
Volume 2 • Issue 1 • 1000e104Med Surg Urol
ISSN: 2168-9857 MSU, an open access journal

Barabutis and Catravas, Med Surg Urol 2013, 2:1 
DOI: 10.4172/2168-9857.1000e104

Editorial Open Access

Anti-Inflammatory Activity of Hsp90 Inhibitors in the Human Vasculature
Nektarios Barabutis1 and John D Catravas1,2*
1Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA
2Departments of Pharmacology and Toxicology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA

*Corresponding author: John D. Catravas, Vascular Biology Center, 
Georgia Health Sciences University, Augusta, GA 30909, USA, E-mail: 
jcatrava@georgiahealth.edu

Received November 22, 2012; Accepted November 22, 2012; Published 
November 24, 2012

Citation: Barabutis N, Catravas JD (2013) Anti-Inflammatory Activity of Hsp90 
Inhibitors in the Human Vasculature. Med Surg Urol 2:e104. doi:10.4172/2168-
9857.1000e104

Copyright: © 2013 Barabutis N, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Molecular chaperones assist the precise polypeptide folding as 
well as protect from protein accumulation during cellular growth and 
development. Heat shock protein 90 is a highly conserved cellular 
chaperone and one of the most abundant proteins in eukaryotic cells 
and bacteria but it is apparently absent from archaea. It represents 
1-2% of total cellular proteins and participates in the stabilization and
activation of more than 200 “client” proteins [1].

The Hsp90 crystal structure was first reported 16 years ago. The 
first breakthrough of the Hsp90 structure was the identification of the 
N- terminal domain. It consists of a two layer α/β sandwich structure
which forms a “pocket” crucial for ATP binding. The biological
function of Hsp90 strongly depends on its ability to hydrolize and bind
ATP. The middle segment of Hsp90 consists of a large αβα domain at
the N- terminus of the construct connecting to a small αβα domain
at the C terminus via a series of α- helices. This domain is the major
site for client protein interactions. The C- terminal domain of Hsp90
is crucial for Hsp90 dimerization and is a dimer of a small mixed α/β
domain [2].

Cancer cells use the Hsp90 chaperone machinery to protect 
various mutated and overexpressed oncoproteins from misfolding 
and degradation. Therefore,  Hsp90 is considered a major regulator of 
oncogene addiction and cancer cell survival and several Hsp90 inhibitors 
such as 17AAG (tanespimycin) and 17-DMAG (alvespimycin) have 
been developed in order to serve as anticancer agents and many 
optimized synthetic, small-molecule Hsp90 inhibitors from are now in 
clinical trials [3].

Recent studies have revealed a potent anti-inflammatory and anti-
oxidative action of Hsp90 inhibitors in vascular tissues [4-8]. Heat 
shock protein 90 inhibitors were shown to prolong survival, attenuate 
inflammation and reduce lung injury in murine sepsis [9]. Furthermore 
they have attenuated LPS induced endothelial hyperpermeability 
and have protected and restored pulmonary endothelial barrier 
function [10,11]. In addition to these effects, long term inhibition of 
Hsp90 destabilized Nox enzymes, an effect which results to decreased 
production of reactive oxygen species through ubiquitination and 
degradation of Nox proteins [12,13].

Hsp90 is regulated at several levels, including the ATPase cycle, 
association with conformation- specific co-chaperones and by post 
translational modifications. Hsp90 is subjected to several modifications 
including phosphorylation, acetylation, S nitrosylation, oxidation 
and ubiquitination which are believed to modulate its function [14]. 
Phosphorylation at sites in the M- and the C- domains modulates 
conformational rearrangements during the ATPase cycle of Hsp90 
[15].

Androgen deprivation is widely accepted as first line treatment 
of metastatic prostate cancer [16]. Since the androgen receptor is 
a client protein of Hsp90, Hsp90 inhibition could be beneficial in 
hormone-related prostate cancer treatment [17,18]. Interestingly, 
low concentrations of Hsp90 inhibitors inactivate key anti-apoptotic 
proteins and sensitize bladder cancer cells to chemoradiotherapy [19]. 

The Hsp90 client protein, endothelial nitric oxide synthase, is 
crucial for the erectile response function. In penile tissues eNOS 
activity and endothelial NO bioavailability is regulated by post-

translational molecular mechanisms, such as eNOS phosphorylation, 
eNOS interaction with regulatory proteins and reactive oxygen species 
generation [20]. Hsp90 is involved in the physiology of penile erection 
and the pathophysiology of erectile dysfunction, since this chaperone is 
involved in eNOS activation and ROS production.The effect of Hsp90 
inhibitors in such tissues have not been sufficiently investigated.

Although there is convincing evidence to support the inhibition 
of prostate cancers by Hsp90 inhibitors, little is known about the 
effect of these compounds on benign prostate hyperplasia. BPH is a 
condition related to the abnormal proliferation of prostatic glandular 
and stromal tissues and is associated with excessive ROS production 
and inflammatory processes [21]. Hsp90 inhibitors alone or in 
combination with other anti-inflammatory and anti- oxidative agents 
[22] might be useful for BPH treatment, since they could synergically
reduce the inflammatory and oxidative processes in BPH tissues
[12,13,23]. Furthermore, ongoing research on the post translational
Hsp90 modifications may lead to the development of a new, more
efficient class of Hsp90 inhibitors. This endeavor might reveal potential
beneficial effects of these compounds in the wide spectrum of human
pathology and especially in the field of urology.
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