
Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Open AccessResearch Article

Journal of Aeronautics & Aerospace
EngineeringJo

ur
na

l o
f A

er
on

autics & Aerospace Engineering

ISSN: 2168-9792

Rathina Kumar et al., J Aeronaut Aerospace Eng 2016, 5:2
DOI: 10.4172/2168-9792.1000167

Keywords: Autopilot; Mode transition logic; Semi-formal methods;
Stateflow; Simulink design verifier; Model advisor; RTR; Reactis;
Validator; Tester

Introduction
The complex system of Aircraft, such as Digital Autopilot system,

Flight management system and Electronics map displays are used to
reduce the workload of pilots and gave better information, improving
the flight performance and improve situation awareness. In this avionics
architecture the autopilot system have more add on compared to flight
management system and it never integrated into a single system. The
elements of current avionics system are distributed across the mode
control panel, the control display unit and primary flight display which
include flight mode annunciations. The autopilot has different types
of modes such as heading select, heading hold, vertical speed hold. A
mechanical, electrical and hydraulic device of the aircraft is used to
assist the autopilot operation. The autopilot logic is used to guide an
airplane with minimal or no assistance from the pilot [1].

The autopilot is designed by using complicated mode transition
logics. The designer spend more time to design the mode transition
logic and their safe transitions and the designs are more strengthened
by using verification and validation techniques such as assertions, safe
states and safe transitions. The incorrect mode transition logic has led
to accidents in the past year. The accidents are overcome by improving
the Mode transition logic analysis [2,3].

Mode confusion occurs when the pilot believes the current mode
is different from actual mode but it’s actually in correct mode instead
of the correct mode pilot change inappropriate mode. Mode confusion
can also occur when pilot does not understanding the behavior of mode
transition logic and pilot has poor knowledge about the mode transition
logic. Advancement in digital avionics system has accounted for much
of the improvement in air safety seen over the last few decades. At same
time the growing complexity places in the system and increase the risk
of the mode transition logic. To fly commercial fly today, the pilots must
be a master in several complex, dynamically interacting system and
should know operating at different levels of automation [3].

In safety critical applications become higher safety and functionality
assurance for using the formal method based techniques according
to the civil aircraft standard RTCA DO178B [4]. This RTCA DO
178B standard is providing the guidelines for design, development,
verification and validation of airborne software in safety critical system.
A formal verification technique is a mathematically based languages
tools and techniques to formally model the design based on the project
requirements. These formal methods technique is used to analyze the
system behavior for all the possibilities and converge of the system [5,6].

 Model based design and development is used to create the model
at each and every stage of the software lifecycle and automatic model
transformation for example from code to model. It is well defined
method and produces more sustainable software and it is give graphical
notations and good abstracting details. This technique has been used
in automated high speed train and car autopilot and now being used
for aerospace domain for demonstrating the functional and safety
properties [7,8].

Semi formal method is technique to analyze the system in model
level and code level and then design the computerized version of it.
The computerized system having the same structure and functions as
we expected and it satisfied the requirements according the standard
guidelines [5,6].

*Corresponding author: Rathina Kumar V, Department of Aerospace, Electronics
and System Division, CSIR-National Aerospace Laboratories, Bangalore, India,
Tel: +91-80 25086019/20; E-mail: rathina2020@gmail.com

Received March 22, 2016; Accepted April 25, 2016; Published April 28, 2016

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode
Transition Logic of Automatic Flight Control System using Semi-Formal Approach.
J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Copyright: © 2016 Rathina Kumar V, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Abstract
Autopilot system is a highly critical avionics system in modern aircraft as it steers the aircraft automatically. The

autopilot is a highly complex system driven by a complex logic and is one of the major reasons for the accidents
in automated airliner. The autopilot logic consists of the mode-transition logic which in automated mode steers the
aircraft based on the aircraft aerodynamics. In the automated mode the correct and efficient working of the mode-
transition is highly critical; hence a high assurance approach is required to analyze the logic for its functionality and
performance.

In this paper, we present a semi-formal method based approach to analyze and validate the Mode-Transition
Logic (MTL) for an indigenously developed commercial aircraft in the vertical and lateral directions. The MTL is
analyzed and validated for its correct, complete, and reliable functionality and operation using Stateflow. The
modeled MTL logic is validated for the allowed transitions based on the input combinations against the requirements
for functionality and safety. The outcome of the approach shows encouraging results with respect to assurance in
functionality, performance and safety in comparison to the conventional manual approach of testing. Similar semi-
formal based approach can be used to reduce the design effort in the design and development of complex system
designs as compared to the manual analysis.

Analyze the Mode Transition Logic of Automatic Flight Control System
using Semi-Formal Approach
Rathina Kumar V*, Nanda M and Jayanthi J
Department of Aerospace, Electronics and System Division, CSIR-National Aerospace Laboratories, Bangalore, India

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 2 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

The amount of software has increased significantly over the last
years and therefore, the verification of embedded software has become
of fundamental importance. The most commonly used approaches to
verify embedded software are based on co-debugging or co-simulation,
which have the coverage problem. Formal verification assures complete
coverage but is limited to the size of module that can be verified. In
this paper, we present a new semi-formal verification approach in
order to verify temporal properties of embedded software, based on
the combination of simulation and formal verification approaches.
The semi-formal verification approach can be used to overcome the
drawbacks of both dynamic and static verification. This approach
combines the benefits of going deeper and covers exhaustively the state
space of the system. The effectiveness of the semi-formal approach
provides the foundation to use this approach in validating the
functionality & performance of complex aircraft logic [5,6]. Earlier this
logic was validated using conventional approach consisting of reviews,
tests at code level, system level and aircraft level. This approach is not
only very laborious but also has the drawback in detecting the logic
flaws earlier in the phase [9-12].

MTL is a discrete event system with states, inputs, and outputs which
is usually modeled as a finite state machine where the states represent
the modes. MTL system receives inputs and based on the inputs and
the current mode, transits to another mode and produces an output.
The outputs are used to command the control surfaces of the aircraft
appropriately. Each such computation is referred to as a software cycle
[13-15]. The mode and their transitions in the current research have
been represented in tabular forms. Mode Transition Logic (MTL) is
a design module used by the flight director of an autopilot to switch
modes of flight control. The possible transition values from a current
value of a state variable are specified in the State Transition Matrix
(STM). The actual transition of a state variable from the current value
to a new value is allowed when the condition(s) given in the Condition
Matrix (CM) are satisfied. Control modes are switched based on the
events that are received as inputs or commands to the autopilot [16-18].

In this paper, we implement the MTL vertical and lateral modes
using Simulink Stateflow for an indigenous civil aircraft. The modes and
logic concerning lateral, vertical modes transition, mode possibilities in
lateral and vertical modes are validated at the design level for functional,
performance, and safety properties. Comparison of the proposed
approach with the conventional approach shows the improvement in
the process in understanding and validating the complex logic at the
model level rather than at the code level

Literature Survey
The safety, functionality and performance validation and

verification of the complex system has always been challenge. Complex
logic, complex systems are validated using conventional techniques
such as simulation, testing and reviews with bottom-up approach. With
the technological evolution, the time from concept to certification of a
system is reducing as the demand for these systems are increasing. For
example the design to certification of Airbus A350 XBW was in a short
span of time [19].

In safety critical domain such as automotive, railways, space and
aeronautical the new technologies are complex performing multi-
functions. For example car autopilot system, intelligent train control
system, electrical flight control system and cyber rail [5,6]. To ensure
that these systems perform the functionality as per the requirements
of time and safety, lot of analysis is to be performed. Mathematical
and graphical based approaches are proving to be more effective than
textual based approach. Formal and Semi-formal methods are gaining
popularity in validating complex system/ software logic.

Development of the autopilot, the array logic based technique
has been used to reduce the design effort. It is easily understood and
provides a very concise way of specifying a large number of transitions
in simple tabular column. Vertical and lateral modes of the autopilot
have been designed using mode transition logic and the technique has
been extended to cover the navigation and approach modes [2,3]. All the
possible mode transitions in the presence of external or internal event
and performance criteria are presented in the subsequent sections. The
mode and their transitions have been represented in tabular form called
as array logic based technique.

One of the mode transition logic was analyzed by using formal
method approach in the name of the paper is mode confusion analysis
of a flight guidance system using formal methods and the main author
is Anjali Joshi. In this paper they used NuSMV and theorem proving
technique to analyze the mode confusion logic [6]. But here we are
checking all the state of mode transition logic in semi formal approach
using matlab simulink/stateflow tool suite.

In the modern autopilot systems having complex components
that are detecting and avoiding collisions with other objects and allow
aircraft to land in situation where a human cannot see the runway
environment. In earlier days several accidents and incidents have
been reported because of the autopilot failure. For example in 1983
the Korean Air Lines Flight 007 flying from Anchrage to Seoul. This
aircraft deviated more than 200miles from it path (soviet territory) and
got shot down killing the crew and the passengers. The aircraft accident
analysis reported navigational failure as the cause of the air crash. It
was found that the flight was initially in heading mode, later the pilot
either forgot to select the inertial navigation system or otherwise the
pilot might activated but system got never activated. The autopilot goes
to inertial navigation mode when these following two conditions are
satisfied. The aircraft path and the predefined path must be close and
the distance between these two paths is within 7.5 miles. These two
conditions are continuously checked by software it is called guard.
The guard is a logical statement which is used for mode transition of
aircraft. The mode is changed only the conditions are true [2-3]. In this
case the mode could not be activated, which could be due to improper
implementation of the MTL logic or pilot error or system error.

Lateral modes and logic concerning lateral mode transition
are less complex compared to the prevailing methods for autopilot
design [8]. Various mode possibilities of lateral mode transition in an
autopilot is mentioned along with specification criteria’s that bound
these transition and these possible transitions were given a frame work
using MATLAB software. System decomposition, abstraction, and
distribution lead naturally to sub problems that can be addressed using
formal methods and tools, such as mathematical modeling, control law
synthesis, and control implementation verification. We classify these
methods and tools, which rely heavily on mathematical formulations of
the underlying problem.

Approach
The novel approach proposed works on the solid foundation of the

conventional approach. The tabulated MTL and MTL simulation blocks
are used as the reference for establishing the semi-formal approach.
This is done to ensure the correct implementation of the semi-formal
methodology for analyzing the complex MTL algorithm. Figure 1
show the technique which is followed. Simulink stateflow is used to
implement the MTL logic. The output of the stateflow is compared
with the expected output using conventional manual approach. The
comparison proves the efficacy of this approach in terms of ease of
implementation, ease of understanding, and the improvement in the
process.

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 3 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Figure 1: Approach used for this MTL analysis.

Figure 2: Flow of semi-formal method approach.

The inputs for the semi-formal method based approach are MTL
requirements, MTL tables, and software code, as an input. These inputs
are translated into the stateflow. The stateflow structure is similar to the
code structure to maintain the semantic translation from code to model
level. Stateflow standards are followed in order to generate compact auto

code. Stateflow model is done according to the MAAB guidelines [20].
The equivalence checking of the MTL requirements is checked for the
stateflow by mapping the MTL requirements to the stateflow.

To analyze the robustness of the stateflow design, test-scenarios

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 4 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Figure 3: Software life cycle Logic of MTL [3].

Figure 4: State flow model of MTL.

generated at code level are translated to model-level. The test outputs
at the model level are compared to the code level test output. This
comparison provides the correct semantic translation of the code to
model.

Figure 2 shows the details of the implementation of the approach
for the MTL logic. The MTL model using the stateflow is generated
based on the manual code structure and the MTL tables for inputs,
outputs, events, conditions and transitions. Model inputs are events

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 5 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Figure 5: State flow chart of MTL.

Figure 6: State flow chart of vertical mode.

Figure 7: State flow chart of altitude select arm.

Figure 8: State flow chart of lateral mode.

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 6 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

from ARINC 429, and discrete sources which are acquired from
external sensors in the aircraft. State transition logic is generated based
on the pre-defined inputs, events, conditions, and allowed transitions.

Validation of the developed stateflow [version 8.1,] is performed
at the model level as well as at the code level. At model level, the test
scenarios to validate the model are translated from code level test
cases. Test cases generated are imported to the matlab workspace and
the outputs are analyzed with reference to the expected output [11].
Simulink design verifier [version 3.5,] is also used to generate the test
scenarios and capture the test outputs to check the model functionality,
performance, safety and stability. These outputs are compared to
expected output [12] for the correct implementation of the MTL logic.

Validation at the code level is done by generating the autocode
of the MTL stateflow. The in-house and approved code standards are
used to generate a compact and safer autocode. Autocode generated
from stateflow are imported to RTRT (Rational Test Real Time) tool
suite, Version 7.5. Test cases generated for manual code are used for
the autocode and analyzed for code functionality, code compactness
and coverage. RTRT tool generates the coverage report. In case of safety
critical software developed for highest criticality i.e., Level A [3], code
is tested for 100% MCDC (modified condition decision coverage)
coverage. Model level robustness is validated by importing the
autocode into Reactis tool suite [13]. Reactis tool suite provides three
types of analyses: Model Coverage Analysis, Reactis Tester and Reactis
Validator. Test-cases for the autocode are generated automatically. The
coverage report of Reactis Tool suite is compared with the model level
and RTRT level test report. All three coverage reports are used in the
validation of the MTL logic.

Implementation of MTL using Stateflow
Autopilot mode transition logic is implemented using MATLAB

Stateflow. MTL inputs, conditions, and outputs are taken as a Boolean.
Transitions are allowed only if the conditions are satisfied.

MTL logic is implemented using a hierarchical approach from top
to bottom using a sequential implementation of the logic as:

» Top-model : provides the MTL architecture

» Vertical Mode : provides the logic for entry, exit of vertical
modes for the autopilot

» Lateral Model: provides the logic for entry, exit of lateral
modes for the autopilot

Figure 3 describes the software logic of the MTL which is to be
translated into the stateflow model. Transition matrix guides the
change of state on receiving an input from external interfaces. In order
to successfully execute a state change on receipt of an input, certain
conditions have to be met which is dictated by a condition matrix.
Conditions check for values of certain inputs to be within specified

ranges and if the condition is met, state is changed as per the transition
matrix. State change also results in an output, as dictated by the output
matrix. This output is used to command the flight control surfaces.

Top level model
The top-level model provides the MTL architecture. The control

flow of the MTL logic is designed at this level. Figure 4 shows the top-
level model of the autopilot MTL. Figure 4 consists of states, events and
outputs. The state is a uniquely defined mode variable which can take
certain discrete values. The state changes in response to external event
and the respective conditions.

During the autopilot, when an event is pressed on the Autopilot
Computer and Mode Selection Panel (ACMSP), the control (control
matrix) flow checks the pre-defined conditions (condition matrix) for
the MTL. If the condition is allowed then the transition (transition
matrix) takes place to the allowed state, else the present state is retained
and provides the respective output.

Figure 5 depicts different aircraft modes: Vertical Mode (VM),
Altitude Select Arm (ALSA), Lateral Mode (LM), Autopilot (AP), Soft
Ride (SR) and Flight Director (FD). This is the complete state diagram
of MTL logic and it contains all the states, conditions and events as
per the given inputs. Each of the state is explained separately in the
following sections.

Vertical mode: The basic vertical mode is the (Pitch Altitude Hold)
PAH. The transition to the higher level modes like the ALT, SPD, and
VS Hold takes place when thecorresponding events conditions are
satisfied. Figure 6 shows the state transition chart of vertical modes. The
transition to the next state depends on the Event as well as Condition(s).
If no event takes place the present state is maintained. The allowed
modes are Vm_Dis, Spd, Vs, Alt, and Vm-Sync.

Altitude select arm: The Altitude Select arm (Alsa) is a compound
vertical mode allowing the pilot to climb or descend to a pre-selected
altitude and hold that altitude. The Alsa is armed by pressing the Alsa
button on the ACMSP. Alsa gets engaged only when a specific condition
is true, else remains disengaged. Figure 7 shows logic and allowed the
state transition state for altitude select arm Alsa. It has only two modes:
Alsa_arm, and Alsa_off.

Figure 9: State flow chart of autopilot.

Figure 10: State flow chart of soft ride.

Figure 11: State chart of flight director.

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 7 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Figure 12: Imported inputs in Matlab environment.

Lateral mode: The basic lateral mode is the (Roll Attitude Hold)
RAH. The transition to the higher-level modes like the HH Hold and
HDG Select takes place when the corresponding event and conditions
are satisfied. If no event takes place the present state is maintained.
Figure 8 shows the logic and the allowed state transition chart for lateral
mode. The allowed modes are: Lm_Dis, Hh, Hdq, and Lm_Sync.

Auto-pilot: The autopilot gets engaged only when the autopilot
button on the ACMSP is pressed where the transition from off-state to
on-state takes place, else the mode is in disengaged or off state. Figure 9
shows logic and allowed state transition chart for autopilot.

Soft ride: This mode is selected while encountering turbulence/
gusts in flight. On selecting this mode, any previously held higher
mode is dropped and the basic modes (PAH, RAH) are engaged with
the inner loop control law gains appropriately reduced to alleviate the
effect of external disturbances. Figure 10 shows the logic and allowed
state transition chart.

Flight director: Flight Director, FD, function computes the
reference commands for the AP function based on the pilot selection
of modes through the ACMSP and the aircraft motion parameters
obtained from the AHRS and ADCU. The FD also computes the
reference commands, which drive the steering bars on the EFIS for

Flight Director Guidance. Figure 11 shows the logic and the allowed
state transition chart.

MTL Model Design Validation
MTL model design validation was done at the model level, code

level and cross validated using third party tool. Validation at model level
is performed using the simulink/ stateflow environment. Validation of
the autocode generated from the model was done using a third party
tool.

Model validation using Simulink/ Stateflow environment

Matlab simulink/stateflow outputs: Simulink stateflow is validated
for the functionality and robustness by providing the test cases. The
test cases used for the manual code are imported from Excel to Matlab
workspace. Figure 12 shows the imported inputs from Excel to Matlab
workspace. In the matlab workspace inputs are given in particular
timed interval for that particular time and the outputs are displayed
in the same workspace. These outputs are used to compare with the
experimental results. Figure 13 shows the corresponding outputs as per
the imported inputs [20].

Figures 12 and 13 show the inputs and outputs for event 1 i.e., Bap,
with 7 inputs and 21 outputs. Time column in the inputs shows the

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 8 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

specific time at which the corresponding row of inputs loaded into the
model [21]. Other MTL modes are tested using similar approach.

Simulink design verifier (SlDV) [20]: Simulink Design Verifier™
uses formal methods to identify hidden design errors in models
without extensive simulation runs. It detects blocks in the model that
result in integer overflow, dead logic, array access violations, division
by zero, and requirement violations. For each error it produces, there is
a simulation test case for debugging. The Figure 14 is shows simulink
design verifier report for mode transition logic. The logic is executing
all the blocks of simulink/stateflow model. Totally 334 test cases have
been used to cover the MTL logic.

Figure 15 shows the model advisor report. Model is built in Matlab
Simulink/Stateflow Environment according to MAAB standard. Figure
16 shows the model advisor report of MTL. The report shows 10 fail
standard and 13 warning because of model is not connected with
hardware and internet to check the online resources with math work
technical team.

Model checking or model advisor is an automated approach to
verify that a model of a (usually concurrent, reactive) finite state
system satisfies a formal specification of requirements to the system.
In this approach how the system are behaving and generating the test
cases automatically to analyze the behavior of the model. Tools that

automatically perform model checking are called model checkers.

Rational test real time (RTRT) analysis

Rational Test Real Time is a cross-platform solution for component
testing and runtime analysis. It is designed for developers creating
complex systems for embedded, real-time and other cross-platform
distributed applications. This software helps you debug and correct
errors before they go into production code. RTRT resolve software
problems during the development phase - allows testing the components.
It can analyze the performance and reliability of the applications as run
on the host development system. Modeling the system in modeling
tool and generate the corresponding C/C++ code. This autocode was
imported into the RTRT environment and test cases are written as per
the requirements.

Figure 16 shows the 100% coverage of functions, functions and exits,
statement blocks, decisions, basic conditions, modified conditions,
multiple conditions in percentage. Figure 17 shows the report summary
of RTRT unit testing with zero failure. It’s totally having 212 test cases
to cover the auto code.

Model validation-rectis environment

Reactis offers model-based testing, debugging, and validation for
Simulink / Stateflow models. Reactis currently consists of three main

Figure13: Corresponding outputs in Matlab workspace.

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 9 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Figure14: Simulink design verifier report.

components: Reactis Tester, Reactis Simulator, and Reactis Validator
[21,22]. Reactis Tester automatically generates test suites from Simulink
/ Stateflow models of embedded control software. The test suites provide
comprehensive yet concise coverage of different test-quality metrics.
Each test in a test suite consists of a sequence of input vectors as well as
the responses to those inputs generated by the model. These tests may
be used for a variety of purposes, including [23-25].

•	 Implementation conformance.

The tests may be applied to implementations derived from models
to ensure conformance with model behavior.

•	 Model testing and debugging.

The tests may be run on the models themselves to analyze model
behavior and to detect runtime errors.

•	 Regression testing.

The tests may be run on a new version of a model to compare its
behavior to an older version.

•	 Reverse engineering of models from source.

Tests may be generated from models derived from legacy code in
order to check conformance between model and code. Reactis enables
to maximize the effectiveness of testing while reducing time and effort.

Reactis coverage: Figure 18 shows the MTL coverage report in
Reactis environment. Reactis generated test cases automatically and
executed the model and code satisfying the decision, conditions and
MC/DC 100% [21]

Reactis validator: Figure 19 is report for reactis validator analysis.
Reactis validator analysis is used to validate the simulink model in the
reactis environment and it shows the validator coverage report is 99%
is true [21].

Reactis tester: Figure 20 shows the report of reactis tester. Reactis
tester is testing the model as per the input assigned in the property and
generated the coverage report. The report shows the 99% of true in test
cases of the MTL logic. Those test cases are covering decision 100%,
Condition 100% and MC/DC 98%. Those test cases coverage report

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 10 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Figure15: Model advisor report.

Figure 16: Global coverage of MTL code.

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 11 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Figure17: Report summary of MTL code.

Figure 18: Rectis coverage report.
Figure 19: Rectis validator report.

is available in rectis .rst file. Figure 20 shows only the main coverage
report of Reactis tester [21].

Result Analysis
Table 1 consolidates the MTL validation result carried out

at model and code level. The MTL logic is implemented using
stateflow and autocode is generated for the stateflow. The

correct and complete implementation is validated using various
complementing techniques. At the model level, SlDV and Reactis
are used to validate the model as per the requirements. At the code
level, RTRT is used to validate the code. The report generated can be
used as artifact for the adherence to RTCA DO-178C certification
of complex logic.

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 12 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

Conclusion
One of the effective ways to implement the complex logic is by

means of formal methods. Semi-formal method based tools help in
visualizing, realizing and validating the complex logic. This approach
is more effective than the manual approach where the individual needs
to verify based on ones experience. The implementation and validation
of the complex MTL logic using semi-formal method approach
demonstrates this. As the implementation was carried out at the model
level, the semantic design flaws are uncovered earlier in the engineering
process. The understanding of such complex logics is better understood
using stateflow in comparison to tabular information. The proposed
approach provides methods to validate the MTL for its correct and
complete functionality. The traceability of the stateflow can be generated
to the requirements and code if required.

Work ahead is to perform the safety analysis of the MTL at the
model level. This will not only provide the functional robustness but
also safety properties of the logic at the model level. The Safety analysis
integration will provide the failure behavior information of the system.
The modified approach will integrate safety analysis to a integrated
model-based formal analysis of complex software designs.

The Simulink stateflow is an effective way to model the complex
logic of aircraft mode-transition-logic. In this paper the transitions
from one state to another using formal method has been described.
All the possible mode transitions in the presence of external event
and condition(s) are presented in the stateflow chart, which is easy to
understand, analyze, debug and generate source code.

The analysis of the MTL for its functionality & safety is performed at
the model level. The outcome of the approach is encouraging approach
to adopt semi formal methods in other safety critical application. The
proposed approach not only reduces the design effort but also provides
higher assurance in the design and functionality of the complex system
such as the autopilot. The model-level test cases generated using formal
techniques can be translated to the code test cases to ensure traceability
of code and model.

Acknowledgment

The authors thank Director, CSIR-National Aerospace Laboratories Bangalore
for supporting this work.

References

1. Boorman DJ, Mumaw RJ (2004) A new autoflight/FMS interface guiding design
principles.

2. Randhawa P, Mishra A, Jeppu Y, Nayak CG, Murthy N (2012) Mode transition
logic of a vertical autopilot for commercial aircrafts IX control instrumentation
system conference (CISCON-2012) :16-17.

3. Nair AS, Jeppu Y, Nayak CG (2013) Logic for mode transition of autopilots in
lateral direction for commercial aircrafts bonfring. Int J Man Machine Interface.

4. (1992) RTCA DO-178B Software considerations in airborne systems and
equipment certification RTCA Inc Washington DC.

5. Meenakshi B, Barman KD, Babu G, sehgal K (2007) Formal safety analysis of
mode transition in aircraft flight control system .

6. Joshi A, Miller SP, Heimdahl MPE (2003) Mode confusion analysis of a flight
guidance system using formal Methods.

7. Littegen G, Carreno V (1999) Analyzing mode confusion via model checking,
NASA langley research center, Hampton, Virginia 23681-2199,USA.

8. Degani A, Heyamann M (2000) Pilot-autopilot interaction: A formal perspective.
8th International Conference on Human – Computer Interaction in Aeronautics
:1-11.

9. El-Gendy H, El-Kadhi N (2005) Formal methods: Important experience and
comparative analysis. J Computational Methods In Sciences And Engineering
5: 235-247.

10. Lutz RR, Ampo Y (1996) Using formal methods for requirements analysis of
critical spacecraft software IEEE 1-6.

11. Ait Ameur Y, Boniol F, Wields V (2007) Towards a wider use of formal methods
for aerospace system design and verification. Int J Tools transfer 12:1-7.

12. Kuhn DR, Craigen D, Saaltink M (2003) Practical application of formal methods
in modeling and simulation. National Institute of Standards and Technology.

13. Kececi N, Halang WA, Abran A (2002) A semi-formal method to verify
correctness of functional requirements specifications of complex embedded
system.

14. Gavrilets V, Martinos I, Mettler B, Feron E (2002) Control logic for automated
aerobatic flight of a miniature helicopter. American Institute of Aeronautics and
Astronautics Inc AIAA Guidance Navigation and control conference and exhibit
AIAA.

15. Yadav A, Gaur P (2014) AI-based adaptive control and design of autopilot
system for nonlinear UAV. Indian Academy of Sciences 39: 765-783.

16. Aldrich W (2002) Using model coverage analysis to improve the controls
development process. AIAA Modeling and Simulation Technologies Conference
and Exhibit.

17. Balachandran S, Atkins EM (2015) Flight safety assessment and management
during take-off. AIAA.

18. Busser RD, Blacburn MR, Nauman AM Automated model analysis and test
generation for flight guidance mode logic. IEEE Xplore Digital Library.

19. Ming Z, Yung L, Yi Q, Xiongwen H, Xiaochuan Z et al. (2012) Model Based
Design UAV Autopilot software. Proceeding of the 2012 2nd international
conference on Computer and Information Application (ICCIA 2012) published
by Atlantis press Paris France.

20. (2015) Mathworks Inc. Simulink/Stateflow.

Figure 20: Rectis tester report.

Environment Decision Condition MC/DC
Matlab 100% 100% 100%
(SlDV) 100% 100% 100%
RTRT 100% 100% 100%
Reactis Coverage 100% 100% 100%
Reactis Validator 100% 100% 98%
Reactis Tester 100% 100% 98%

Table 1: Final result analysis comparisons.

https://www.researchgate.net/publication/228598043_A_new_autoflightFMS_interface_Guiding_design_principles
https://www.researchgate.net/publication/228598043_A_new_autoflightFMS_interface_Guiding_design_principles
http://eprints.manipal.edu/139021/
http://eprints.manipal.edu/139021/
http://eprints.manipal.edu/139021/
http://journal.bonfring.org/abstract.php?id=4&archiveid=338
http://journal.bonfring.org/abstract.php?id=4&archiveid=338
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4391854&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4391854
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4391854&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4391854
http://shemesh.larc.nasa.gov/fm/papers/ModeConfusionAnalysisUsingFormalMethods.pdf
http://shemesh.larc.nasa.gov/fm/papers/ModeConfusionAnalysisUsingFormalMethods.pdf
http://www.cs.odu.edu/~mln/ltrs-pdfs/icase-1999-18.pdf
http://www.cs.odu.edu/~mln/ltrs-pdfs/icase-1999-18.pdf
https://ti.arc.nasa.gov/m/profile/adegani/Pilot-autopilot interaction.pdf
https://ti.arc.nasa.gov/m/profile/adegani/Pilot-autopilot interaction.pdf
https://ti.arc.nasa.gov/m/profile/adegani/Pilot-autopilot interaction.pdf
http://content.iospress.com/articles/journal-of-computational-methods-in-sciences-and-engineering/jcm00084
http://content.iospress.com/articles/journal-of-computational-methods-in-sciences-and-engineering/jcm00084
http://content.iospress.com/articles/journal-of-computational-methods-in-sciences-and-engineering/jcm00084
http://link.springer.com/article/10.1007%2Fs10009-009-0131-4#/page-1
http://link.springer.com/article/10.1007%2Fs10009-009-0131-4#/page-1
http://csrc.nist.gov/staff/Kuhn/kuhn-craigen-saaltink-03.pdf
http://csrc.nist.gov/staff/Kuhn/kuhn-craigen-saaltink-03.pdf
http://link.springer.com/chapter/10.1007%2F978-0-387-35599-3_7#page-1
http://link.springer.com/chapter/10.1007%2F978-0-387-35599-3_7#page-1
http://link.springer.com/chapter/10.1007%2F978-0-387-35599-3_7#page-1
http://web.mit.edu/dahleh/www/pubs/5.Gavrilets- Control Logic for Automated.pdf
http://web.mit.edu/dahleh/www/pubs/5.Gavrilets- Control Logic for Automated.pdf
http://web.mit.edu/dahleh/www/pubs/5.Gavrilets- Control Logic for Automated.pdf
http://web.mit.edu/dahleh/www/pubs/5.Gavrilets- Control Logic for Automated.pdf
http://link.springer.com/article/10.1007%2Fs12046-014-0275-0
http://link.springer.com/article/10.1007%2Fs12046-014-0275-0
http://arc.aiaa.org/doi/abs/10.2514/6.2002-4684
http://arc.aiaa.org/doi/abs/10.2514/6.2002-4684
http://arc.aiaa.org/doi/10.2514/1.I010350
http://arc.aiaa.org/doi/10.2514/1.I010350
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=964250&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F7625%2F20787%2F00964250.pdf%3Farnumber%3D964250
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=964250&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F7625%2F20787%2F00964250.pdf%3Farnumber%3D964250
http://in.mathworks.com/products/?requestedDomain=in.mathworks.com

Citation: Rathina Kumar V, Nanda M, Jayanthi J (2016) Analyze the Mode Transition Logic of Automatic Flight Control System using Semi-Formal
Approach. J Aeronaut Aerospace Eng 5: 167. doi:10.4172/2168-9792.1000167

Page 13 of 13

Volume 5 • Issue 2 • 1000167
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal

21. (2015) Mathworks Inc. Model Advisor.

22. Reactis System Inc. Reactis validation tester and analyzer.

23. Cofer D, Whalen M, Miller S (2008) Software model checking for avionics systems.

24. (2015) Mathworks Inc. Simulink Design Verifier.

25. Book: Rational IBM Rational Test Real Time RTRT-User-Guide for version 7.0
G|11-6755-00.

http://in.mathworks.com/products/?requestedDomain=in.mathworks.com
ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4702862&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4694773%2F4702732%2F04702862.pdf%3Farnumber%3D4702862
http://in.mathworks.com/products/?requestedDomain=in.mathworks.com

	Title
	Corresponding author
	Abstract
	Introduction
	Literature Survey
	Approach
	Implementation of MTL using Stateflow
	Top level model

	MTL Model Design Validation
	Model validation using Simulink/ Stateflow environment
	Rational test real time (RTRT) analysis
	Model validation-rectis environment

	Result Analysis
	Conclusion
	Acknowledgment
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Table 1
	References

