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Abstract

Angiotensinogen – a serpin family protein predominantly produced by the liver is systematically processed by
proteases of the Renin Angiotensin system (RAS) generating hormone peptides. Specific cell surface receptors for
at least three distinct angiotensin peptides produce distinct cellular signals that regulate system-wide physiological
response to RAS. Two well characterized receptors are angiotensin type 1 receptor (AT1 receptor) and type 2
receptor (AT2 receptor).They respond to the octapeptide hormone angiotensin II. The oncogene product MAS is a
putative receptor for Ang (1-7). While these are G-protein coupled receptors (GPCRs), the in vivo angiotensin IV
binding sites may be type 2 trans-membrane proteins. These four receptors together regulate cardiovascular,
hemodynamic, neurological, renal, and endothelial functions; as well as cell proliferation, survival, matrix-cell
interactions and inflammation. Angiotensin receptors are important therapeutic targets for several diseases. Thus,
researchers and pharmaceutical companies are focusing on drugs targeting AT1 receptor than AT2 receptor, MAS
and AngIV binding sites. AT1 receptor blockers are the cornerstone of current treatment for hypertension, heart
failure, renal failure and many types of vascular diseases including atherosclerosis, aortic aneurism and Marfan
syndrome.
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Introduction
Renin Angiotensin System (RAS) produces hormonal peptides

which signal through cell surface receptors classified as angiotensin
receptors. Recent International Union of Basic and Clinical
Pharmacology (IUPHAR) review entitled “Angiotensin Receptors:
Interpreters of Pathophysiological angiotensinergic stimuli” covered
>7255 research articles published in the last 15 years and highlighted
enormous development in angiotensin receptor research [1]. The
previous review on this topic by de Gasparo et al. [2] is a classic on
most cited articles list of Pharmacological Reviews. The current review,
also published in Pharmacological Reviews therefore has a high
standard to meet in the coming decade.

Literature covered for the IUPHAR review demonstrated that AT1
receptor studies dominated this research area in the past fifteen years
followed by AT2 receptor, MAS and the so called AT4 receptor.
Arguably the conflicting results reported on insulin regulated amino
peptidase as the cognate receptor for angiotensin IV appears to be a
major setback. In contrast, discovery of MAS as a putative Ang (1-7)
receptor is a major stimulus of research activity. Continuation of this
trend seems to be reflected in our analysis of research literature for
years 2013-2015 (Figure 1). AT1 receptor research exceeds the steady
number of publication on AT2 receptor, the rising trend for MAS and a
clear trending decline for the AngIV binding site (Figure 1).

Figure1: Number of journal article published on angiotensin
receptor research. (A) IUBCP XCIX [1] updated up to the end of
2015. (B) Number of journal articles published in years 2013-2015.

The review is organized into major sections covering AT1 receptor,
AT2 receptor, AT4 binding site, MAS and devoted a section for
absence of AT3 receptor in angiotensin receptor nomenclature system.
Within each section, advances in structure-function, pharmacology,
experimental models, genetics, signalling, expression profile and
pathophysiological aspects are discussed with extensive citations
provided for >1100 peer reviewed papers. This review is a must read
for students and researchers interested in RAS physiology and
pathology as well as drug developers.

AT1 receptor– Significant advances took place on almost all aspects
of research on AT1 receptor, classically thought to be the sole mediator
of all effects of RAS. Recent elucidation of crystal structures of human
AT1 receptor bound with the antagonists ZD7155 [3] and Olmesartan
[4] facilitates discussion of future mechanistic studies in specific
structural details. The crystal structure confirms the postulates 7TM α-
helical architecture of AT1 receptor with three extracellular loops
(ECL1-3) and three intracellular loops (ICL1-3). The C-terminal
region is highly disordered. ECL2 of AT1 receptor exhibits a β-hairpin
secondary structure which serves as an epitope for the agonistic auto-
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antibodies in pre-eclampsia and malignant hypertension [5,6]. AngII
bound AT1 receptor crystal structure is currently unavailable.

AT1 receptor blockers (ARBs) are selective non-peptide antagonists
in clinical use for the treatment of high blood pressure and are also
being examined for various other human cardiovascular disorders [1].
Eight ARBs –azilsartan, eprosartan, candesartan, irbesartan, losartan,
telmisartan, olmesartan and valsartan– are available for clinical use.
Most of the ARBs excepting telmisartan do not cross the blood brain
barrier (BBB) in pre-clinical trials suggesting their efficacy in brain
pathological conditions. From the crystal structure and molecular
docking simulation critical ligand binding residues (Arg167, Tyr35 and
Thr84) identified may facilitate further refinement and development of
novel ARBs [3,4]. Inverse agonism of most ARBs is also observed in
several studies [7]. Biased agonism of AngII analogs was described and
their potential application in heart failure therapy is evaluated in
clinical trials.

Significant advances made in defining pathophysiology are
extensively reviewed. AT1receptor knockout mice develop polyurea
and abrupt vasodepressin signalling observed in the inner medulla [8].
Genetic association studies found that AT1 receptor A1166C (rs5186)
polymorphism is associated with essential hypertension, increased
aortic stiff [9] and myocardial infarction [10]. Naturally occurring
missense variantsmay directly (A163T, T282M and C289W) or
indirectly (L48V, L222V and A244S) influence ligand binding and AT1
receptor signals. AT1 receptor signalling is mediated through G-
proteins, G-protein independent β-arrestin, reactive oxygen species,
non-receptor type tyrosine kinases, small G-proteins, transactivation
of receptor tyrosine kinases. Furthermore, interacting scaffold,
mechanical stress, heterodimerization; and signalling through
phosphorylation, desensitization, and internalization may also be
involved. Abnormal activation of AT1 receptor leads to a number of
pathophysiologies including cardiovascular remodeling and
hypertrophy, vascular inflammation and atherosclerosis, endothelial
dysfunction, oxidative stress, extra cellular matrix deposition, insulin
resistance, angiogenesis and cancer, autoantibodies and malignant
hypertension [1].

AT2 receptor: The AT2 receptor shares approximately 34% amino
acid sequence homology with AT1 receptor [1]. Physiological
functions of AT2 receptor are not clearly defined till now, but 15 years
of research devoted to this protein have further detailed physiological
modulations by AT2 receptor including those promoted by discovery
of small molecule agonists and antagonists. Beneficial effects of AT2
receptor have long been unclear due to its low expression in adults.
Both AngII and AngIII bind to AT2 receptor with affinity in nano
molar range and do not distinguish it from AT1 receptor. Even though
the AT2 receptor recognizes the same physiological ligands, the
pharmacophore of AT2 receptor is very distinct from that of AT1
receptor. Two non-peptide chemical compounds PD123319
(ditrifluoro acetate) and PD123177 (trifluoro acetate salt) defines the
pharmacology and functions of this receptor [11-15]. Recent discovery
of a selective AT2 receptor non-peptide agonist, compound 21, may
expedite exploration of distinct roles of AT2 receptor in many
physiological and pathophysiological states. AT2 receptor became new
therapeutic target for the treatment of neuropathic pain. A few
molecules like PD123319 [16,17] and EMA401 [18] are in clinical trials
but treatment is limited due to poor efficacy and unfavourable side
effects.

Expression of AT2 receptors is predominant in distinct brain areas
such as the locus coeruleus and [19] and the amygdaloid nucleus [20].

Though, its expression declines after birth, it is expressed at low levels
in the normal adult cardiovascular system, adrenal gland, kidney,
brain, uterine myometrium and skin [21]. AT2 receptor Knock-out
(KO) mouse shows higher blood pressure than wild type animals
without any growth abnormalities. Developmental apoptosis of
mesenchymal cells is not altered in the AT2 receptor KO mice but
increased risk for renal diseases as well as inhibition of pressure
natriuresis, vascular hypertrophy and exacerbation of heart failure
were observed [22-24]. Beneficial AT2 receptor functions from the
knock out mouse study could be protective counteracting blood
pressure regulation by the AT1 receptor. Pharmacological modulation
of AT2 receptor also suggests its role in antidiuretic and antinatriuretic
functions. Studies on genetic polymorphism of this gene revealed their
association with mental retardation, ventricular structural changes,
metabolic disorders, congenital urinary tract abnormalities etc. [1].
The intra signal transduction process of AT2 receptor is unique among
the GPCRs and is different from the AT1 receptor mediated signalling.
AT2 receptor signalling involves G-protein, protein phosphatases
[Dual specificity protein phosphatase 1(MKp-1), Protein phosphatase
2A (PP2A), Src homology phosphatase-1 (SHP-1)] and scaffolding
protein, nitric oxide/cGMP ion channel protein and ion channel
protein and constitutive activity (ligand independent activity of AT2
receptor) [1]. The pathological and physiological roles of AT2 receptor
include regulation of vascular response, cardiac growth response and
fibrosis response in other tissues. The development of agonists and
antagonists against AT2 receptor for therapeutic use is crucial and in
early stage, hence extensive studies are warranted.

AT3 receptor: Although existence of AT3 receptor subtype
displaying unique pharmacology was reported [25,26] no literature is
available confirming the existence of a distinct gene for this receptor in
humans to date.

AT4 receptor: High affinity membrane binding sites for the [125I]
AngIV peptide was termed as AT4 receptor in 1995 [27]. They are
concentrated predominantly in brain and to different extents in heart,
kidney, adrenals and blood vessels. This receptor does not bind the
analogues of AngII, [Sar1]AngII, [Sar1,Ile8]AngII, Sar1,Ala8]AngII,
Ang(1-7), AngII and the non-peptide inhibitors of AT1 and AT2
receptors losartan, PD123177 and CGD42112A [1]. Histo-
autoradiographic mapping studies of AngIV binding site determined
the higher concentration of its binding in brain which was then linked
to regulation of cognitive sensory and motor functions. Albiston et al
(2001) identified [125I] AngIV peptide binding protein as insulin
regulated amino peptidase (IRAP, EC 3.4.11.3 also called LNEP for
Leucyl-N-exopeptidase) [28] which is a type 2 TM protein of the
gluzincin amino peptidase family [29,30].

Several independent observations in recent publications have cast
some doubt regarding the identity of IRAP as the only AT4 receptor.
For instance, peptide antagonists of AngIV binding sites and small
molecule inhibitors of IRAP activity produced divergent physiological
effects [31,32]. Moreover, IRAP knockout mice were not altered in
their cognitive behavioural response to AngIV. Several other type II
membrane proteins have been reported as potential AT4 receptor
candidates [33-35]. Therefore, understanding etiology and treatment
of memory dysfunctions associated with dementia and degenerative
diseases through AT4 receptor is significantly delayed.

MAS: MAS is a candidate receptor for endogenously produced RAS
peptide hormone Ang (1-7) [36]. It remained orphan until the
neuropeptide FF was shown to activate G-protein signalling through
this receptor. The action of Ang (1-7) through MAS is proposed to be
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production of arachidonic acid and activation of nitric oxide synthase
which may not involve cAMP, IP3 and calcium signalling. MAS
exhibits highest expression in brain and testis. Becker et al. (2007) has
observed that MAS expression in brain regions is important for
cardiovascular regulation [37]. Altered heart rate and decreased blood
pressure was observed in KO mice and it was thought to be due to
imbalance in the nitric oxide (NO) and reactive oxygen species (ROS)
[1]. In vivo studies show possible protective role of MAS through Ang
(1-7) mediated activation making it an enticing drug target. The
pathophysiology of MAS may be related to heart, kidney, vasculature,
brain and reproductive organs. Above conclusions are made from in
vivo physiological and mouse KO studies. Although independent
research groups supported some of the findings, extensive
pharmacological studies are required to consolidate the conclusion
that MAS is Ang (1-7) receptor as well as elucidate its ligand activation
mechanism.

Overall remark
The enormous development in angiotensin receptor research has

been addressed on the structure, pharmacological, signalling,
physiological and pathophysiological state. Study on AT1 receptor
dominates in the field of angiotensin receptor research including the
recent solving of its crystal structure which opened new avenues for
structure based drug discovery and development. In the near future,
we anticipate establishment of structures of other angiotensin
receptors. However, research on other angiotensin receptors is in
nascent state and extensive study is warranted.
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