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The endocannabinoid system is comprised of the CB1 and CB2 
receptors, the naturally occurring endogenous ligands, anandamide 
(AEA) and 2-arachidonyl glycerol (2-AG); and the enzymes 
involved in their synthesis and degradation. The enzyme fatty acid 
amide hydrolyase (FAAH) preferentially metabolises AEA, and the 
related N-acylethanolamines, N-palmitoylethanolamide (PEA) and 
N-oleoylethanolamide (OEA). While PEA and OEA do not have 
activity at CB1/2 receptors, they are capable of enhancing AEA signaling 
by competing with AEA at the catalytic site on the FAAH enzyme. 
All elements of the endocannabinoid system are widely and densely 
expressed in the mammalian immune system and brain and as such 
represent an important therapeutic target for a number of peripheral 
and central inflammatory disorders [1-3]. 

 In vitro and in vivo data, has demonstrated that cannabinoid 
agonists modulate immune function and inflammatory responses in 
several preclinical animal models including those association with pain, 
colitis, sepsis and neurodegenerative disorders [4-7]. For example, data 
from our lab has demonstrated that the potent cannabinoid agonist 
HU210 attenuates increases in pro-inflammatory cytokine levels, 
in particular interleukin(IL)-1β, both peripherally and in discrete 
brain regions, observed following administration of the endotoxin 
and toll-like receptor 4 agonist lipopolysaccaride (LPS) [5]. The anti-
inflammatory effects of HU210 were shown to be partially mediated by 
CB1, but not CB2 receptors. Overt psychotropic effects are associated 
with the administration of potent synthetic CB1 agonists and as such 
enhancing endocannabinoid tone has been proposed as an alternative 
means of activating cannabinoid receptors without such concomitant 
effects. In vitro studies suggest that endocannabinoids elicit anti-
inflammatory effects comparable to those of exogenous cannabinoids. 
Increasing AEA tone, either directly or via inhibition of its degradation 
or uptake, has been demonstrated to reduce levels of pro-inflammatory 
cytokines and inflammatory mediators such as tumour necrosis factor 
(TNF)α, IL-1β and nitric oxide in response to immune stimulation in 
several in vitro systems [8-14]. In many cases, the attenuation of pro-
inflammatory cytokine responses is paralleled with an increase in the 
production of anti-inflammatory cytokines, such as IL-10 [12,15]. 
Recent data indicates that neuroprotective effects of AEA may be 
mediated by IL-10 induced increases in the expression of CD200 [16], a 
membrane glycoprotein expressed on neurons that suppresses immune 
activity by interacting with its receptor on microglia. However, it 
should be noted that enhancing AEA tone has also been demonstrated 
to enhance IL-6 levels in astrocyte culture preparations [10,17]. In 
addition, genetic deletion of FAAH in astrocytes exacerbated their 
inflammatory phenotype against β-amyloid [14]. Thus, AEA may 
attenuate or enhance inflammatory reactions depending on the 
conditions under investigation. In vitro data has provided us with an 
understanding of the molecular and cellular mechanism underlying the 
effects of AEA, effects which have now been substantiated in several 
in vivo models. Data from our group and others have demonstrated 
enhanced AEA levels in several animal models including those 
relating to autism [18], inflammatory and neuropathic pain [19,20], 
Parkinson’s disease [21] and Multiple sclerosis [22], disorders with a 
well characterized inflammatory component. Data from our group 
has provided some of the first evidence of an immunomodulatory role 

for enhanced anandamide tone in vivo following systemic bacterial 
endotoxin administration. We demonstrated that inhibition of AEA 
degradation following administration of the FAAH inhibitor URB597, 
potentiated LPS-induced increases in TNFα levels in plasma [23]. 
Similarly, systemic administration of the endocannabinoid re-uptake 
inhibitor AM404, augmented LPS-induced increases in TNFα levels 
while concurrently attenuating plasma IL-1β and IL-6 levels [23]. On 
investigation of the receptor mechanisms underlying this effect, we 
revealed that the AM404-induced attenuation of IL-1β was prevented 
by antagonism of the CB1 receptor. In comparison, antagonism of CB1, 
CB2, PPARγ and TRPV1 receptors attenuated the AM404-induced 
potentiation of TNFα following LPS administration [23] indicating 
possible involvement of one or all of the aforementioned receptors 
in this response. In accordance with this data, De Laurentiis and co-
workers demonstrated that AEA activation of hypothalamic CB1 
receptors facilitates LPS-induced increases in plasma TNFα levels [24]. 
Examination of the effects of AEA on central inflammatory responses has 
revealed that enhancing AEA tone attenuates microglial activation and 
pro-inflammatory cytokine expression in several neuroinflammatory 
animals models [15,25-27]. Recent data from our lab has demonstrated 
that systemic administration of URB597 enhances central AEA 
levels and attenuates LPS-induced increase in IL-1β expression while 
concurrently augmenting suppressor of cytokine signalling (SOCS)-
3 (and tended to do so also for IL-6) expression in the hypothalamus 
[28]. AEA modulation of endotoxin-induced cytokine changes in 
the hypothalamus may ameliorate the associated sickness response, 
including changes in body temperature, hypophagia, hypothalamic-
pituitary-adrenal (HPA) axis activation and hyperalgesia. Recent 
evidence has demonstrated that AEA attenuates LPS-induced fever and 
hypophagia [29], most likely via modulation of hypothalamic cytokine 
expression. Furthermore, central AEA has been shown to increase, 
while CB1 receptor antagonism attenuates, LPS-induced hypothermia 
[30], further demonstrating a role for AEA-CB1 in modulation of 
thermal responses to systemic inflammation. Increasing evidence 
demonstrates that endocannabinoids act to inhibit stress-induced HPA 
axis activation [31]. Our data demonstrated that enhanced AEA tone 
following URB597 failed to alter LPS-induced increases in plasma 
corticosterone levels [28]. Hypothalamic TNFα may underlie the LPS-
induced increase in plasma corticosterone, an effect not altered by 
URB597. In addition, pharmacological and genetic FAAH inhibition 
has been shown to reduce LPS-induced nociceptive behaviour tactile 
allodynia, oedema and associated increases in IL-1β and TNFα levels, 
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effects attributed to AEA activity at CB1 and/or CB2 receptors [32,33]. 
While the immunomodulatory effects of FAAH inhibition have been 
attributed primarily to AEA activation of CB1 receptors, it is worth 
noting that associated changes in N-acylethanalomines may account, 
at least in part, for some of the non-CB1/2 receptor mediated effects 
observed.

In conclusion, increasing evidence support an important role for 
AEA in modulation of (neuro) inflammatory responses to endotoxin 
exposure. Given the lack of psychotropic effects and abuse liability 
associated with FAAH inhibition, modulation of AEA tone via this 
means represents an important therapeutic target for inflammatory 
disorders.
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