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Introduction
Network analysis has been applied widely, providing a unifying 

language to describe disparate systems ranging from social interactions 
to power grids. The notion of complex networks has become more and 
more popular for research in physics, engineering, biology and even 
social sciences [1-6]. A network can be viewed as a graph consisting 
of nodes connected by edges according to certain rules, in which the 
nodes and edges typically represent some physical, biological or social 
entities and their relationships, respectively [7,8]. Graph representation 
has been applied in many fields of scientific studies. For example, the 
Internet is a complex network of routers and computers linked by 
various physical or wireless links; fads and ideas spread on the social 
network, whose nodes are human beings and whose edges represent 
various social relationships; the World Wide Web is an enormous 
virtual network of Web pages connected by hyperlinks. These systems 
represent just a few of the many examples that have recently prompted 
the scientific community to investigate the mechanisms that determine 
the topology of complex networks [9,10].

Systems biology aims at investigating cellular networks by 
combining experiments, mathematical modeling and computer 
simulations. One fundamental prerequisite for the construction of 
cell models is the analysis of metabolic and signaling networks. The 
description of such systems comprises both the network structure 
and the reaction kinetics: only if both are known, stationary states, 
time courses and responses to parameter changes can be computed. 
Complex network theory has also been employed in molecular biology, 
but so far the resulting networks have only been analyzed statically 
[11-17]. In this work, we present the dynamics of biochemical reaction 
network on the molecular-scale. The rest of this paper is organized 
as follows. Section 2 gives the background knowledge of biochemical 
reaction and presents the problem formulation. In section 3, the 
Biochemical Reaction Model (BRN) is proposed and the algorithm for 
the biochemical reaction network is presented. Section 4 contains the 
simulation results for the biochemical reaction network in the initial 
state and equilibrium state, and the analytical comparisons between the 
BRN model and the proposed model. Finally, conclusions are drawn 
in Section 5.

Problem Statement
In this paper, we shall be concerned with the following general 

problem: N biochemical species or proteins are distributed randomly. 
Some species may have a higher probability to interact, while some 
other species may have a lower probability to interact. The interaction 
probability for any two biochemical species is determined by the 
distance between them, as well as their activities. The biochemical 
species will be re-arranged after their interaction. Given the original 
distribution of these biochemical species and the rules of evolution, 
what are the relationships among these biochemical species at any later 
time?

The concentration of species (protein) is an important index 
in biochemical reaction. In traditional literature, the concentration 
is defined as n/v. Here n is the amount of protein, which is always 
changing in biochemical reaction system, and V is the volume which 
is often fixed. In this model, we define the relative concentration of the 
protein i as

r
r

kC
V

= (1)

Where, k is a constant. We call Vr the relative interaction volume of 
protein A and B. Vr is defined as

( )AB
r
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dV f
d

= (2)

Where d(A, B) is the distance between protein A and B and dave the 
average distance. It is easy to find that the relative volume is varying, 
which will induce variation of protein concentration.
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Complex network theory has recently been used in System biology, but so far the resulting networks have 

only been analyzed statically. In this work, the biochemical reaction network (BRN) model is proposed based on 
the complex network theory and the dynamics of the network is analyzed on the molecular-scale. Given the initial 
ate and the evolution rules of the biochemical network, we demonstrated how the biochemical reaction network 
achieving homeostasis. The evolution of the biochemical reaction network is studied in perspective of average 
degree and edges. Comparing with the network features of random graphs, the network features from the proposed 
BRN model can reveal more biological sense. 
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 We demonstrate the evolution of the biochemical reaction system 
via simulation. Each node here indicates one biochemical species or 
protein. Two nodes are connected when they start to interact.

Biochemical Reaction Network Model
In this section, we propose the biochemical reaction network (BRN) 

model based on the random graph theory. We study the dynamics of the 
biochemical reaction network by analyzing the evolution of the average 
degrees and edges. The system equation describing the relationships 
among these proteins is given by
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(3)

Where, xi
n denotes protein i in the n state and fij denotes the transfer 

function between protein i and j.

The evolution of the biochemical reaction network is governed by 
the following rules:

(1) Start with N isolated nodes that are distributed randomly.

(2) Calculate the interaction probability for any two biochemical
species. The interaction probability can be expressed as

max

( , )

( , )
rV i j
VP i j e βα

−

=
                    (4)

Where, α, β are biochemical parameters determined by the activity 
of biochemical species.

We define

34( , )
3r ijV i j dπ= (5)

And

3
max max

4
3

V dπ= (6)

Where, dij indicates the distance between node i and node j. 
(1<=i<=N, 1<=j<=N). dmax indicates the maximum distance between 
node i and the origin of coordinates.

(3) Compare the interaction probability p (i,j) with r. If p(i, j)>=r,
node i and node j is connected .

(4) Break the connection between node i and node j and reset the
location of node i and j.

(5) Repeat step 2-4 until the equilibrium state of biochemical
interaction system is achieved.

Simulations and Analysis
Prior to studying the topological properties of the biochemical 

reaction network, we briefly define the following feature parameters:

• Average node degree, denoted by <K>, is the average degree of
all nodes in the network; here and <K> represents the average
operator.

• Average clustering factor, denoted by <C>, is the average
percentage of adjacently connected nodes.

• Average path length, denoted by <L>, is the average number of
steps along the shortest paths for all possible pairs of as biological 
adaptation and calcium homeostasis in mammals [18]. In this 
section, we demonstrate how the biochemical reaction network 
(BRN) achieving equilibrium state by studying the evolution of 
average degrees and edges.

The biochemical reaction in real-world is a stochastic process. 
A new series of random numbers is needed to simulate the real 
biochemical reaction network. Figure 1 and 2 show the evolutions of 
the average degrees and edges, respectively.

Figure 1: The evolution of average degree: α=0.15, β=0.25, N=100.
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Figure 2: The evolution of edge. α=0.15, β=0.25, N=100.
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The equilibrium states shown in Figure 1 and 3 demonstrate the 
real homeostasis in biochemical system. In the real biochemical system, 
the average degree and the edges always vary on a small-scale even if 
the system achieves homeostasis.

From Figure 1 and 2, we can find that the average degrees and edges 
are not increasing monotonically. Figure 3 can gives us a deeper insight 
into the evolution of the node degrees before the system reaches the 
equilibrium state. Figure 3 shows that the probability of high degrees, 
such as k=50, becomes larger and larger as the cycling numbers 
increases, which is in conformity with the conclusion of Figure 1 and 
2. And this is also in accordance with performance of the biochemical
reaction system in real world: as homeostasis is closer and closer, the
interaction frequency becomes higher and higher.

Figure 4 shows the degree distribution in the initial state, 
while Figure 5 shows the corresponding degree distribution in the 
equilibrium state. The parameters used in the simulation are α=0.15, 
β=0.25, N=100.

Comparison with the Original Random Graph
In this section, the comparisons between the original random 

graph model and the proposed BRN model are given. Basic network 
features, namely, degree distribution, total number of edges, average 
node degree, average clustering factor and average shortest path, are 
examined respectively.

Table 1 shows the basic network features of the original random 
graph and BRN, respectively. From Table 1, we can find that BRN has 
lager average degree, clustering coefficient and edges than those of the 
original random graph. However, when it comes to the average path 
length, Things reverses. This demonstrates the superiority of biological 
evolution. Figure 6 and 7 show the probability distribution of degrees 
for the original random graph and BRN, respectively.

Conclusions
There are two recent developments in systems biology: first, 

biochemical networks can be easily extracted from databases; second, 
attempts are made to use this knowledge for large-scale or whole-
cell modeling without caring about individual reaction kinetics. To 
challenge these approaches, we attempted to extract information about 
biochemical network dynamics from the network structure, with very 
restricted knowledge about the individual reaction kinetics.

Figure 3: The probability distribution of node degrees. α=0.12, β=0.28, 
N=100.
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Figure 4: The degree distribution of the initial state.
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Figure 5: The degree distribution of the equilibrium state.
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α=0.12  β=0.22 Original 
random graph

BRN (Initial 
state)

BRN 
(Homeostasis)

Total number of edges 198 402 614
Average node degree <k> 324 8.1 11.5

Average clustering factor <c> 0.05604 0.083947 0.098671
Average path length <L> Inf 2.6072 2.3841

α=0.2   β=0.3 Original 
random graph

BRN (Initial 
state) BRN (Homeostasis)

Total number of edges 452 586 831
Average node degree <k> 8.42 11.32 16.53

Average clustering factor <c> 0.0837 0.1295 0.1537
Average path length <L> 2.3251 2.0594 1.7358

α=0.38   β=0.28 Original random 
graph

BRN (Initial 
state) BRN (Homeostasis)

Total number of edges 934 1451 1983
Average node degree <k> 18.625 26.83 37.31
Average path length <L> 1.6735 1.4831 1.2492

Table 1: Feature parameters of original random graph model and BRN model.
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In this paper, The BRN model is proposed. The biochemical reaction 
system is studied using the random graph theory. The dynamics of the 
BRN is studied by analyzing the evolutions of some basic network 
features, such as average degrees and edges. The network features of 

BRN are demonstrated in both its initial state and equilibrium state. 
Furthermore, we compare the BRN with the original random graph 
by analyzing their network features. Our work provides a possible 
direction to study biochemical reaction system using complex network 
theory.
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Figure 6: The distribution of node degrees: original random graph.
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Figure 7: The distribution of the node degrees: BRN.
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