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Introduction
In times of high-throughput sequencing and transcriptomics, the 

amount of sequencing data is quickly piling up. Yet, may proteins have 
still not been annotated with their cellular functions due to experimental 
difficulties (time-consuming and costly) involved with functional 
assays [1]. To address this problem, many computational methods 
were developed to predict the functions of proteins. The earliest 
methods were based on the sequence homology between proteins or on 
sequence motifs of proteins (e.g. PRINT-S [2], BLOCK [3], PROSITE 
[4], InterPro [5], transport DB [6]. As proteins exist and work as three-
dimensional structures, protein structures are also a valuable indicator 
of similar functions between proteins [7]. Other prediction methods 
consider the genomic context  [8-10] or their neighborhood in protein-
protein interaction networks [11-13]. Recently, also some tools using 
natural language processing have been presented (e.g. GOstruct [14], 
Text-KNN [15] and PPFBM [16].

An important yet neglected field is that of membrane proteins. 
According to Krogh et al. [17], about 21% of the Escherichia coli genes 
encode transmembrane proteins. The corresponding numbers are 
21% in Saccharomyces cerevisiae, 30% in Caenorhabditis elegans and 
20% in Arabidopsis thaliana. Transmembrane proteins play important 
roles, especially in mediating the interaction between cells and their 
surroundings. Thus, membrane proteins are important targets for drugs 
(about 60% of all modern medical drugs [18]). Of particular interest 
for the prediction of protein function is the subgroup of membrane 
transporters because they comprise the second largest protein family 
in H. sapiens, next to G-protein coupled receptors. However, it is 
experimentally hard to identify their substrate specificities [19].

Previously, substrate specificities of membrane transporters have 
been predicted, for example, based on sequence homology [20] and 
amino acid composition [21-23]. Meta-methods that combine different 
features for functional annotation often gave improved performance 
compared to single-feature methods. For example, Yayun Hu et al. used 
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four sequence features including amino acid composition, transition 
and distribution properties, position-specific scoring matrices, and 
biochemical properties to annotate the substrate specificity of ABC 
transporters [24]. They reported an accuracy of 88% to distinguish 
between four classes of ABC transporters. Still, it is worthwhile to 
characterize the benefits of individual features before combining them 
with others.

In this study, we combined genomic context-based methods with 
Gene Ontology (GO) annotations [25] and gene expression data. One 
motivation behind considering the co-location and co-expression of 
neighboring genes is the principle of operons in bacterial genomes. 
Genes in an operon are controlled as a single unit by a single promoter 
[26] and thus are either expressed together or not at all. They are
usually related in function too [27]. Also genes in eukaryotic genomes
have been reported to have a tendency to cluster when showing
similar expression, and the genes in these clusters tend to have related
functions [28-33]. Wang and colleagues, as well as Barkai and colleagues 
showed that if two eukaryotic genes have the same expression levels in
different conditions, they are likely to be members of the same protein
complex or to participate in the same biological pathways [34,35].
Also, Lee and Sonnhammer reported that genes involved in the same
biochemical pathways tend to gather in various eukaryotic genomes
[31]. These relationships between gene co-expression, neighborhood
and functions have been frequently exploited in functional genomics
studies, e.g. to predict protein interaction partners [36,37], to identify



Citation: Tran VH, Barghash A, Helms V (2018) Annotating the Function of Protein-coding Genes Based on Gene Ontology Terms of Neighboring 
Co-expressed Genes. J Proteomics Bioinform 11: 068-074. doi: 10.4172/0974-276X.1000468

Volume 11(3) 068-074 (2018) - 69 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

and analyze gene position clusters [38] and by the STRING database 
[39]. A quasi-standard for functional annotation is the controlled 
vocabulary compiled by the Gene Ontology Consortium [25]. The 
Gene Ontology (GO) annotations can be used in functional profiling, 
functional categorizing and to predict gene function [40]. Here we 
combined these techniques and tested how well this method works in 
prokaryotes and eukaryotes.

To predict the functions of a protein, we first retrieve the 
neighboring genes of the respective protein-coding gene and then 
compute the co-expression correlation between this central gene 
and its neighbors. The GO term lists of the central gene and of the 
neighboring genes that exhibit the highest correlation to the central 
gene are used to create input data for a support vector machine (SVM) 
classifier. SVM models are then used for classifying the function of so 
far uncharacterized genes.

Material and Methods 
Dataset

For training and testing of the classifiers, we selected the well-
studied model organisms Escherichia coli and Saccharomyces cerevisiae 
as well as Homo sapiens. For all three organisms, transporter proteins 
were selected. For, E. coli also metabolic enzymes were selected. 

These proteins are called central proteins (and the genes encoding 
these are called central genes thereafter) to distinguish them from their 
neighboring genes.

Transporter proteins

From the Transporter Classification Database (TCDB) [41] we 
retrieved two sets of membrane transporters that facilitate the transport 
of either amino acids or sugar molecules across the membrane. (Table 
1) lists the number of proteins for the three organisms.

Enzymes in metabolic pathways 

Beside transporter proteins, we also used enzymes of metabolic
pathways in E. coli to test our method. Four groups of metabolic 
pathways involved in carbohydrate, lipid, amino acid, and nucleotide 
metabolisms were collected. The lists of enzymes for each group were 
downloaded from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway maps, under the tag “metabolism” and the four 
respective sub-tags, e.g. carbohydrate metabolism, lipid metabolism, 
nucleotide metabolism, and amino acid metabolism [42]. The gene 
identifiers of the four groups are listed in Supplement Table 1. The 
groups contain 187 genes (amino acid metabolism), 253 (carbohydrate 
metabolism), 45 (lipid metabolism), and 99 genes (nucleotide 
metabolism), respectively.

Data used for functional annotation

Neighboring genes: From the BioCyc database, we downloaded 
information about all genes of Escherichia coli, Saccharomyces 
cerevisiae, and Homo sapiens [43,44].  We then rearranged the list of E. 
coli and S. cerevisiae genes according to increasing genomic positions. 

Homo sapiens genes were first split into separate chromosomes, and 
then sorted according to the genomic position. Sorting these files helps 
in finding neighboring genes more easily. We use the term neighboring 
genes for the closest genes on the same chromosome.

GO terms: We retrieved tab-delimited files with gene symbols and 
GO terms from the Gene Ontology Consortium [25].

Microarrays data: We used Pearson correlation to measure the 
co-expression of genes. For Escherichia coli, we used preprocessed and 
normalized microarray expression data from Dataset Record GSE1121 
[45] whereas for Saccharomyces cerevisiae we used respective data from 
Dataset Record GDS91 [46].  For H. sapiens, we used data for colon
adenocarcinoma (COAD) patients from TCGA, but only selected data
files from normal samples. After finding neighboring genes, the co-
expression correlation between a gene and its neighbors was computed 
as:
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Classification

Figure 1 shows the basic steps in this project. To retrieve the 
neighboring genes, we look for them both upstream and downstream 
of the current gene. The number of neighbors upstream, is denoted as 
n, is equal to the number of neighbors the downstream. The number 
of selected neighbors that possess highest co-expression correlation 
with current gene is denotes as N. A pair of number of neighbors and 
number of selected neighbors are written as (n, N) which we refer to 
as window size. In the result section, we show the results for three 
different window sizes (5, 3), (10, 3), and (20, 5).  

Training and testing data for SVM

The dataset of each organism was split into two subsets, the training 
set and the test set. In this project, we used one record for testing and all 
other records for training. Then for each protein group in the training 
set, we created two lists. One list contains the selected genes and the 
other list contains all the neighbors of the selected (central) genes. After 
that we retrieved the GO terms for every gene in these lists. From then 
on we only worked with these lists of GO terms. For example, if we 
have two groups of transporter proteins (amino acid transporters and 
sugar transporters), then we have four lists of GO terms (the first list 
contains all GO terms of all amino acid transporters in the training 
set, the second list contains all GO terms of all neighboring genes of 
these amino acid transporters, the third list contains all GO terms of 
all sugar transporters in the training set, and the fourth list contains all 
GO terms of all neighboring genes of sugar transporters).

For each central gene in the training set, we selected maximum 
N neighbors that have the highest co-expression correlation with 
the central gene. Then we identified the GO terms for each selected 
neighbor. After that, we computed the percentage of GO terms that are 
contained in each GO list. If this percentage was greater than or equal 

Organism
Group

Escherichia 
coli

Saccharomyces 
cerevisiae Homo sapiens

Amino Acid Transporters 47 24 37

Sugar Transporters 39 17 13

Table 1: Number of transporters belonging to different groups and organisms 
according to TCDB.
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to a pre-selected threshold (r) then we assigned the value 1, otherwise 
we assigned the value 0. As a test, we also used real-valued functional 
similarities obtained from GOSemSim [47]. Yet, this strategy gave 
results of lower quality than the binary-valued approach. Using binary-
value has a disadvantage, because a higher threshold (r) yields more 0 
values. For some cases we did not obtain a value of 1 at all, and a vector 
with all 0 values is not usable for SVM. Supplementary Tables 2-4 
summarize the number of genes that we found suitable to use to build 
the models. For gene ArtQ of E. coli (Figure 2) in the training set, for 
example, we selected the neighbors that had the highest co-expression 
levels (ArtM, ArtI and ArtP). If neighbor ArtI is selected, we compute 
what percentage of its GO terms are contained in each of the four lists 
of GO terms. If this percentage is greater than or equal to a pre-selected 
threshold (r) then we assigned the value 1, otherwise we assigned the 
value 0. Since we have four GO term lists, this gives four values. If we 
select three neighbors that have the highest co-expression correlation 
then we have 3 x 4=12 values of 0 or 1. We used these twelve features 
together with the group’s names, that were converted to positive integer 
values, as class label to train the classifier. These steps were repeated for 
all genes in the testing set.

Support vector machine classification

Support Vector Machine classification [48] of substrate specificity 
or of participation in metabolic pathways was done with the software 

Figure 1: The workflow of basic steps in this project.

Figure 2: Co-expression levels of central gene ArtQ and its neighboring genes.
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LIBSVM [49]. LIBSVM can efficiently classify samples into multiple 
classes, it automatically selects a model which can generate contours 
of the cross validation accuracy, it makes cross-validation for model 
selection and treats unbalanced data by using a weighted SVM. In this 
project, we used leave-one-out cross validation. LIBSVM also provides 
various kernel functions and different SVM formulations. We tested 
our method with three kernel functions (linear, radial basis function 
(RBF), and sigmoid). In most cases with different threshold r, number 
of neighboring genes or organisms, RBF gave the best results. Then 
we proceeded using RBF and tested for different values of the cost 
parameter (0.1, 0.5, 1. 1.5, 5 and 10). The default cost parameter of 1 
gave the best results. A lower value of 0.1 gave the worst accuracies. 
The reliability increases substantially when cost changes from 0.1 to 
0.5. The accuracies of S. cerevisiae changed by 15%, accuracies of E. 
coli by 5.6 % and of H. sapiens by 11.6% at most, respectively. With 
cost parameter greater than or equal to 1, the accuracies did not show 
remarkable changes. We also tested four different values of the gamma 
parameter (1.0, 0.8, 0.5, 0.3 and default value of gamma). The default 
value of gamma gave better accuracies than other values in most of the 
cases. For this reason, we kept the default values of all the parameters.

Model validation and evaluation

We used leave-one-out cross validation to evaluate the prediction 
ability of our model. In the leave-one-out cross validation, one record 
was used for testing, all others were used for training. The process of 
training and testing was repeated until all records had been used for 
testing once. Accuracy (ACC) was evaluated in the usual way as:

TP TNACC
TP FP TN FN

+
=

+ + +

where TP, FP, TN and FN are true positive, false positive, true 
negative, and false negative, respectively.

Results 
Transporter proteins

For illustration, Figure 2 shows that the E. coli gene ArtQ has large 
co-expression levels with several neighbors (ArtM, ArtI and ArtP) for 
the selected microarray dataset. As suggested by the very similar gene 
names, all these genes transport amino acids. Thus we predict that 
ArtQ also transports amino acid.

First we set the number of upstream and downstream neighbors 
to 10 each and selected the 3 neighbors with highest co-expression 
correlation. Figure 3 shows the results for three different thresholds r.

When the threshold r was increased from 0.2 to 0.5, all accuracies 
increased likewise (E. coli: from 87% to 90%, S. cerevisiae: from 76% to 
78%, H. sapiens: from 77% to 82%). When the threshold was increased 
further from 0.5 to 0.8, the accuracies of E. coli and of S. cerevisiae increased 

further whereas that of H. sapiens decreased slightly. For H. sapiens, more 
sugar transporters were incorrectly classified than amino acid transporters, 
although the number of amino acid transporters is much larger than the 
number of sugar transporters (Table 2 and Figure 4).

Next, we varied the number of neighbors while keeping the 
threshold r at 0.5. Fig. 4 shows the results for three cases where the 
windows sizes were (5, 3), (10, 3) and (20, 5), respectively. (10, 3) gave 
the best result for all three organisms. For comparison, we compared 
our tool against two webservers that predict substrate specificities of 
membrane transporters from the protein sequence: (1) TrSSP (http://
bioinfo.noble.org/TrSSP/) [50] using the options “AAindex + PSSM 
based (Swissprot)’’ and (2) TransportTP (http://bioinfo3.noble.
org/transporter/) [51] using an E-value threshold = 0.1. The results 
obtained with these methods are listed in Table 3. Our method gave 
superior results (90% accuracy and higher) than TrSSP (64% in the 
best case) and TransportTP (54% in the best case) for Escherichia 
coli sequences. TransportTP did not provide useful results for 
Saccharomyces cerevisiae and human sequences. The results of TrSPP 
for human sequences were of comparable accuracy to those of our tool. 
For Saccharomyces cerevisiae sequences, TrSPP provided better results 
than our tool. In addition, it should be noted, that our method was only 
able to make predictions for transporters which have non-zero features 
(see methods, paragraph “Training and testing data for SVM”).

Metabolic pathway enzymes

Next we tested the same approach for the genes coding for 
enzymes belonging to different groups of metabolic pathways of E. coli. 
Supplement Table 3 shows that, when the number of neighbors was 
extended, the number of genes that can be used by SVM decreased. 
In consequence, the accuracies decreased when we considered 
more neighbors (Figure 5). This characteristic was not found for the 
transporter proteins. 

Figure 3: Effects of the similarity threshold r of GO terms on the accuracy of 
transporter substrate classification.

Organism Transporter 
substrate

r = 0.2 r = 0.5 r = 0.8
Correctly 
classified 

Not correctly 
classified

Correctly 
classified 

Not correctly 
classified

Correctly 
classified 

Not correctly 
classified

E. coli
Sugar 18 3 15 3 14 2

Amino acid 22 3 22 1 17 1

S. cerevisiae
Sugar 5 2 5 2 5 1

Amino acid 11 3 10 2 7 2

H. sapiens
Sugar 3 7 3 6 4 3

Amino acid 30 3 28 1 15 2

Table 2: Number of genes that were correctly and incorrectly classified.
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After testing with two groups, we tested the method with the four 
groups of genes involved in sugar, amino acid, lipid, and nucleotide 
pathways, respectively. Figure 6 shows that the accuracies relative to 
the random prediction (25%) are increased compared to the previous 
test. Secondly, the threshold r had only a small effect when we extended 
the number of neighbors to (20, 5).

Discussion
The main findings of our study are:

a) The function of membrane transporters and of metabolic
enzymes is best associated with that of its co-expressed neighbor genes 
for E. coli, followed by S. cerevisiae, and by H. sapiens.

b) The substrate-specificities of membrane transporters can
be classified better than the membership of enzymes to four major 
metabolic pathway classes.

The first finding had to be expected. Operons exist in bacteria and 

rarely in eukaryotes (S. cerevisiae and H. sapiens). Junier and Rivoire 
recently reported that the 2034 genes of E. coli are arranged in 740 
synteny segments [52]. They found that co-expression occurs at high 
levels within synteny segments and low levels outside. However, it was 
also suggested that functionally related genes are grouped together in 
bacteria outside of operons in the form of so-called “uber-operons” 
[53].

In yeast, the most highly co-expressed pairs of neighbor genes tend 
to be similar in function [30,54]. Adjacent genes are frequently (more 
than 25%) transcribed in the same phase(s) of the cell cycle [28].

For H. sapiens, Wang and colleagues recently compared the 
expression profiles of bulk tissue of glioblastoma patients to expression 
profiles  at single-cell level [35]. Interestingly, they found that co-
expression in bulk samples was stronger associated with similar 
gene function than that in single cell samples. In the latter case, co-
expressed genes showed a stronger tendency to physically interact 
with each other. Nevertheless, our results show that the biological 
functions of co-expressed neighbor genes are in all three investigated 
species associated with the function of the central gene.

When compared to results obtained the alternative method TrSSP, 
our method gave superior results for E. coli  transporters, results of 
comparable quality for human transporters, and results of slightly 
lower accuracy for S. cerevisiae transporters. Since both methods take 
quasi orthogonal approaches, it appears worthwhile to combine both 
methodologies in the future.

Now we turn to the question why function prediction gave better 
results for the membrane transporters than for metabolic enzymes. 
To us, this came as a surprise. In Arabidopsis thaliana (which was not 
studied here), Ren and colleagues reported that co-functionality was 
in most cases a poor predictor of co-expression, also for neighboring 

organism group Number of sequences
TrSSP TransportTP

Correct Accuracy Correct Accuracy
Escherichia coli aa 47 23 48.94% 10 21.28%

sugar 39 25 64.10% 21 53.85%
Saccharomyces cerevisiae aa 24 20 83,33% 0 0.00%

sugar 17 16 94,12% 0 0.00%
Homo sapiens aa 37 31 83,78% 0 0.00%

sugar 13 10 76,92% 0 0.00%

Table 3: Comparison against alternative methods for predicting substrate specificities.

Figure 4: Prediction accuracy for different window sizes.

Figure 5: Accuracies of different thresholds r and number of neighbors when 
testing with enzymes of the sugar and amino acid metabolism.

Figure 6: Accuracies of 4-class prediction for different thresholds and number 
of neighbors when testing with enzymes belonging to the sugar, amino acid, 
lipid and nucleotide metabolic pathways.
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genes [55]. When turned around, this suggests that co-expressed and 
gene neighborhood cannot be taken as guarantee for co-functionality, 
at least not in eukaryotic genome.

Cui and colleagues recently analyzed correlations of the expression 
levels of neighboring genes in H. sapiens [56]. Interestingly, they 
distinguished between four types of genes: housekeeping genes, 
specific and selective genes that are either preferentially or exclusively 
expressed in response to physiological stimuli, and repressed genes. 
Importantly, they found that the direction of transcription of gene 
pairs (parallel or antiparallel) has at most a weak effect on the level of 
co-expression. This supports the approach taken in our study where we 
have ignored directionality of genes. Compared to randomly selected 
gene pairs, preferentially expressed and repressed genes showed a 
substantially higher co-functionality. Interestingly, this was not the 
case for neighboring housekeeping genes and exclusively expressed 
gene pairs that showed an even lower co-functionality than randomly 
selected gene pairs.

These results show that functional associations may be quite case-
specific.

Conclusion
In this work, we focused on the classification of integral membrane 

transporters from three organisms (E. coli, S. cerevisiae and Homo 
sapiens) according to their transported substrates. The idea was to 
identify among the close neighbors of a query gene with unknown 
function those genes that show high co-expression with this gene. Then, 
we identified frequent GO terms among these co-expressed neighbors 
and used a support vector machine classifier to annotate the substrate 
specificity of the query gene. Training of the method was performed on 
groups of known amino acid and sugar transporters. For transporter 
proteins, the average accuracies of E. coli, S. cerevisiae and Homo 
sapiens were 89%, 78%, and 79%, respectively. When tested on the 
genes belonging to different metabolic pathways of E. coli, the average 
accuracy was 75% (two classes) and 67% (four classes). In future works, 
this approach may be used in combination with other features such as 
sequence motifs, sequence similarity, and further characteristics of the 
protein sequence such as its amino acid composition.
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