors and an imbalance 
in their expression levels facilitates invasion. Malignant gliomas are 
also characterized by extensive microvascular proliferation. Neo-
vascularization in brain tumors correlates directly with their biological 
aggressiveness, degree of malignancy and clinical recurrence and 
inversely with the post-operative survival of patients affected by gliomas. 
Glioma vasculature is structurally and functionally abnormal and it 
correlates and leads to vasogenic edema, increased interstitial pressure, 
and heterogeneous delivery of oxygen and drugs [7]. The new blood 
vessel growth is stimulated by the secretion of growth pro-angiogenic 
factors. These factors bind to receptors present on endothelial cells, so 
as to activate them. Glioma cells first accumulate around the existing 
cerebral blood vessels and lift off the astrocytic foot processes, which 
leads to the disruption of the normal contact between endothelial cells 
and the basement membrane [8]. The deposition of pro-angiogenic 
matrix is essential for newly sprouting vessel. This involves breakdown 
of the vascular basement membrane and extracellular matrix through 
the action of cathepsin B, matrix metalloproteases and other enzymes 
as well as the expression of matrix proteins such as fibronectin, laminin, 
tenascin-C and vitronectin [9]. After breakdown of the basement 
membrane, endothelial cells proliferate and migrate toward the tumor 
cells expressing pro-angiogenic compounds.

Surgical treatment is invasive but represents the first approach for 
the vast majority of brain tumors due to difficulties arising in early 
stage detection. Principal objective of the surgery is the reduction of 
the tumor size and of the intracranial pressure. Aggressive treatments 
have extended the median survival but it is often associated with 
significant impairment in the quality of life [10]. Radiation therapy and 
chemotherapy are non-invasive options often used as adjuvant therapy, 
but may also be effective for curing early-stage tumors. Adjuvant 
radiotherapy gives limited benefits and causes debilitation side effects 
which reduce its efficacy [11]. Patients treated with radiotherapy are 
at high risk of developing some complications such as post-radiation 
leukoencephalopathy, characterized by dementia, gait disturbance, 
incontinence, and a deficit in attention and executive functions [11-
13]. The effectiveness of systemic chemotherapy is limited by toxic 
effects on healthy cells, generally resulting in morbidity or mortality of 
the patient. Moreover, the presence of the BBB limits the passage of a 
wide variety of anticancer agents [14,15].

Recent advances in the understanding of the deregulated 
molecular pathways of gliomas have brought about targeted therapies 
that have the ability to increase therapeutic efficacy in tumors 
while decreasing toxicity. Multi-targeted kinase inhibitors, novel 
monoclonal antibodies, and new vaccines have been developed. 
Promising therapeutic approach is also represented by RNA and DNA 
oligonucleotides, including antisense, microRNAs, small interfering 
RNAs, and nucleic acid aptamers. The concept of antisense-mediated 
gene inhibition is now emerging as a potentially powerful alternative 
or adjunct to conventional cancer chemotherapy. Clinical applications 
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In this way siRNA may inhibit selectively the expression of oncogene 
containing a single point mutation, without suppresses the expression 
of the wild-type transcript [24].

RNA can act as an enzyme and is capable of catalyzing RNA splicing 
and cleavage, as well as several other chemical reactions. These novel 
activities of RNA now permit the development of enzymatic RNA 
molecules as therapeutic agents that can suppress the expression of 
altered proteins by catalyzing the trans-cleavage of the corresponding 
mRNAs [25]. RNA targets for ribozyme-based therapeutics may 
encode oncoproteins, growth factors, proinflammatory cytokines and 
their corresponding cell-surface receptors, and signal transduction 
molecules; viral and microbial mRNAs or genomic RNAs are also 
readily cleaved by this approach. Some ribozymes have a self-cleavage 
catalytic action while other ones are true catalysts and can carry out 
RNA slicing by transesterification (splicesome) and peptidyl transfer (in 
ribosomes) [26]. These molecules, transcripted from DNA sequences 
different, should play a crucial role in the epigenetic mechanisms of 
gene expression and in cell function.

Antisense oligonucleotides

AONs show the important ability to identify and determine the 
role of a specific gene in a physiological process. The AONs own, also, 
the capacity to detect genetic mutations and telomere size, the potential 
uses as nucleic acid biosensors and more several other diagnostic 
applications [27,28]. Others AONs applications are in chemistry and 
technology, e.g. as electrochemical biosensors, and in optical data 
storage [29,30]. In medical applications these antisense molecules 
may be introduced into a cell to silence one of many genic functions 
physically obstructing the translation machinery [5].

AONs are relatively small, single-stranded deoxyribonucleotide, 
13-25 nucleotides long, that are complementary to the target mRNA 
[5,31,32]. Their binding to this mRNA by Watson-Crick base-pairing 
stops translation and thereby reduces synthesis of the encoded protein. 
The biological activity of AONs can be expressed through multiple 
mechanisms, including inhibition of the interaction with proteins 
or other nucleic acids, consequently inhibiting or preventing RNA 
transport, splicing, and translation; disruption of RNA structure; 
covalent modification of target nucleic acid; induction of RNAse L; and 
induction of RNAse H [33]. However, the most important mechanism 
appears to be the utilization of endogenous RNase H enzymes 
[18,34]. This enzyme specifically cleaves the RNA strand of RNA-
DNA duplexes. This releases the AON intact, which can then bind to 
a new mRNA strand. This process produces a targeted destruction of 
mRNA and a correction of genetic aberrations. Most of the antisense 
drugs currently in clinical trials utilize the RNase H mechanism [34]. 
Regulation of RNA processing is another efficient mechanism in which 
oligonucleotides can be utilized to regulate gene expression. New 
studies have demonstrated that AONs can be used to regulate RNA 
splicing in both cell based assays and in rodent tissues [35,36]. Other 
AONs mechanisms include translational arrest by steric hindrance of 
ribosomal activity, interference with mRNA maturation by inhibiting 
splicing and destabilization of pre-mRNA in the nucleus.

Oligonucleotides are polyanionic macromolecules and multiple 
obstacles in reaching their intracellular site of action are evident. 
Due to the high molecular weight and polyanionic characteristics, 
AONs are subjected to relatively rapid clearance from the blood 
circulation and show a reduced bioavailability. Low cellular membrane 
permeability and lack of cell-type specific uptake are additional issues 
that need to be addressed to advance these molecules into the clinic. To 

overcome these limits chemical modifications such as the introduction 
of phosphorothioate linkages and 2′-O-methylation of the ribose 
moieties have been developed [37,38]. The chemical modifications 
can significantly improve the therapeutics properties of AONs and 
may be unavoidable for their clinical exploration. Based on variations 
of these modifications three AONs generations can be identified. 
AONs first generation contains backbone modifications such as 
replacement of the oxygen atoms of the phosphate linkage by sulphur 
(phosphorothioates), methyl group (methylphosphonates) or amines 
(phosphoroamidates). The phosphorothioates have been widely used 
for gene silencing because of their sufficient resistance to nucleases and 
ability to induce RNase H functions [18,34]. The second generation 
of AONs was characterized by substitutions of position 2’ of ribose 
with an alkoxyl group. 2’-O-Methyl and 2’MOE (2’-O-methoxyethyl) 
derivatives can be further combined with a phosphorothioate linkage. 
2’MOE AONs show an improved resistance against nuclease-mediated 
metabolism as well as tissue half-life in vivo, which produces a longer 
duration of action [18,34]. The third generation of AONs contains 
structural elements, such as zwitterionic oligonucleotides, LNA, 
morpholino, PNA and hexitol nucleic acids. These modifications 
enhanced AONs in terms of nuclease resistance, specific binding and 
cellular uptake with agents such as PNA and morpholino.

Systemic AONs treatment is well tolerated and side-effects are 
dose-dependent. Dose-limiting toxicities include thrombocytopenia, 
hypotension, fever and asthenia [5]. The most common acute toxicities 
associated with AONs administration in vivo are activation of the 
transient complement cascade and inhibition of the clotting cascade. 
Both these toxic effects are dependent on AONs backbone chemistry. 
The toxicity is largely produced by the non-specific binding properties 
of phosphorothioate-AONs to proteins at high plasma concentrations. 
The complex phosphorothioate-AON binds to multiple coagulation 
factors, such as VIIIa, IXa X and II, leading to a transient self-limited 
prolongation of activated partial thromboplastin times [39,40]. 
Splenomegaly, lymphoid hyperplasia and diffused multi-organ mixed 
mononuclear cell infiltrates are often evidenced [41]. This is due to an 
unmethylated CpG motif in the AON sequence that can be recognized 
by toll-like receptor-9 in immune cells, resulting in the release of 
cytokines (IL-6, IL-12 and interferon-g), B cell proliferation, antibody 
production and activation of T lymphocyte and natural killer cells 
[42]. Increase of the liver enzymes aspartate aminotransferase, alanine 
aminotransferase, and a prolonged partial thromboplastin time has 
also been reported [42].

Oligonucleotides delivery to the brain

The brain is one of the least accessible organs and the BBB limits 
the delivery of therapeutic agents. BBB function is to maintain a 
constant internal environment inside the brain by strictly regulating 
the composition of the cerebral extra-cellular fluid and to protect the 
brain against potentially toxic substances. In fact, except leakage in 
areas of BBB dysfunction, peptides, recombinant proteins, monoclonal 
antibodies, RNA interference-based drugs, generally do not cross the 
barrier [5,15]. Innovative drug delivery systems may make it possible to 
use certain chemical entities or biologic that were previously impractical 
because of toxicities or because they were impossible to administer. 
Several recent papers describe the possibility to apply the brain drug-
targeting technology for the diagnosis or therapy of many brain disorders 
[43,44]. Peptidomimetic monoclonal antibodies that bind endogenous 
transport system within the BBB, such as the insulin receptor, the TfR, 
or the leptin receptor, have been used for targeting neuropeptides, 
siRNAs, or antisense agents through the BBB in vivo. Nanoparticles 
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delivery systems in cancer therapy provide better penetration of 
therapeutic agents with a reduced risk in comparison to classical 
treatment. Encapsulated molecules can be released from nanocarriers 
in a controlled manner over time to maintain a drug concentration 
within a therapeutic window, or the release can be triggered by some 
stimulus unique in the delivery site [45]. The surface of the nanocarrier 
can be engineered to increase the blood circulation half-life and 
influence the bio-distribution, while attachment of targeting ligands to 
the surface can result in enhanced uptake by target tissues [46]. Several 
types of nanoparticles such as polymers, dendrimers, liposomes, and 
micelles have been synthesized or engineered as carriers for brain-
specific drug delivery [47-49]. One of the most investigated approaches 
uses liposomes as sub-micron delivery vehicles. They are particularly 
useful as gene therapy devices due to their ability to pass through lipid 
bi-layers and cell membranes. Glycero-3-phosphocholine (DOPC) and 
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) are among 
the most widely used neutral lipids. Simply mixing siRNA with DOPC 
results in more than 65 percent encapsulation, and these complexes 
have been shown to bring about siRNA-mediated silencing in cancer 
cells in vivo [50]. Immunoliposomes have been generated carrying 
small hairpin RNA expression plasmids for RNA interference effect 
[32]. The immunoliposomes are then engineered with PEG, which 
stabilizes their structure in circulation. Recently, lipid-based delivery 
systems have demonstrated that some synthetic lipid-like materials 
(termed “lipidoids”) form complexes with siRNA or miRNA that 
facilitate intracellular delivery of the oligonucleotides [51].

Molecular Targets
The number of potential targets for AONs treatment of glioma 

cells is extremely large, including genes coding for growth factors and 
their receptors, cellular proteases, kinases, second messengers, proto-
oncogenes, and factors and proteins important in cell cycle control 
and apoptosis. The classical examples of use of antisense oncogens 
are that of c-myb, or bcl-2. In neoplastic progression, several growth 
factor receptors, such as EGFR, VEGFR, TGF-beta, IGF-1R are over-
expressed, amplified and/or mutated in gliomas.

Oncogenes

The capacity of AONs to detect specific gene sequences and to 
down-regulate gene expression make them optimal agents for use in 
targeting oncogenes expressed in brain tumors.

The c-myb proto-oncogene encodes for the nuclear protein Myb, 
which acts as a sequence-specific DNA transcription factor. The 
inhibition of proliferation of T98, U87, and U373 glioma cells after 
treatment with phosphorothioate AONs to either the 5′-cap initiator 
region or the transactivation sequence of c-myb was obtained [52]. The 
mechanism is probably mediated through cell surface growth factor 
receptor expression. A most recent demonstrated the therapeutic 
effect of oncogene c-myb AON on C6 glioma in nude mice. The results 
showed that the expression of c-myb and bcl-2 proteins was significantly 
decreased in the AON group [53].

The c-sis oncogene encodes for the B-polypeptide chain of PDGF. 
In the A172 GBM cell line, AONs complementary to c-sis mRNA 
inhibited cell proliferation in a time- and dose-dependent fashion [54]. 
By flow cytometric analysis, AONs were shown to block the de novo 
synthesis of intracellular c-sis protein in A172 cells [54].

The c-myc proto-oncogene encodes nuclear transcription factors 
proteins that play important roles in cellular proliferation and 
differentiation. The c-myc has been observed to promote cellular 

proliferation as well as programmed cell death, or apoptosis. Over-
expression of the c-myc has been also demonstrated in gliomas [55]. 
The c-myc has been observed to be expressed at the mRNA level in 
human gliomas, and in human glioma and GBM cell lines [56]. In an 
experimental study, sequence-specific antisense inhibition of c-myc 
protein expression reduced cellular proliferation in malignant rat 
glioma cells [57]. A variety of mechanisms to explain this phenomenon 
are possible, such as augmented production of c-myc mRNA, or 
activation of pathways for cellular proliferation independent of c-myc.

The c-met, a receptor tyrosine kinase, and its ligand, HGF, are 
critical in cellular proliferation, motility, and invasion. The complex 
HGF/c-met played an important role in the gliomas formation and 
progression, and can promote tumor proliferation and intratumoral 
microvascular formation [58]. It was demonstrated in vitro and in 
vivo that AONs against c-met (FAM-labeled c-met nonsense AONs-
LIPOFECTAMINE PLUSTM) markedly suppressed the expression of 
c-met mRNA in human glioma cells and cell growth and enhanced 
significantly the cytotoxic effect of radiation on human U251 glioma 
cells in culture [59]. Recently has also been demonstrated that c-met-
AONs increase the sensitivity of human glioma cells to paclitaxel. A 
combination of paclitaxel with antisense c-met-AONs inhibited cell 
growth, induced apoptosis and induced c-met protein expression in 
U251 and SHG44 human glioma cells more significantly than either 
paclitaxel or the AONs on their own [60].

Apoptotic Pathway
Apoptosis, or programmed cell death, is a highly organized 

physiologic event that plays an essential role in controlling cell number 
in many normal processes, ranging from fetal development to adult 
tissue homeostasis [61]. One of the features of cancer cells is their ability 
to evade programmed cell death. Apoptosis can occur by up-regulation 
of antiapoptotic proteins, by down-regulation or loss of proapoptotic 
proteins or by defective functioning of proapoptotic proteins [62]. 
Apoptosis can be initiated by stress signals from within the cell or by 
external environmental. This death signal then involves widespread 
proteolysis by caspases, nucleosomal fragmentation by endonucleases, 
and cell surface tagging for phagocyte engulfment [63]. Extrinsic 
apoptosis is regulated by members of the TNF receptor protein family. 
Intrinsic apoptosis is regulated at the mitochondrial membrane by 
members of the Bcl-2 protein family. Extrinsic apoptosis activates 
caspases 8 and 10 in the death-inducing signaling complex (DISC), 
while intrinsic apoptosis activates caspase 9 within the apoptosome. 
These initiator caspases go on to activate the effector caspases 3 and 
7 that amplify the proteolytic caspase cascade, committing the cells to 
die. However, this cascade can be blocked by IAPs, which bind active 
caspases and prevent further proteolysis.

Bcl-2 family proteins are the regulators of apoptosis and are 
overexpressed in many cancers [64]. Bcl-2 gene is a proto-oncogenes 
located at the breakpoints of t(14;18) chromosomal translocations in 
low-grade B-cell non-Hodgkin’s lymphomas. Normally, in response 
to DNA damage and to cellular damage, bcl-2 induces the release of 
cytochrome c from mitochondrial matrix to cytosol, where it activates 
caspase-9 and caspase-3. Bcl-2 over-expression has been observed 
in several glioma cell lines and in glioma surgical specimens. It has 
been also demonstrated that bcl-2 immunohistochemical positivity 
is inversely correlated with survival and that bcl-2 protein promotes 
migration and invasiveness of human glioma cells [65]. More, 
experimental observations support the hypothesis that bcl-2 and bcl-
xL are important in preventing cell death in GBM cells. A decrease in 
cell growth and an increase in apoptotic death, by using AONs against 
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the first six codons of the human bcl-2 gene transfected into malignant 
glioma cells (Jon52 and Roc GBM cell lines), has been demonstrated 
[66]. In GBM cells lines U87 and NS008 with bcl-2/bcl-xL bispecific 
AON, down-regulation of bcl-2 and bcl-xL resulted in spontaneous cell 
death. The mechanism of cell death was partially caspase-dependent 
[67]. An experimental study has evidenced the therapeutic effect of 
oncogene bcl-2 AON on C6 glioma in nude mice. The results showed 
the expression of bcl-2 proteins was significantly decreased in the 
AON group [53]. More, it has been demonstrated that the antisense 
modulation of bcl-2 expression could increase the effectiveness of 
conventional chemotherapeutic agent. Guensberg et al. showed that 
resistance to chemotherapy in GBM is linked to the expression of bcl-
2 family members, including bcl-xL [68]. In this experimental study, 
the authors demonstrated a valid correlation between reduction of bcl-
xL protein expression, induction of intrinsic apoptotic pathway and 
enhancement of cytotoxic responses to paclitaxel treatment, in M059K 
GBM cell lines treated with anti-bcl-xL AONs (ISIS 16009, ISIS 16967) 
[68].

Various cancers, including GBM, over-express members of the IAP 
family. Nowadays, seven members have been identified in mammalian 
cells: X-linked IAP (XIAP), cellular IAP1 and -2 (cIAP1, cIAP2), 
neuronal apoptosis inhibitory protein (NAIP), survivin, BIR repeat 
containing ubiquitin-conjugating enzyme6 and melanoma/kidney 
IAP (ML-IAP/KIAP) [69]. The principle mechanism underlying the 
antiapoptotic activity is represented by direct caspase inhibition. It 
has been reported that the infection of malignant glioma cells with 
adenoviruses encoding antisense RNA to XIAP depletes endogenous 
XIAP levels and promotes global caspase activation and apoptosis. 
More, AON-XIAP induces cell death in intracranial glioma xenografts, 
and prolongs survival in nude mice [69]. Apollon, a new human IAP, 
is a human homolog of the recently reported BRUCE isolated from 
mouse cells. Glioma cell line expressing a large amount of Apollon 
showed resistance to chemotherapeutic drugs. Western blot analysis 
revealed that Apollon was expressed in four of six human brain cancer 
cells. In this study, treating the cells with AON reduced the Apollon 
protein expression and sensitized the cells to chemotherapy-induced 
apoptosis [70].

Targeting death receptors to trigger apoptosis in tumor cells is an 
interesting option for cancer therapy. Stimulation of death receptors 
of the tumor necrosis factor receptor superfamily such as CD95 
(APO-1/Fas) or tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) receptors results in caspase-8 activation, which can 
directly translate into cleavage of downstream effectors caspases. The 
mitochondrial pathway is initiated by the release of apoptogenic factors 
such as cytochrome c, apoptosis-inducing factor (AIF), Smac (second 
mitochondria-derived activator of caspase)/DIABLO, or endonuclease 
G from the mitochondrial intermembrane space. Malignant glioma 
cells express high levels of TRAIL DRs and appear to be susceptible to 
TRAIL-induced cell death. It has been demonstrated that malignant 
glioma cells primarily express DR5, suggesting that TRAIL-induced 
apoptosis may occur primarily through DR5 activation [71].

The urokinase plasminogen activation system plays an important 
role in the activation of matrix-degrading enzymes that enhance the 
invasion of cancer cells. This complex comprises the ligand urokinase 
plasminogen activator and the receptor urokinase plasminogen 
activator receptor (uPAR). Reduced expression of this receptor may 
diminish migration, mitogenicity, or induction of neovascularization. 
In an experimental study SNB19 GBM cells has been treated with 
an uPAR AON. Probably, silencing of uPAR expression, by the 

introduction of an AON, cause blocks mitogenic signals from feeding 
into the cell cycle, rending SNB19 cells susceptible to TRAIL [72].

Survivin is a member of the IAP family that is expressed at high 
levels in most human cancers including gliomas. Survivin may 
contribute to resistance of tumors by facilitating evasion from apoptosis 
and aberrant mitotic progression [61]. These features make survivin 
an attractive target in the mechanism of cancer resistance. In a valid 
study, to inhibit survivin expression, phosphothiorate AONs against 
survivin expression was adopted. In GBM cells (U373MG and A172) 
down-regulation of survivin using survivin AON sensitized cells for 
TRAIL-induced apoptosis was demonstrated [73].

PTEN/PI3K/Akt Pathway
The PTEN/MMAC, which consists of nine exons, is located on 

chromosome 10q23.3 and encodes a 403-amino acid cytoplasmic 
protein that contains two domains in the N-terminus, a region with 
tyrosine phosphatase activity and a region that interacts with the cellular 
cytoskeleton [74]. PTEN or MMAC 1, is a tumor-suppressor gene 
regulating cell growth, apoptosis, interaction with extracellular matrix 
and inhibiting cell migration, as well as spreading and focal adhesion 
[75]. PTEN mutations and loss of function are frequent in malignant 
gliomas and are responsible for the abnormally high levels of activity in 
the PI3K/Akt signaling pathway that have been demonstrated in these 
neoplasms [76]. PTEN own the phosphatidylinositol phosphatase 
activity, specifically removing phosphates from the 3’ position of the 
inositol ring [77]. This finding implicated PTEN as a regulator of 
PI3K-mediated cell signaling pathways. The PI3K family of kinases 
catalyzes the transfer of the γ-phosphate of ATP to the D3-position of 
the head group of phosphatidylinositols (PtdIns), a form of membrane 
lipid. After its production, PtdIns recruits the serine/threonine kinase 
Akt. Several researchers have discovered the substrates of Akt that are 
involved in the pro-cell survival effects, which thus far include glycogen 
synthase kinase-3, mTOR, MDM2, p21, HIF-1, IKK, Bad, and caspase 
9 [78]. Akt must be activated for GBMs to form genetically modified 
neural progenitors and normal human astrocytes, suggesting that the 
activation of Akt plays an important role in glioma formation and 
progression [79]. Decreased expression of PTEN and over-expression 
of the Akt proto-oncogene, which is located downstream of PI3K, have 
been demonstrated in human GBM [80].

In a recent study, a combined PTEN and antisense hTERT gene 
therapy for experimental glioma in vitro and in vivo has been evaluated. 
Infection with antisense-hTERT and wild-type-PTEN adenoviruses 
significantly inhibited human U251 glioma cell proliferation in vitro 
and glioma growth in a xenograft mouse model. The efficacy of therapy 
was higher in the tumor xenografts infected with both PTEN and 
antisense hTERT [81].

ILK, a serine-threonine protein kinase, is a key component of 
cell-ECM adhesion and has been shown to anchor to integrins by 
interacting at its C-terminal domain to the cytoplasmic domain of b1 
and b3 integrin subunits [82]. ILK is critical for the PTEN-sensitive 
regulation of PKB/Akt-dependent cell cycle progression and cell 
survival. To confirm these data, the transfection of ILK antisense into 
U87MG xenograft inhibits serum-independent PKB/Akt-Serine-473 
(Ser-473) phosphorylation as well as PKB/Akt kinase activity, and 
leads to apoptosis or apoptosis sensitivity [83]. Edwards et al. targeted 
the phosphatidylinositol 3-kinase/protein kinase B (PKB)/Akt and 
the Ras/MAPK pathway. The GBM cell lines U87MG, SF-188, and 
U251MG were transfected with an AON targeting ILK (AON-ILK). 
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GBM cells transfected with AON-ILK exhibited reduced levels of ILK 
and phosphorylated PKB/Akt on Ser473 [84].

In an experimental study, AON Akt2 (AS-Akt2) were transfected 
into rat C6 glioma cells with elevated endogenous Akt2 expression. In 
glioma transfected cells down-regulation of proliferation and growth 
rate, induction of apoptosis was evidenced. The inhibition of Akt2 
expression was also demonstrated [85,86]. In an analogue research, 
AON Akt2 was transfected into glioma cell line TJ905 and inhibition of 
Akt2 was observed [87].

Growth Factors Pathways 
Overexpression of EGFR has been associated with numerous 

malignancies and has become an interesting target in cancer 
research [88]. In malignant gliomas, EGFR signaling is increased via 
overexpression or mutation in 40%-50% of all tumors. In a recent 
experimental study, the stereotactic injection of AON-EGFR-FA-
PAMAM complexes into rat C6 intracranial gliomas caused a greater 
suppression of tumor growth and longer survival time of tumor-
bearing rats compared with PAMAM and oligofectamine-mediated 
AON-EGFR therapy [89]. In this study, the authors coupled the folic 
acid (FA) to the surface amino groups of G5-PAMAM dendrimer 
(G5D) through a 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide 
bond. Successively, the AON corresponding to rat EGFR were then 
complexed with FA-PAMAM [89]. In another research, the treatment 
of U87MG cells with AON-EGFR and with wild-type PTEN inhibited 
the cellular growth by 91.7% [90]. EGFRvIII is a mutated isoform 
characterized by a truncated extracellular domain. This mutant 
isoform has been detected in several human cancers including NSCLC, 
breast carcinomas, ovarian carcinomas and gliomas. Recent studies 
in human GBM cells and in human xenografts models suggest that 
EGFRvIII promotes tumor growth and progression via constitutive 
activation of the PI3K/Akt pathway; it also induces up-regulation of 
cell proliferation via the MAPK/ERK1/2 signal transduction pathway. 
The use of AONs into glioma murine models, through liposomes 
tagged with monoclonal antibodies, facilitates tumor targeting and 
induces reduction of HER1/EGFR expression increasing survival [91]. 
In another study, in U251 glioma cells treated with AON-EGFR and 
siRNA, a significantly inhibition of cell growth was evidenced [92]. 
More, GBM U87MG cells, which showed an EGFR over-expression, 
were transfected with AON-EGFR. U87MG cells transfected presented 
smaller cell bodies and longer processes, and expressed higher level of 
GFAP compared with the control cells. Telomerase activity was, also, 
significantly decreased in the AON-EGFR treated cells [93,94]. The 
effect of combination therapy with GKR and AON-EGFR was, also, 
evaluated. In C6 glioma models and in orthotopic xenografts, the 
combined treatment with AON-EGFR and GKR, caused an important 
growth rate and a significantly suppression of cell proliferation. A cell 
apoptosis in vitro induction was also obtained [95].

The VEGF pathway show a primary function in the 
neovascularization process and it represent the principal target of 
most antiangiogenic therapies. In tumorigenic mice over-expression 
of AON-VEGF (C6-VEGF(-/-) mice) significantly suppressed tumor 
growth, decreased angiogenesis and reduced tumoral edema [96]. In 
C6 cells with expression vectors containing sense (C6/VEGF+) or 
antisense (C6/VEGF-) VEGF complementary DNA, VEGF expression, 
water content, and morphological characteristics were investigated. 
The authors evidenced that VEGF can aggravate edema in tumor tissues 
and plays critical roles in the stickiness of tumor cells to vessel wall and 
in the integrity of the vessels basal lamina [97]. In an in vivo murine 
model, with U-87 MG glioma cells transfected with AON-VEGF cDNA 

coupled to the recombinant adenoviral vector Ad5CMV-αVEGF, a 
reduction of VEGF mRNA endogenous level was demonstrated [98].

TGF-β2 plays a key mechanism of carcinogenesis, in particular 
immunosuppression and metastasis, and is frequently overexpressed 
in malignant tumors. The TGF-β2 is overexpressed in more than 
90% of gliomas, and its levels are closely related to tumor progression 
[99]. In patients with malignant glioma, intratumoral treatment 
with trabedersen is currently evaluated in a pivotal, randomized and 
active-controlled phase III study [100]. Trabedersen (AP-12009) is 
a synthetic AON designed to inhibit the production of TGF-β2 and 
enhanced the immune cell mediated cytotoxic antitumor response 
[100-103]. Preclinical studies demonstrated that trabedersen reduced 
the secretion of TGF-β2 in cultured tumor cells and showed antitumor 
activity ex vivo. Improved survival, compared with patients receiving 
standard chemotherapy, in patients with brain tumors who were 
administered trabedersen was observed [104]. TGF-β2 binds to TGF-β 
receptors and promotes a signaling cascade via cytoplasmic signaling 
mediators (SMAD) into the nucleus, inducing regulation of target gene 
expression [105]. A randomized phase III study relates trabedersen 
10 mM versus conventional alkylating chemotherapy in patients with 
recurrent or refractory anaplastic astrocytoma after standard radio- 
and chemotherapy [106,107]. The results demonstrated that the 2-year 
survival rate for 10 mM trabedersen was 39% vs. 22% for standard 
chemotherapy in the enrolled patients.

IGF-I is involved in neural development, neurogenesis, glial 
differentiation and glucose metabolism, acting locally with autocrine/
paracrine fashion [108]. Its overproduction is considered to be a 
participating factor in cancer development in the brain [108]. Rats 
submitted to injections of C6 glioma cells and treated with AON-IGF-
IR did not develop tumors, and were protected from a subsequent 
challenge with wild-type C6 glioma cells for at least 3 months [109]. 
The authors observed that inhibition of IGF-IR in the experimental 
glioma model results in apoptosis of tumor cells, inhibition of tumor 
genesis and immune anti-tumor response.

Conclusion
Malignant gliomas remain a poorly understood form of cancer 

associated with high rates of morbidity and mortality. Despite all the 
advances in understanding of pathomechanism, diagnosis by imaging 
and availability of powerful therapeutic tools, the life expectancy of 
patients with gliomas and especially GBM has been prolonged only 
slightly. None of the currently available surgical tools, including 
operative microscopes, and image guided surgery enable detection and 
removal of all of the tumor tissue. Current conventional treatments 
protocols include maximally safe surgical resection followed by 
fractionated radiation therapy of the tumor and surrounding brain 
parenchyma and systemic chemotherapy. However, the intensive 
proliferation activity, the formation of abnormal tumor vasculature, 
and the glioma cell invasion along white matter fibers are responsible 
for the high recurrence rate and for the resistance of gliomas to 
treatment [110]. More, radiation therapy is limited to a largely palliative 
role, and chemotherapy has provided only a modest benefit in clinical 
outcome. There are several factors underlying the disappointing 
results in brain cancer therapeutics including limited tumor cell drug 
uptake, intracellular drug metabolism, inherent tumor sensitivity to 
chemotherapy, and cellular mechanisms of resistance. The commonly 
used drugs are nonspecific and unable to modify the transformed 
phenotype of malignant brain tumor cells. The transformed phenotype 
of malignant brain tumor cells is highly complex and involves 
amplification or over-expression of oncogenes, as well as loss or 
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lock of expression of tumor suppressor genes [1,3]. Glioma gene 
expression during gliomagenesis may help to better understand the 
role of important molecules involved in tumor-safe brain parenchyma 
relationships. These molecules, such as ECM proteases, cell adhesion 
molecules, and their related signaling pathways, show an important 
role in glioma cell migration and invasion and represent ideal targets in 
gliomas treatment. The complexity of the signal transduction pathways 
limits the potential efficacy of targeting a single receptor or molecule. 
Besides, we think it could be very important to detect more molecular 
targets of the same pathway due to multiple phenotypes inside glioma. 
A combination therapy with different AONs or, also, the use of AONs 
in conjunction with conventional chemotherapeutic agents may have a 
therapeutic value. The recent discovery of many RNA molecules non-
coding for protein, transcripted from DNA sequences different than 
II class genes (gene coding for protein), has modified strongly the 
classic idea of human genome, genome-phenotype correlation, and 
gene expression regulation [21]. The knowledge of the gliomas genetic 
bases and of their invasive behavior may suggest new molecular targets 
to overcome the mechanisms of multi-drug resistance of the actual 
therapeutic approaches.

Antisense therapy approach has been applied in various kinds of 
tumors and shows a very high specificity and efficacy against cancer 
cells. The goal of an antisense molecules-based approach is to selectively 
suppress the expression of a protein by exploiting the genetic sequence 
in which it is encoded. The identification and validation of antisense 
inhibitors is the fastest way to identify inhibitors of gene expression. 
Many AONs currently in phase II and phase III clinical trials have 
shown sharp reduction in target gene expression and promising 
activity against a variety of human malignancies. Several experimental 
in vitro and in vivo studies in cell lines cultures and animal models 
showed inhibition of genes involved in cell proliferation, apoptosis and 
angiogenesis [5]. The development of tumor-specific, systemic delivery 
systems, such as the folate-liposome complex and/or ligand-liposome 
complex can also increase the clinical potential of AONs agents. In 
this field, nanoparticles-based delivery systems could increase the 
overcoming of BBB by the drug with a targeted-cell specificity modality. 
This approach permits the use of a lower dose of drug, a selective drug 
delivery to target tumor cells, both into the central core of tumor and 
into the distal foci of tumor cells within areas often characterized from 
integrity of BBB [61]. Generally, a gene knockdown agent should 
achieve high sequence specificity and should lack off-target effects. 
However, improvements in AONs efficacy via chemical modifications 
are ongoing. The most important modification in AONs chemical 
structure were the introduction of phosphorothioate internucleotide 
linkages, and the addition of 2′-O-methyl-modified nucleotides at 
the 3′ and 5′ ends, which protected the AONs from degradation by 
nucleases. However, hybridization-independent toxicity profile varies 
with different sequences. The effects include increased coagulation 
time, pro-inflammatory effects and activation of the complement 
pathway. In addition, phosphorothioate AONs that contain certain 
sequences induce a strong immunostimulatory response through their 
interactions with toll-like receptors or they bind directly to proteins, 
leading to unexpected spurious effects. Morpholinos are virtually free of 
off-target effects, probably because they cannot interact electrostatically 
with proteins. Morpholinos also achieve exquisite sequence specificity 
and this constitutes sufficient sequence information to uniquely target 
a selected gene transcript [111].

Future and potential interesting molecular target are represented 

by the inhibitor of apoptosis family (IAP, c-IAP1, livin), by 
metalloproteinases, and by clusterin. The heat shock proteins 
expression (HSP) in some cancer types is correlates with poor 
prognosis. A potential target is, also, the IL-8 that acts within HIF-
1α pathway, crucial step in the angiogenic process [5,112,113]. An 
optimal realization of a system that overcomes the noted problems in 
brain tumors treatment requires the identification of new and specific 
neoplastic markers, the development of technology for the biomarker-
targeted delivery of therapeutic agents, and the simultaneous capability 
of avoiding biological and biophysical barriers.
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