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Introduction
Membrane proteins facilitate a variety of interactions between the 

external and internal cellular environments including the transport or 
exchange of ions and molecules, cellular adherence to a surrounding 
substrate or neighboring cell, and the translation of an extracellular 
signal into an altered cellular response. Given the importance of 
membrane proteins, many cellular processes are involved in the 
delivery, retention, and recycling of these proteins. Ankyrins are 
adaptor proteins that link membrane proteins to the underlying 
cytoskeleton. Both ankyrin and its cytoskeletal cohort β-spectrin have 
been linked to many steps in the biosynthetic pathway of membrane 
proteins from intracellular transport to membrane targeting and 
retention, in addition to clathrin-mediated endocytosis and endosomal 
recycling. This review is organized around two central themes: ankyrin 
function on membrane proteins and the cellular effects of ankyrin/
membrane protein interactions. The first aim will address the direct 
effect of ankyrin function on membrane proteins in terms of protein 
binding, intracellular trafficking, membrane targeting and retention, 
and altered biophysical properties. In the later half, a discussion on the 
cellular effects of ankyrin/membrane protein interactions will include 
the mechanical stabilization of plasma membrane, membrane domain 
formation, and membrane-domain specialization. 

Ankyrins

Ankyrins serve as an interface between membrane-bound proteins 
and the underlying cytoskeleton. This interaction contributes to the 
stability of the membrane protein’s location and expression within 
the plasma membrane. Ankyrins appear to be a metazoan invention 
as they have only been detected in worms, flies, rodents, and humans, 
but not in yeast or plants. In human, three genes ANK1, ANK2, and 
ANK3 encode isoforms of ankyrin-R, ankyrin-B, and ankyrin-G 

respectively. While very little is known about the regulation of ankyrin 
gene transcription, it will be complex because ankyrin genes are quite 
large with multiple first exons and numerous alternative transcripts 
have already been identified. Alternative splicing of ankyrin genes 
results in a diverse array of isoforms with unique functions and 
distinct expression patterns. Expression of ankyrin-R isoforms has 
been detected in erythrocytes, striated muscle, and some neurons. In 
contrast, isoforms of ankyrin-B and ankyrin-G have been detected 
in a greater variety of tissues. While some tissues such as the heart 
and cerebellum display all three ankyrin gene products, they are not 
functionally redundant, i.e. ankyrin-G cannot compensate for the loss 
of ankyrin-B in cardiomyocytes [1].

The prototypical ankyrin has three functional domains: a 
membrane-binding domain (MBD), spectrin-binding domain (SBD), 
and a C-terminal regulatory domain (CTD) (Figure 1). The membrane-
binding domain is comprised of 24 consecutive ANK repeats that are 
arranged in a superhelical array forming a solenoid [2]. The ANK 
repeats have inherent spring-link qualities that confer resilience to the 
membrane-binding domain from mechanical perturbations that occur 
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in ankyrin-expressing tissues such as erythrocytes and striated muscle 
[3]. ANK repeats are a common motif for protein-protein interactions 
and most of ankyrin interactions with integral membrane proteins 
occur via the ANK repeats in the membrane-binding domain. The 
spectrin-binding domain contains a ZU5 domain (from the mouse 
zona occludens 1 (ZO-1) and the C. elegans uncoordinated protein 5 
(unc5)) that comprises the minimal binding domain for spectrin [4]. 
In contrast, spectrin repeats 14 and 15 comprise the minimal binding 
domain for ankyrin [5-7]. In addition to spectrin, the spectrin-binding 
domain has been shown to interact with B56a, a regulatory subunit 
of protein phosphatase 2A, and dynactin-4, an adaptor protein that 
links the dynein motor to membrane cargo [8,9]. As different ankyrin 
gene products are relatively homologous within the MBD and SBD, the 
C-terminal regulatory domain, which is the least homologous, governs 
the specificity of ankyrin function and its subcellular localization. The 
CTD confers ankyrin specificity by regulating ankyrin interactions 
with itself, the cytoskeleton, and integral membrane proteins [10-12]. 
Not surprisingly, many of the missense mutations associated with 
ankyrin dysfunction have been localized to the C-terminal regulatory 
domain [13]. The prevalence of ankyrin dysfunction in a variety of 
human disorders including hemolytic anemia, cardiac arrhythmias, 
and neonatal diabetes highlights the significance of ankyrin function 
for normal cellular physiology [14-18].

Ankyrin functions

Binding and stabilization of membrane proteins: Ankyrin 
interacts with a variety of integral membrane proteins including 
ion channels, transporters, and cell adhesion molecules (see Table 
1). Ankyrin-associated ion channels include voltage-gated sodium 
channels (NaV1.x) and potassium channels (KV3, KV7), the L-type 
voltage-gated calcium channel CaV1.3, inositol triphosphate receptors 
(IP3R), and the potassium inward rectifying channel subunit Kir6.2 
[17,19-26]. Ankyrin-associated ion transporters include the sodium/
calcium exchanger (NCX), sodium/potassium ATPase (NKA), anion 
exchangers (AE1, AE2, AE3), hydrogen/potassium ATPase, and 
the RhBG ammonium transporter [27-34]. Ankyrin-associated cell 
adhesion molecules include the family of L1-CAMs, E-cadherin, 
CD44, and β-dystroglycan [35-40]. While the structural requirements 
underlying many of these interactions have yet to be elucidated, 
previous studies have demonstrated that MBD ANK repeats mediate 
ankyrin interactions with integral membrane proteins. Some 
interactions involve one ANK repeat, while other interactions require 
multiple consecutive ANK repeats. For example, ankyrin-G ANK 
repeat 14 or 15 is sufficient to bind NaV1.5, while the NCX binding 
site is spread across ankyrin-B ANK repeats 16, 17, and 18 [41,42]. 
One ankyrin molecule can interact with multiple membrane proteins 
simultaneously, thereby allowing for multi-protein complex formation. 
Another important aspect of ankyrin binding is that this interaction 

stabilizes the membrane protein. In ankyrin haploinsufficiency, 
ankyrin-associated membrane proteins including NCX, NKA, IP3R, 
NaV1.5, and CaV1.3 display reduced protein expression and membrane 
localization [21,42-44]. More detailed studies have demonstrated that 
ankyrin-B binding to the IP3R lengthens the receptor’s half-life from 
3.7 hours to 11.7 hours [45]. Likewise, NCX binding to ankyrin-B 
extends the exchanger’s half-life from 17.8 hours to 27.2 hours [41]. In 
summary, multiple membrane proteins can simultaneously bind to an 
ankyrin membrane-binding domain and this interaction stabilizes the 
membrane proteins.

Intracellular trafficking of membrane proteins: While a lot of 
ankyrin biology research has focused on the targeting and retention 
of integral membrane proteins at the plasma membrane, there is 
evidence that ankyrin and β-spectrin interact with membrane proteins 
at many steps along the membrane protein’s biosynthetic pathway. 
First, isoforms of ankyrin (Ank195 and AnkG119) and βspectrin (β3-

Figure 1: Ankyrin functional domains.  The prototypical ankyrin has three 
functional domains.  The membrane-binding domain (MBD) is comprised of 
24 ANK repeats that bind many membrane proteins. The spectrin-binding 
domain (SBD) includes the ZU5 motif, which is the minimal binding domain 
for spectrin.  The death domain (DD) and C-terminal domain (CTD) regulate 
ankyrin’s association with itself, membrane proteins, and the cytoskeleton.

Protein Ankyrin Domain
Ion channels:
Rh antigen R
IP3R B MBD
CaV1.3 B
Kir6.2 B MBD
NaV1.X G MBD
KV7 G
KV3 G
CNG-β G
Ion transporters:
Anion exchanger (AE1, 2, 3) R MBD
NCX R, B MBD
NKA R, B, G MBD
Ammonium transporter R, G
Cell adhesion molecules:
CD44 R MBD
L1-CAM family R, B, G MBD
E-cadherin G
β-dystroglycan G
Cytoskeletal/structure:
β-spectrin R, B, G SBD
Obscurin R, B, G CTD
Dystrophin B, G
Filamin C G CTD
Plakophilin-2 G
Plectin G CTD
Intracellular transport:
Clathrin R MBD
Tubulin R, B MBD
EHD1-4 B MBD
Dynactin-4 B SBD
EB1/3 G
Other:
PP2A B SBD
Hdj1/Hsp40 B CTD
Fas G DD
Tiam-1 R, G MBD
Sigma receptor B

Table 1: Proteins that interact with ankyrins (R, B, or G) are grouped according to 
their general function.  Sites of interaction on ankyrin are listed (MBD: membrane-
binding domain, SBD: spectrin-binding domain, DD: death domain, CTD: 
C-terminal domain).
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spectrin) have been associated with the trans Golgi network [46-52]. 
Furthermore, the association of β3-spectrin with the Golgi is partially 
regulated by an ADP ribosylation factor-dependent increase in the 
level of phosphatidylinositol 4,5-bisphosphate in the Golgi membrane 
[53]. β3-spectrin is connected to the molecular motor dynein through 
its interaction with actin-related protein (Arp1) that is a component 
of the dynactin complex [54]. Considering its interactions with the 
dynein/dynactin complex and its notable similarities to other coat-
like proteins such as clathrin, β3-spectrin is thought to be involved in 
vesicular trafficking. Using a dominant negative construct to disrupt 
Golgi-targeting of the endogenous β-spectrin, it was demonstrated that 
the endoplasmic reticulum (ER) to Golgi transport of both the α- and 
β-subunits of NKA is dependent upon β3-spectrin [49]. In support of 
these findings, β3-spectrin null mice display a large number of vesicles 
around the Golgi [55]. Similar to β3-spectrin, ankyrin is involved in 
ER to Golgi transport of the NKA α-subunit. Ankyrin interacts with 
a specific binding domain in the α-subunit that is necessary for the 
subunit’s ER to Golgi transport [56]. Furthermore, normal ER to 
Golgi trafficking of the α-subunit is disrupted by over-expression of 
this domain. In contrast, ER to Golgi trafficking is rescued by inclusion 
of this ankyrin-binding domain in a fusion protein that would have 
otherwise remained in the ER [56]. Other converging evidence in 
support of ankyrin’s role in intracellular trafficking includes a direct 
interaction of ankyrin with tubulin [57-59] and dynactin-4 [8,35]. 
In addition, a new study demonstrated a direct interaction between 
ankyrin-G and the microtubule plus-end binding proteins EB1 and 
EB3 [60]. This interaction partially regulates ankyrin-G’s subcellular 
localization at the axon initial segments of neurons, suggesting that 
ankyrin-G may play an important role at the dynamic interface of the 
plus-end microtubule and the actin cytoskeleton.

While both ankyrin and β-spectrin have been associated with 
microtubule-based transport, ankyrin is also connected to clathrin-
mediated endocytosis and endosomal-based trafficking. Ankyrin-R 
MBD binds to clathrin [61]. In addition, ankyrin-B MBD interacts 
with all four of the Eps15-homology domain containing (EHD) 
proteins, which are involved in endosomal-based anterograde and 
retrograde trafficking of membrane proteins [62]. Even though all 
four EHD proteins are expressed in the heart, there appears to be a 
preferential interaction between ankyrin-B and EHD3 given that 
ankyrin-B haploinsufficiency caused the most significant up-regulation 
of EHD3 protein expression. In support of the hypothesis that EHD3 
is involved in anterograde transport of ankyrin-B associated proteins, 
NCX membrane expression was increased by EHD3 over-expression 
and conversely its expression was decreased by EHD3 down-regulation 
[62]. Finally, a truncated isoform of ankyrin-G has been detected in 
late endosomal compartments that are immunopositive for the 
lysosomal-associated membrane glycoprotein, suggesting that there 
is a lysosomal-specific ankyrin isoform in addition to a Golgi-specific 
isoform [63].

Targeting and scaffolding of membrane proteins: One of the 
more obvious deficiencies associated with ankyrin dysfunction is the 
loss of membrane protein targeting and scaffolding. For example, 
ankyrin-B haploinsufficiency causes a decrease in the membrane 
expression of the L-type voltage-gated calcium channel CaV1.3 in both 
sinoatrial cells and atrial myocytes [16,21]. Interestingly, ankyrin-B is 
required for full membrane expression of CaV1.3 and decreased channel 
expression is associated with sinus node disease and atrial fibrillation 
[16,21]. In the nervous system, the intrinsic self-assembly of axon 
initial segments is predominantly mediated by ankyrin-G-dependent 

retention of voltage-gate sodium and potassium channels, as well as the 
cell adhesion molecule neurofascin-186. 

The axon initial segment (AIS) is a highly specialized region of the 
neuron that initiates the action potential thereby facilitating electrical 
and chemical communication between neurons. Action potential 
initiation is achieved through the coordinated activities of a variety of 
voltage-gated ion channels clustered at the AIS. Ankyrin-G is critical 
for AIS-enrichment of voltage-gated sodium channels NaV1.2 and 
NaV1.6, in addition to the enrichment of potassium channel subunits 
KCNQ2 and KCNQ3 [20,22-24,64]. In the absence of ankyrin-G in 
cerebellar Purkinje neurons, voltage-gated sodium channels are no 
longer properly localized to AIS and the neurons display reduced action 
potential generation [64]. Ankyrin-G interaction with voltage-gated 
sodium channels is positively regulated by channel phosphorylation 
by the AIS-enriched CK2 kinase [65,66]. Ankyrin-G also targets cell 
adhesion molecules including neurofascin-186 and neuron glia-related 
cell adhesion molecule (NrCAM) to the AIS. In Purkinje neurons, 
neurofascin-186 is the target of synapse formation from GABAergic 
basket interneurons [67]. In hippocampal neurons, neurofascin-186 
recruits the chondrotin sulfate proteoglycan brevican to the AIS, which 
has an inhibitory effect on interactions between pre- and post-synaptic 
membranes [68,69]. Ankyrin-G retention of voltage-gated ion channels 
and cell adhesion molecules is absolutely essential for AIS intracellular 
and extracellular formation.

Modulation of membrane protein biophysical properties: 
While the effect of ankyrin-binding on the biophysical properties 
of membrane proteins has not been studied in great detail, ankyrin 
has been shown to alter intrinsic biophysical properties of voltage-
gated sodium channels and the potassium inward rectifying channel 
subunit Kir6.2. Mohler et al. [15] described a missense mutation 
in the ankyrin-binding domain of NaV1.5 that disrupted channel 
association with ankyrin-G and was linked to Brugada syndrome, 
a cardiac disorder caused by decreased sodium current density. The 
missense mutation causes changes in activation and inactivation states 
of NaV1.5 in a heterologous expression system. Similarly, Shirahata et 
al. [70] has demonstrated that ankyrin-G accelerates the rate of NaV1.6 
inactivation in a heterologous expression system. On the contrary, 
Lowe et al. [42] found no change in the inactivation state of NaV1.5 
following ankyrin-G knockdown in cardiomyocytes. These conflicting 
results warrant additional studies to clarify the effect of ankyrin-G on 
intrinsic properties of the voltage-gated sodium channel.

The potassium inward rectifying channel subunit (Kir6.2) is 
another membrane protein that has altered biophysical properties upon 
ankyrin-binding. Kir6.2 is an ATP-sensitive channel that links cellular 
metabolism with cellular excitability. Increased metabolism elevates 
intracellular ATP that binds to Kir6.2 and closes the channel, leading to 
membrane depolarization and cellular excitability. It has been shown 
that ankyrin-B selectively binds to the pore-forming channel subunit 
Kir6.2, but not to Kir6.1 [17,71]. Moreover, the ankyrin-B/Kir6.2 
protein complex includes the regulatory sulfonylurea receptor subunits 
SUR1 and SUR2, although ankyrin-B does not directly bind to these 
regulatory subunits [17,71]. Ankyrin-B/Kir6.2 interaction enhances 
channel membrane expression and decreases the channel’s ATP 
sensitivity [17,71]. The molecular mechanisms underlying the ankyrin-
dependent decrease in ATP sensitivity have yet to be discovered, but 
the ankyrin-B interaction may cause steric hindrance between the ATP 
molecule and Kir6.2.
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Cellular effects of ankyrin/membrane protein interactions

Maintenance of plasma membrane mechanical stability: The 
bicarbonate/chloride exchanger band 3 (or anion exchanger 1, AE1) 
is the most abundant membrane protein in erythrocytes. In addition 
to playing a key role in carbon dioxide transport in blood, the anion 
exchanger also serves as a point of attachment for the erythroid 
cytoskeleton. Membrane-bound AE1 predominantly exists as a dimer 
and tetramer. The dimer is attached to the cytoskeleton through the 
junctional complex with its principal components AE1, protein 4.1, p55, 
and glycophorin. In contrast, the tetramer is linked to the cytoskeleton 
through the ankyrin complex that contains the core subunits AE1, 
ankyrin-R, and protein 4.2. Mutations to proteins in the ankyrin 
complex are generally associated with hereditary sphereocytosis, 
a type of hemolytic anemia that is quite common, but renders the 
erythrocytes vulnerable to mechanical and osmotic disruption [72]. Of 
the subunits in the ankyrin complex, ankyrin-R mutations are the most 
predominant cause of hereditary sphereocytosis (HS). At the molecular 
level, disrupting any component of the ankyrin complex compromises 
the attachment between the erythroid membrane and its underlying 
cytoskeleton; therefore, ankyrin-R interactions with AE1 are critical for 
the normal conformation and stability of erythroid membranes.

Membrane domain formation: In some cell types, the interaction 
of ankyrin with cell adhesion molecules and cytoskeletal proteins 
is important for the formation and/or maintenance of membrane 
domains. Specifically, it has been demonstrated that ankyrin-G is 
necessary for lateral membrane biogenesis in bronchial epithelial cells 
[36,73]. Ankyrin-G directly interacts with the cytoplasmic domain 
of the cell adhesion molecule E-cadherin leading to the retention of 
E-cadherin and β-catenin at nascent adherens junctions in growing 
lateral membrane domains [73,74]. Ankyrin-G recruitment of β2-
spectrin stabilizes the developing adherens junctions and allows for the 
accumulation of lateral membrane. When ankyrin-G or β2-spectrin 
is reduced by siRNA treatment, there is a complete loss of lateral 
membrane biogenesis and a compensatory increase in the apical and 
basal membranes [73,74]. Interestingly, the apical to basal polarity in 
these epithelial cells is maintained despite the loss of lateral membrane 
[73,74]. Not only does ankyrin-G and β2-spectrin stabilize the lateral 
membrane domain expression of E-cadherin, but they also play 
important roles in the transport of E-cadherin from the trans-Golgi 
network. Disruption of ankyrin-G/E-cadherin interactions significantly 
increases the mislocalization of E-cadherin to the trans-Golgi network 
[36]. Lateral membrane biogenesis in bronchial epithelial cells is 
dependent on the post-Golgi transport and membrane stabilization of 
E-cadherin by an ankyrin-G/β2-spectrin protein complex.

In the mammalian retina, ankyrin-G is also important for the 
biogenesis of outer segments of rod photoreceptors. Specifically, 
ankyrin-G-treated retinas displayed significantly shortened rod 
outer segments compared to the control-treated retinas [75]. While 
the molecular mechanisms underlying this ankyrin-G-dependent 
membrane biogenesis has yet to be characterized, future studies should 
focus on ankyrin-associated cell adhesion molecules.

Membrane domain specialization

Transverse-tubules: In cardiac ventricular myocytes, transverse-
tubules (T-tubules) are invaginations of the plasma membrane that 
maximize the interface between the sarcolemma and extracellular 
milieu. They facilitate the rapid and efficient propagation of membrane 
depolarization to the myocyte interior thereby ensuring the rapid and 

synchronized release of intracellular calcium from the sarcoplasmic 
reticulum (SR). T-tubules are enriched with ion channels and 
transporters that mediate the transmembrane flux of calcium ions. 
Calcium-induced calcium release from the SR is predominantly 
regulated by the coordinated activities of the L-type voltage-gated 
calcium channel (or dihydropyridine receptor, DHPR) and the 
ryanodine receptor (RyR) (Figure 2). As an integral membrane protein 
in the T-tubule, DHPR is aligned opposite the RyR, a SR integral 
membrane protein, through actions of the pore-forming channel 
subunit [76] or the β1 auxiliary subunit [77,78]. The T-tubule is also 
enriched with NCX that acts in conjunction with the sarcoplasmic 
reticulum calcium ATPase (SERCA) to reduce cytosolic calcium levels 
during the myocyte relaxation phase. NCX is functionally coupled to 
NKA and the proper targeting/retention of this protein complex at 
the T-tubules is dependent upon interactions with ankyrin-B (Figure 
2). Ankyrin-B directly binds NCX and NKA [43], an interaction that 
stabilizes NCX protein [41]. Ankyrin-B haploinsufficiency results in 
reduced NCX and NKA protein expression and membrane localization 
at T-tubules [41,43,44]. Reduced T-tubular NCX function increases 
post-systolic calcium levels in the cytosol, thereby enhancing SERCA’s 
contribution to cytosolic calcium removal and resulting in elevated 
SR calcium stores [44]. Therefore, ankyrin-B-dependent targeting and 
retention of NCX and NKA at T-tubules contributes to the functional 
specialization of this domain, i.e. the normal efflux of calcium ions 
during the myocyte relaxation phase.

Intercalated disc: In ventricular cardiomyocytes, intercalated 
discs (ICD) are specialized domains that mediate the end-end contact 
between adjoining myocytes and allow for electrical and mechanical 
continuity between these cells. In the intercalated discs, desmosomes 
and adherens junctions function in the mechanical adhesion between 
neighboring myocytes, while connexons (or gap junctions) facilitate 
the electrical coupling between these cells. Each ICD junctional 
complex has distinct protein components with specialized functions; 
nevertheless, these complexes are interconnected and functionally 
dependent on each other. Ankyrin-G interacts with the desmosomal 
protein plakophilin-2 and the gap junction protein connexin43 
(Figure 2). Decreasing ankyrin-G expression results in reduced ICD 
localization of plakophilin-2 and diminished intercellular adhesion 
[79]. Furthermore, reduced ankyrin-G expression causes a decrease 
in protein expression and ICD localization of connexin43 resulting in 
decreased junctional conductance [79]. Interestingly, ankyrin-G and 
plakophilin-2 appear to mutually facilitate their retention at the ICD 
because siRNA-mediated plakophilin-2 knockdown decreases the ICD 
localization of both ankyrin-G and the voltage-gated sodium channel 
NaV1.5 [79]. Ankyrin-G scaffolding of plakophilin-2 and connexin43 
contributes to the electromechanical coupling between adjoining 
cardiomyocytes.

The voltage-gated sodium channel NaV1.5 initiates the rapid 
upstroke of the cardiac action potential. This channel displays differential 
subcellular localization in ventricular cardiomyocytes. While a small 
population of NaV1.5 has been localized to lateral membranes, the 
most abundant population is localized at the ICD (Figure 2). NaV1.5 
differential localization arises from the channel’s association with 
different protein complexes. Lateral membrane localization is the result 
of channel association with the syntrophin-dystrophin complex, while 
ICD localization of the channel is regulated by ICD-resident proteins 
synapse associated protein 97 (SAP97) and ankyrin-G. Syntrophin 
interacts with the PDZ domain encoded by the last three amino acids 
in NaV1.5 (Ser-Ile-Val). Disrupting this interaction leads to decreased 
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NaV1.5 localization in lateral membranes, reduced sodium current 
density, and attenuated impulse propagation [80,81]. Interestingly, 
the ICD-resident protein SAP97 also interacts with NaV1.5 via its last 
three amino acids. Inhibiting this interaction reduces NaV1.5 protein 
expression and localization at pseudo-ICDs, in addition to reducing 
total sodium current density [80]. An unresolved question about the 
differential localization of NaV1.5 is what regulates channel interaction 
with syntrophin or SAP97 given that they both share the same binding 
site on NaV1.5.

In ventricular myocytes, ankyrin-G is required for the targeting 
and retention of NaV1.5 at intercalated discs. Ankyrin-G directly 
binds to NaV1.5 via a conserved ankyrin-binding domain present in 
the cytoplasmic loop between the DII and DIII homologous domains 

[15]. Disruption of this interaction causes the loss of NaV1.5 membrane 
expression at ICDs and reduced sodium current density [15,42]. 
Ankyrin-G-dependent enrichment of NaV1.5 at the ICD is important 
for action potential propagation between adjoining myocytes [82]. 
Interestingly, a NaV1.5 missense mutation that disrupted ankyrin-G 
binding and reduced channel membrane localization was linked to a 
case of Brugada syndrome, which is a cardiac arrhythmia characterized 
by ventricular conduction abnormalities and reduced NaV1.5 function 
[15]. Phosphorylation also regulates NaV1.5 channel activity and in 
the costamere b4-spectrin is a novel calcium/calmodulin-dependent 
protein kinase II (CaMKII) binding protein [83]. A direct interaction 
between ankyrin-G and b4-spectrin retains CaMKII in close proximity 
to NaV1.5 [83]. Channel phosphorylation by CaMKII enhances the 
peak sodium current and changes the channel’s inactivation gating 

Figure 2: Ankyrin membrane domain specialization in myocytes. (A) Costameres: an interaction between ankyrin-B and β2-spectrin recruits and retains dystrophin, 
β-dystroglycan (DG), and microtubules to the sarcolemma. The retention of dystrophin and β-dystroglycan specifically at costameres is dependent on direct 
interactions with ankyrin-G. Truncated ankyrin-G isoforms (AnkG107) are also expressed at costameres through interactions with plectin and filamin. (B) Intercalated 
disc: Ankyrin-G interacts with components of the gap junction (connexin43, Cx43) and desmosomal complex (plakophilin-2, Pkp). Other desmosomal components: 
desmoglein-2 (Dsg2), desmocollin-2 (Dsc2), and plakoglobin (Pkg). Ankyrin-G targets and scaffolds NaV1.5 at the ICD where it forms a local signaling complex with 
b4-spectrin and Ca2+/calmodulin kinase II (CaMKII). (C) T-tubule: Ankyrin-B targets and retains the sodium/calcium exchanger (NCX), sodium/potassium pump (NKA), 
and inositol triphosphate receptor (IP3R) at T-tubules of ventricular myocytes. The functional coupling of the sarcolemmal (SL) dihydropyridine receptor (DHPR) and 
ryanodine receptor (RyR) in the sarcoplasmic reticulum (SR) propagates calcium-induced calcium release. Ankyrin-G retains a subpopulation of voltage-gated sodium 
channels (NaV) at the T-tubules. 
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[83]. The unique mechanoelectrical properties of the intercalated 
disc are dependent in part on ankyrin-G targeting and scaffolding of 
plakophilin-2, connexin43, and NaV1.5.

Costameres: Costameres are submembranous protein complexes 
that facilitate the lateral transmission of contractile force to the 
sarcolemma, surrounding extracellular matrix, and neighboring 
myocytes. They overlie the Z-lines, which define the boundaries of an 
individual sarcomere, and facilitate mechanotransduction through the 
actions of focal adhesion proteins such as vinculin, α-actinin, and β1 
integrin. Also residing in the costamere, the dystrophin-glycoprotein 
complex (DGC) connects the myocyte cytoskeleton through the 
sarcolemma to the surrounding extracellular matrix thereby providing 
structural integrity for the sarcolemmal membrane. While several 
transmembrane and peripheral proteins contribute to DGC stability 
and sarcolemmal integrity, both dystrophin and dystroglycan play 
central roles in this complex. Dystroglycan is proteolytically processed 
into an extracellular α-subunit and transmembrane-spanning 
β-subunit. The link between the extracellular matrix (ECM) and the 
cytoskeleton is mediated by β-dystroglycan by binding to the ECM-
associated α-dystroglycan and dystrophin, which binds to actin and 
intermediate filaments.

Both ankyrin-B and ankyrin-G have been associated with the 
recruitment and retention of DGC components to the costamere. 
Specifically, ankyrin-B and ankyrin-G bind to dystrophin, while 
ankyrin-G binds to β-dystroglycan [35] (Figure 2). The sarcolemmal 
recruitment/ retention of dystrophin by ankyrin-B is dependent on 
ankyrin-B interaction with dynactin-4, a component of the dynactin 
complex that links membrane cargo to the submembranous actin 
filaments. In skeletal muscle, the loss of ankyrin-B or its intermediary 
dynactin-4 results in decreased sarcolemmal localization of dystrophin, 
β-dystroglycan, and costamere-associated microtubules [8]. Not 
surprisingly, ankyrin-B haploinsufficient mice display greater muscle 
damage following exercise compared to their wild-type littermates [8]. 
While ankyrin-B regulates the sarcolemmal localization of dystrophin 
and β-dystroglycan, ankyrin-G is important for the retention of 
these proteins at the costamere [35]. In skeletal muscle, the loss of 
ankyrin-G reduces the costameric localization of both dystrophin and 
β-dystroglycan, while their sarcolemmal localization remains intact 
[35]. Based on these findings, it has been suggested that dystrophin, 
β-dystroglycan and a subset of microtubules are initially recruited/
retained at the sarcolemma by an ankyrin-B/dynactin-4 protein 
complex and the further refinement of their localization to costameres 
is facilitated by an ankyrin-G/β2-spectrin protein complex. While this 
is a very tentative model, unresolved issues include the relationship 
between ankyrin-G and ankyrin-B at the costameres, the function of 
DGC adaptor proteins such as syntrophins in this protein complex, and 
the characterization of different ankyrin isoforms at the costameres.

Many different ankyrin-G isoforms are expressed in striated muscle 
due to alternative splicing. In addition to the full-length ankyrin-G 
isoform with all three functional domains, truncated isoforms lacking 
the membrane-binding domain have been detected in skeletal and 
cardiac tissue. Interestingly, these truncated isoforms include a 
novel stretch of 76 amino acids in the C-terminal domain that have 
been previously shown to mediate interactions with obscurin, a large 
structural protein implicated in myofibrillogenesis and predominantly 
localized to the sarcomere M-line [84]. In addition to obscurin, two 
actin-binding scaffolding proteins plectin and filamin that localize to 
the costamere interact with this 76 amino acid domain [85]. In the 

costamere, plectin and filamen act as adaptor/scaffolding proteins 
that interact with components of the DGC and the β-integrin complex 
(Figure 2). While the interactions with plectin and filamin most likely 
contribute to the stability of these truncated ankyrin-G isoforms at 
costameres, the costameric functions of these isoforms remain to be 
determined. In addition, the relationship between these truncated 
isoforms and the full-length version is another unresolved issue.

Conclusions
Since the initial discovery of the ankyrin/β-spectrin cytoskeletal 

complex some 35 years ago, there has been a tremendous growth in 
our understanding of how this complex functions in both normal 
and diseased states. Historically, ankyrin dysfunction was only 
associated with haemolytic anemia, but now dysfunction of ankyrin 
and associated proteins has been connected to numerous cardiac 
arrhythmias, epilepsy, bipolar disorder, and a type of neonatal diabetes. 
The vast majority of our knowledge about ankyrin biology has come 
from analysis and interpretation of ankyrin and β-spectrin function at 
the plasma membrane in a static situation. While this analysis has been 
tremendously productive, it doesn’t provide a complete view of the 
entirety of ankyrin/ β-spectrin functions. For example, fundamental 
unresolved questions include what regulates ankyrin specificity for 
membrane proteins, where along the biosynthetic pathway does ankyrin 
interact with membrane proteins, and how does the ankyrin/β-spectrin 
complex orchestrate differential targeting of membrane proteins. Given 
that both ankyrin and β-spectrin are involved with elemental biological 
processes such as establishing subcellular polarity, maintaining 
membrane excitability, and reinforcing adhesive junctions, it will come 
as no surprise if they are implicated in the molecular pathogenesis of 
many more diseases.
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