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Commentary
Angiotensin-(1-7) (Ang-(1-7)), an alternative product of the renin-

angiotensin system (RAS), was initially identified in the circulation,
brain and adrenals by our laboratory over 25 years ago and was
originally considered to modulate the constrictor and pressor actions
of Angiotensin II (Ang II) [1]. However, the experimental evidence to
date suggests that Ang-(1-7) exhibits a wide range of protective effects
apart from the regulation blood pressure [2,3]. Circulating Ang-(1-7)
is derived by the direct conversion of the inactive precursor peptide
Ang I by the metalloendopeptidase (MEP) neprilysin while the cellular
levels of the peptide may reflect processing of Ang I by another MEP -
thimet oligopeptidase; both enzymes hydrolyze the Pro7-Phe8 bond of
Ang I to generate Ang-(1-7) [4]. Endogenous levels of Ang-(1-7) may
also originate from the direct conversion of Ang II by mono-
carboxypeptidases angiotensin converting enzyme 2 (ACE2) and prolyl
carboxypeptidase [4]. These latter pathways initially require the
conventional processing of Ang I by ACE to generate Ang II; however,
ACE is the principal pathway in the circulation to degrade Ang-(1-7)
to Ang-(1-5) and explains the pronounced effect of ACE inhibitors to
augment the circulating levels of Ang-(1-7) [5]. Elucidation of the
processing steps and unique actions of Ang-(1-7) has ostensibly led to
the divergence of the RAS into multiple functional arms that include
the ACE-Ang II-AT1 receptor (AT1R) and the ACE2/MEP-Ang-(1-7)-
AT7/MasR [2,3].

In contrast to the Ang II-AT1R that mediates a number of
pathological events associated with an “activated RAS”, the Ang-(1-7)
pathway is thought to antagonize many of cellular actions of the Ang
II-AT1R axis [3]. In this regard, the pathologies typical of an activated
RAS such as inflammation, fibrosis and an altered redox balance may
well reflect a stimulated Ang II-AT1R and an attenuated Ang-(1-7)-
AT7R axis [6]. Therapeutic approaches to block the ACE-Ang II-AT1R
that include ACE inhibitors (ACEIs) and AT1R antagonists (ARBs)
increase endogenous levels of Ang-(1-7) [4]. Moreover, treatment with
Ang-(1-7) may convey important therapeutic benefits in a range of
pathologies including cancer, diabetes, and hypertension and tissue
fibrosis [3]. The current review examines the cellular signaling
pathways of the Ang-(1-7)-AT7/MasR axis that are associated with the
anti-fibrotic actions of the peptide.

Angotensin-(1-7) Attenuates Fibrosis
Tissue fibrosis is a normal reparative process involved in the cellular

response to tissue injury; however, progressive and sustained fibrosis in
various clinical pathologies including heart failure, pulmonary
hypertension, diabetic nephropathy, non-alcoholic liver disease,
peripheral arterial disease, muscular dystrophy and diabetic
retinopathy leads to an inevitable decline in organ function. Activation

of the ACE-Ang II-AT1R is typically associated with fibrosis in
multiple tissues that can reflect an increase in blood pressure and the
direct cellular effects of Ang II. In turn, blockade of the RAS by ACEIs
or ARBs can be an effective approach to attenuate the progression of
fibrosis. Since RAS blockade may result in enhanced levels of Ang-
(1-7) and/or higher expression of the AT7/MasR, an emerging number
of studies have begun to directly examine the impact of exogenous
Ang-(1-7) in different models of fibrosis.

Iwata et al. initially reported evidence of specific Ang-(1-7) binding
sites expressed in isolated cardiac fibroblasts, a key cell type involved in
tissue fibrosis; the Ang-(1-7) receptor sites were sensitive to the AT7/
MasR antagonist D-Ala7-Ang-(1-7) (DALA, A779) and the non-
selective angiotensin antagonist [Sar1,Thr8]-Ang II (Sarthran), but not
AT1R or AT2R blockers [7]. Ang-(1-7) reduced the Ang II-dependent
stimulation of 3H-proline uptake as an index of fibrosis and reduced
the expression of endothelin-1 and the cytokine LIF in
cardiofibroblasts, but failed to attenuate TGF-β expression, an
important pro-fibrotic cytokine and downstream effector of Ang II [7].
Several reports subsequently demonstrated that exogenous
administration of Ang-(1-7) attenuated the development of cardiac
fibrosis in models of pressure overload induced by aortic co-arctation
[8], DOCA-salt hypertension [9], chronic Ang II treatment [10,11],
LNAME hypertension [12], diabetic cardiomyopathy [13] and
doxorubicin-induced cardiotoxicity [14]. Importantly, treatment with
the AT7/MasR antagonist DALA exacerbated the extent of Ang II-
induced cardiac fibrosis and the expression of multiple cytokines
including TGF-β, TNFα, MCP-1 and ICAM-1, as well the
metalloproteinase inhibitors TIMP 1 and 2 suggesting that intrinsic
Ang-(1-7) tone mediates the pro-fibrotic actions of Ang II within the
heart [6]. The anti-fibrotic actions of Ang-(1-7) in experimental
models are not limited exclusively to the heart as Ang-(1-7)
administration ameliorates fibrosis in liver steatosis [15,16],
pulmonary hypertension [17], pulmonary asthma [18], idiopathic
pulmonary fibrosis vascular hypertension [19] muscular dystrophy
[20] and both obstructive and diabetic nephropathies [21,22]. Indeed,
Ang-(1-7) offered greater protective effects than the AT1R antagonist
valsartan to ameliorate the diabetic nephropathy [23] and the
combination of Ang-(1-7) and an ACE inhibitor was more effective
than either agent alone to attenuate diabetic cardiac fibrosis [24].

Ang-(1-7) Signalling Pathways

TGF-β/SMAD
Activation of the Ang-(1-7) signal transduction pathway generally

involves the MasR protein and is blocked by the specific antagonists
DALA and D-Pro7-Ang-(1-7); however, AT1R, AT2R and bradykinin
B2R antagonists are also reported to block some of the actions of Ang-
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(1-7) suggesting either a direct interaction of these receptors with the
MasR or downstream effects of an activated Ang-(1-7)-MasR on these
receptor systems [3,5,25,26]. In regards to tissue fibrosis, the activation
of TGF-β and the SMAD transcription factor pathway are considered a
key signaling event in the initiation and progression of cellular fibrosis
(Figure 1). Cai et al. reported that Ang-(1-7) attenuated SMAD
phosphorylation, as well as reduced collagen, CTGF and α-SMA
expression in the bile-duct ligation model of liver fibrosis [15]. Acuna
et al. also find that Ang-(1-7) attenuated the TGF-β/SMAD pathway in
skeletal muscle of an experimental model of muscular dystrophy [20].
Moreover, Ang-(1-7) treatment was associated with a reduction in the
pro-fibrotic miRNA-21 in both the skeletal muscle and in fibroblasts
isolated form the mdx rat model [20]. In renal epithelial NRK-52 cells
exposed to high glucose conditions, Ang-(1-7) attenuated the increase
in TGF-β expression suggesting that Ang-(1-7) may directly influence
the expression of the cytokine. The inhibitory effect of Ang-(1-7) on
TGF-β in the NRK-52 cells was reversed by the AT7/MasR antagonist
DALA [27].

Figure 1: Potential scheme depicting the influence of Angiotensin-
(1-7) on the AGE-TGF-β signaling pathway: Advanced glycation
end products (AGE) binds to the receptor for AGE (RAGE) and
induces TGF-β potentially by the generation of reactive oxygen
species (ROS) through activation of the NADPH oxidase complex
[NOX, p22phox (p22), p47phox (p47), Rac-1]. TGF-β stimulates
the non-canonical pathway MAP kinase pathway to promote
phosphorylated ERK1/2 to traffic to the nucleus and increase
expression of EMT/fibrosis genes including α-smooth muscle actin
(αSMA), fibronectin, collagen and TGF-β. The TGF-β pathway may
reduce intrinsic Angiotensin-(1-7) [Ang-(1-7)] tone by
downregulation of ACE2 and the AT7/Mas receptor (Mas), as well
as increased degradation of the peptide to Ang-(1-4) through a
soluble endopeptidase (Endopep). Ang-(1-7) attenuates EMT and
fibrosis by inhibiting ERK1/2 phosphorylation potentially through
the activation of intracellular phosphatases.

In addition to the canonical TGF-β/SMAD pathway, non-canonical
pathways to promote tissue fibrosis include the TGFβ-dependent
activation of MAP kinases [28]. Ang-(1-7) treatment attenuated the
chronic stimulation of the MAP kinases ERK1/2, p38 and JNK
associated with the amelioration of pulmonary fibrosis [17] and
diabetic nephropathy [22]. We find that Ang-(1-7) abolished both ERK
1/2 phosphorylation and α-SMA expression in response to TGF-β in
renal proximal tubule NRK-52 cells [29]. In this regard, the inhibitory
effects of Ang-(1-7) on fibrosis may reflect the activation of various

cellular phosphatases including SHP-1 and the dual signalling
phosphatase (DUSP, MKP-1) that inactivate a stimulated MAPK
pathway [30-33].

Oxidative Stress
Alterations in the cellular redox balance also contribute to tissue

fibrosis that may reflect an activated TGF-β pathway. Moreover,
increased oxidative stress in a positive feedback manner may promote
a sustained stimulation of the TGF-β pathway [34,35]. Ang-(1-7)
attenuated oxidative stress possibly through the reduction in NOX 4
expression, as well as reduced expression of the NLRP3/IL-1β in
flammasone that link the anti-inflammatory actions of Ang-(1-7) to
the inhibitory effects on liver fibrosis [15]. In the db/db mouse model
of obesity and type 2 diabetes, the Ang-(1-7)-dependent reduction in
renal fibrosis was associated with an overall reduction of oxidative
stress and increased catalase activity suggesting that Ang-(1-7)
stimulates scavenging pathways as well [22]. Chan et al. also find that
Ang-(1-7) reduced oxidative stress and fibrosis in the kidney that was
associated with the reduced expression of NOX 4, the major NADPH
oxidase isoform in the kidney [36]. Indeed, Shi et al. report that Ang-
(1-7) reduced the renal expression of the pro-fibrotic cytokine TGF-β,
as well as the ROS-sensing proteins Nrf2 and HO-1 that may reflect an
overall reduction in ROS by Ang-(1-7) [36].

The stimulation of the MAPK pathway may reflect an initial
increase in reactive oxygen species (ROS) signaling upstream from
MAPK and the reduction in oxidative stress by Ang-(1-7) may
potentially attenuate MAPK stimulation of [37,38]. Consistent with
this proposed pathway, Ang-(1-7) blocked Ang II-induced migration
and TGF-β and collagen expression of pulmonary myofibroblasts
associated with a reduction in ROS and NOX 4 expression [17].
Moreover, comparable effects to Ang-(1-7) on pulmonary
myofibroblasts were achieved with the ROS scavenger tempol and the
NAD(P)H oxidase inhibitors apocynin and DPI [17]. Although the
intracellular sources of ROS in fibrosis are not well-defined, the role of
mitochondrial ROS may constitute an additional pathway to the
stimulation of TGF-β, EMT and fibrosis [37,39,40]. Indeed, we recently
identified a MEP-Ang-(1-7)-AT7/MasR pathway in mitochondria
isolated from the sheep kidney that may contribute to cellular redox
balance and could potentially influence myofibroblast transition [41].
In a study of the mitochondrial proteonome, the Ang-(1-7) agonist
AVE 0991 reduced the expression of proteins associated with
inflammation and apoptosis in the kidneys of ApoE-/- knockout mice
[42]. Increased oxidative stress appears to be key to the downstream
activation of the MAPK and TGF-β/SMAD pathways that contribute
to fibrosis.

Myofibroblast Transiton
An intriguing albeit controversial aspect of fibrosis is the role of

myofibroblasts derived from resident epithelial, endothelial and
pericyte cells, as well as fibroblasts [37,43]. Myofibroblast transition
results in a more secretory and migratory phenotype that may
ultimately promote tissue fibrosis, as well as depleting the local
population of normal cells. TGF-β is a prominent stimulus for
myofibroblast formation, and likely contributes to myofibroblast
transition elicited by other agents including Ang II, advanced glycation
products (AGEs), aldosterone, and endothelin, as well as hypoxic and
hyperglycemia conditions [37,38,44,45]. Treatment with Ang-(1-7)
reversed the epithelial to mesenchymal or myofibroblast transition
(EMT) of NRK-52 cells exposed to high glucose that was associated
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with reduced TGF-β expression and attenuated MAPK activation [46].
We reported that Ang-(1-7) also abolished EMT in NRK-52 cells
chronically exposed to the AGE methylglyoxal albumin (MGA) [29].
Although AGE exposure increased TGF-β expression that apparently
drives EMT in these cells, Ang-(1-7) failed to reverse the increase in
the cellular levels of TGF-β. However, Ang-(1-7) abolished both the
AGE and TGF-β induced activation of ERK 1/2 that reflects
downstream activation of the non-canonical TGF-β signaling pathway;
both MEK and TGF-β kinase inhibitors prevented the AGE-dependent
induction of EMT [29]. In contrast, treatment with an AT1R blocker
did not attenuate AGE-induced EMT or ERK activation suggesting
that the cellular actions of Ang-(1-7) do not reflect the direct
antagonism of the Ang II-AT1R axis in the NRK-52 cells [29].

RAS Expression
Finally, the progression of cellular fibrosis may potentially reflect

both the loss of negative feedback inhibitory pathways and the gain of
positive feedback systems. In regards to the RAS, AGE-induced EMT
in the renal NRK-52 cells was associated with a marked reduction in
the intracellular levels of Ang-(1-7) that may result in the potential loss
of Ang-(1-7) tone in these cells. AGE markedly increased the cellular
metabolism of Ang-(1-7) to Ang-(1-4) through an unidentified
cytosolic endopeptidase and tended to reduce the processing of Ang I
to Ang-(1-7) by thimet oligopeptidase [29]. Others have shown that
TGF-β or AGE exposure reduces expression of both ACE2 and the
AT7/MasR, but increases the cellular components of the ACE-Ang II-
AT1R axis [27,47]. In this regard, Zhou et al. recently reported that
blockade of the Wnt/β-catenin axis, a key signaling pathway involved
in the pro-fibrotic actions of TGF-β, abrogates the activation of the
RAS components renin, angiotensinogen and the AT1R, as well as
attenuates renal fibrosis and myofibroblast activation in adriamycin-
induced nephropathy [48]. The role of the Wnt/β-catenin pathway on
the Ang-(1-7) axis including the expression of ACE2, neprilysin and
the Mas receptor is not currently known.

Conclusion
In conclusion, activation of the Ang-(1-7)-AT7/MasR axis may be a

potentially important therapeutic target to attenuate fibrosis in various
tissues and attenuate the progressive decline in organ function,
particularly in lieu of the lack of effective approaches to inhibit fibrosis.
Additional studies are clearly warranted to precisely define the
signaling pathways inovled in the anti-fibrotic actions of Ang-(1-7)
within distinct cell types. In this regard, an evolving area is the
epigenetic response that contributes to fibrosis and the development of
approaches to attenuate this mechanism [49-51]; future studies should
address the extent that Ang-(1-7) impacts the epigenetic signaling
mechanisms in fibrosis. The current experimental approaches have
predominantly relied on the native peptide; however, Ang-(1-7)
exhibits a very short half-life and is rapidly cleaved by multiple
peptidases including ACE and dipeptidyl peptidase 3 (DPP 3) [52,53].
Moreover, Ang-(1-7) at higher doses may function as a partial agonist
at the AT1R and contribute to rather than inhibit the progression of
fibrosis. In this regard, the development of orally active and cell-
penetrating Ang-(1-7) agonists that are resistant to peptidases and
exhibit greater selectivity among angiotensin receptor subtypes may
constitute the next step to effectively combat fibrosis.
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