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Introduction

Understanding the molecular basis of diverse functions of 
mammalian cytochrome P450s (CYPs), which will enable to predict 
drug metabolism and drug interactions, is critical [1-5]. However, 
despite sequence variability (20% - 99%), the similarity in tertiary 
structure of CYPs makes it difficult to examine their diverse functional 
characteristics [6-10]. From the mid1990s to early 2000 rational 
approaches, such as chimeragenesis, homology modeling, and site-
directed mutagenesis have been extensively used to examine CYP 
structure-function relationships [8-11]. However, these studies 
targeted only substrate recognition site (SRS) or active-site residues. 

Crystal structures of several CYP enzymes exhibit structural 
diversity of active as well as some non-active site regions, both of which 
may be responsible for functional diversity [12-17]. Furthermore, 
findings using X-ray crystallography, isothermal titration calorimetry 
(ITC), and NMR have revealed that CYPs access and bind 
substrates/inhibitors of different size/shape through ligand-induced 
conformational change, suggesting the role of non-active site regions 
[14,18-19]. These findings are consistent with reports, including ours 
using directed evolution approach, that non-active site residues also 
play a critical role in substrate specificity and selectivity, in addition 
to enzyme activity and stability [20,21]. Since understanding of the 
functional role of individual non-active site residues is difficult using 
only rational or directed evolution approaches, there is a critical need 
for alternate approaches to identify the role of non-active site residues 
in enzyme activity and stability, as well as substrate/inhibitor selectivity. 

Recently, we utilized an alternate approach, analysis of conserved 
sequence motifs (CSM), which resulted in the identification of twenty 
CSM in the CYP2 family [22]. We investigated CSM 8 (E-F loop) 
because it is present between plastic/variable regions 3 (177-188) and 
4 (203-298) (14) and may regulate ligand-induced flexibility. Mutation 
of CSM 8 residues Arg187, Phe188, Tyr190, and Asp192, which have the 
highest degree of residues conservation, to Ala revealed a preference 
for larger ligands over smaller ligands. These mutants also increased 
the dynamics of the protein leading to decreased thermal stability.
Therefore, in the current study we extended our CSM analysis to CYP 
families 1, 2, and 3, as well as CYP2 subfamilies 2A, 2B, 2C, 2D, and 
2E, which contain important drug- and xenobiotic-metabolizing CYP 
enzymes. Based on analysis of each CSM between helices E and H (E-
H) and residues within the CSM, we predicted critical CSM residues 
that may be involved in enzyme functions, or alter the opening/closing 
dynamics and overall stability that affects enzyme function.
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Abstract
Rational approaches have been extensively used to investigate the role of active site residues in cytochrome 

P450 (CYP) functions. However, recent studies using random mutagenesis suggest an important role for non-
active site residues in CYP functions. Meta-analysis of the random mutants showed that 75% of the functionally 
importantnon-active site residues are present in 20% of the entire protein between helices E and H (E-H) and 
conserved sequence motif (CSM) between 7 and 11. The CSM approach was developed recently to investigate the 
functional role of non-active site residues in CYP2B4. Furthermore, we identified and analyzed the CSM in multiple 
CYP families and subfamilies in the E-H region. Results from CSM analysis showed that CSM 7, 8, 10, and 11 are 
conserved in CYP1, CYP2, and CYP3 families, while CSM 9 is conserved only  in CYP2 family. Analysis of different 
CYP2 subfamilies showed that CYP2B and CYP2C have similar characteristics in the CSM, while the characteristics 
of CYP2A and CYP2D subfamilies are different.Finally, we analyzed CSM 7, 8, 10, and 11, which are common in 
all the CYP families/subfamilies analyzed, in fifteen important drug-metabolizing CYPs. The results showed that 
while CSM 8 is most conserved among these CYPs, CSM 7, 9, and 10 have significant variations. We suggest that 
CSM8 has a common role in all the CYPs that have been analyzed, while CSM 7, 10, and 11 may have relatively 
specific role within the subfamily. We further suggest that these CSM play important role in opening and closing 
of the substrate access/egress channel by modulating the flexible/plastic region of the protein. Thus, site-directed 
mutagenesis of these CSM can be used to study structure-function and dynamic/plasticity-function relationships and 
to design CYP biocatalysts.
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Methods
Identification of conserved sequence motifs

We used a similar approach to that described in our recent work 
for the CYP2 family [22]. Briefly, we selected 19 CYP1 and 26 CYP3 
sequences from species, such as human, mouse, and rat, and generated 
a multiple sequence alignment with ClustalW [23]. Similarly, 12 
CYP2A, 10 CYP2B, 33 CYP2C, and 25 CYP2D sequences were 
utilized from various species, as presented earlier [22], and generated a 
multiple sequence alignment with Clusta1W. These multiple sequence 
alignments were further analyzed using PCPMer, in which each of the 
20 natural amino acids was represented by a 5-dimensional vector [24]. 
The vectors of 5-dimensional space were derived by 237 dimensional 
physicochemical property (PCP) space. The eigenvector that had the 
highest eigenvalue (r=0.95) was correlated with the hydrophilicity 
scale. Furthermore, PCPMer generated a profile for the alignment at 
every position, which included the standard deviation and relative 
entropy for each position and component of the 5-dimensional space. 
PCPMer then used these profiles to identify high relative entropy 
clusters (highly conserved regions) and were indicated as rank.Finally, 
three different levels of conservation within the motifs were manually 
as well as computationally identified based on the presence of identical 
residues. They were defined as highly conserved (>90%), intermediate 
conserved (75-90%), and least conserved (<75%) residues.   

Results and Discussion
Analysis of the functional residues of CYPs identified by 
random mutagenesis

We analyzed CYP mutants that were obtained by a random 
mutagenesis/directed evolution approach with CYP1A2, CYP2A6, 
CYP2Bs, and CYP3A4 (Table 1) [25-38]. The results clearly showed that 
approximately 85% of the beneficial mutants are in the regions between 
helices E and I (E-I, ~125 amino acids), which occupy only 25% of the 
entire protein. However, the remaining proteins having mutations, 
which include D helix, K’-L loop, J-J’ loop, and L helix, contain only 
15% of the functionally important residues. Another observation from 
this analysis was that except for residues 209 and 305 of CYP2A6, the 
other seven residues belong to non-active sites. Furthermore, directed 
evolution identified four CYP2A6 residues (287, 297, 300, and 305) and 
one CYP2B1 residue (295) in the  I-helix that have been described as the  
backbone of the protein and that belong to substrate recognition site 4 
(SRS4). Therefore, many SRS 4or I- helix residues in CYP2Bs (289, 290, 
292, 294, 297, 298, 302) have been extensively studied using rational 
approaches for structure-function relationships [9,39-44]. Similarly, 
the F-G region (SRS 2), which is considered part of the substrate 
access channel in P450 51 enzyme, has been studied using rational 
approaches in CYP2B1. However, the minimal changes in biochemical 
characteristics of CYP2B1 F-G mutants do not support access via the 
F-G region of CYP2B1, and suggest the alternate access route identified 
in P450 51. Therefore, further study in CYP2B1 helix B’ flexible region 
using rational mutagenesis suggests that residues in the helix B’ region 
affect regio- and stereoselective oxidation in CYP2B enzymes as well as 
substrate entry [45]. Furthermore, molecular modeling and substrate 
docking studies in CYP2B enzymes clearly suggest the role of B’ helix/
B’-C loop in substrate access/egress channel [46]. The SRS 2 residues, 
206 and 209, in CYP2B1 have been shown critical for CYP expression 
and activity [40,42,47]. These residues have also been identified as 
functionally important in CYP2A4 and CYP2A5 [48-50].

Since I helix has been extensively studied using a rational approach 

and most of its functionally important residues have been identified, we 
further analyzed the regions between the helices E and H (E-H) using 
the CSM approach (Figure 1). The E-H region constitutes only 20% of 
the entire protein, but it contains 75% of the functionally important 
residues identified by random mutagenesis/directed evolution (Table 
1). The E-H region contains five of the twenty CSM (7-11) in CYP2 
family (22). The E-H region also contains an important flexible region 
between helices F to G (F-G) in CYP2Bs, CYP2Cs, and CYP3A4 
identified by X-ray crystallography, ITC, and NMR (12, 14, 16, 18-19, 
51). Although the F-G mutants do not suggest it as substrate channel 
[47], X-ray crystallography and ITC studies clearly suggest that the F-G 
region is critical for ligand-induced conformation adaptation. 

The CSM analysis of CYP1, CYP2, and CYP3 families

Since CYPs from the families 1, 2, and 3 are responsible for the 
metabolism of the majority of marketed drugs and other xenobiotics 
[4], we identified and analyzed CSM 7-11 of CYP1 and CYP3 families 
(Figure 1, Table 2). CSM 7-11 of CYP2 family has been reproduced 
from our previous work [22] for comparison. These comparisons 
yielded the following results: 1) CSM 9 is not present in the CYP1 
and CYP3 families, suggesting a specific role for CSM 9 in the CYP2 
family; 2) CSM 7 and 8 show a relatively higher rank (≥1.8) than CSM 
10 and 11(1.4) in the CYP1 family; 3) all four CSM show a high rank 
(≥1.8) in the CYP3 family, which is similar to the rank in CYP2 family.
Further analysis showed that the CSM 7, 8, 10, and 11 are conserved 
within families 1, 2, and 3. However, their amino acid residues are less 

CYP1A2 CSM Region Function Reference
E163K, K170Q 6-7, 7 D helix Enhanced activity

Substrate selectivity

25-28
V193M 8-9 E helix
E225N 10 F helix
Q258H 11 G helix
G437D 18 K’-L loop
CYP2A6
S183C 7-8 E helix

Enhanced activity
Altered substrate specificity
Novel activity

29-32

L206Q, F209I 8-9 F helix
S224P 9 F-G loop
L240C 10-11 G helix
Y287H 11-12 I helix
N297Q, I300V, T305S 12 I helix
CYP2Bs
V183L 7-8 E helix

Enhanced activity
Altered substrate specificity
Increased protein stability
Enhanced tolerance to 
organic solvents

33-37

F202A, L209A 8-9 F helix
K236I 10-11 G helix
D257N 10-11 G-H loop
L264F 11 H helix
L295H 12 I helix
S334P, P334S 13-14 J-J’ loop
CYP3A4
L216W 8 F helix

Enhanced activity
Altered substrate specificity

38
F228I 10 F-G loop
T433S 17 L-helix

The location of the region is based on CYP X-ray structures and/or models of 
individual enzyme, except for CYP2Bs, in which CYP2B4 was used to identify 
regions. The CSM number is based on the CSM analysis of CYP2 family performed 
earlier (22). The information on functional characterizations of the mutants are 
based on earlier studies (last column) using rational and random mutagenesis 
approaches. Note that the regions for the same/similar residue numbers in different 
families (e.g. 1 vs. 2) vary more than the regions for the same/similar residue 
numbers within the same families or between different subfamilies (e.g. 2A vs. 2B).
Represents between the two CSM or regions; e.g. 8-9 means between CSM 8 
and 9.

Table 1: Analysis of CYP mutants, locations, and functional characterizations.
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conserved between these families. As an exception, CSM 8 of CYP 2 
and CYP 3 contain 4 of the 6 identical residues and 2 other similar 
residues, suggesting that CSM 8 has a common role in the CYP2 and 
CYP3 families. Another striking observation is that even though CSM 
of CYP2 was analyzed from a large number of sequences (175), there 
is high amino acid conservation in CSM 7-11 compared to CYP 1 and 
CYP 3, in which small number of sequences were available for CSM 
analysis. 

The CSM analysis of CYP2A, 2B, 2C, 2D, and 2J subfamilies

Recently we identified several CSM in the CYP2A, CYP2B, CYP2C, 
CYP2D, and CYP2J subfamilies [22]. Here we further identified and 
analyzed CSM 7-11 in important drug- and xenobiotic-metabolizing 
CYP2A, CYP2B, CYP2C, and CYP2D subfamilies (Figure 1, Table 3). 
It can be noted that the CSM identified here is slightly different from 
the previous one in a way that CSM 9 (in this analysis) was considered 
specific to CYP2A, CYP2B, and CYP2D subfamilies (in the previous 
analysis) [22]. Overall, the results showed that while all the CSM (7-
11)were present in CYP2B and CYP2C subfamilies, CYP2A contained 
CSM 8, 9, and 11 and CYP2D contained CSM 7, 8, and 9. On the 
other hand CYP2A contained two CSM that were specific to CYP2A 
(204MMLGIFQF211 and 243GLENF247). Overall, CSM 8 and 10 were 
common to all the CYP2 subfamilies and CSM 9 was present only in 
the CYP2B subfamily.

CSM 7, 8, and 9 showed a relatively higher ranks (>2.0) than CSM 
10 and 11 (≤2.0) in both the CYP2B and CYP2C subfamilies. However, 
the rank of CSM in CYP2A and CYP2D were very low (≤ 1.2). CSM 8 
showed 100% amino acid conservation, while CSM 10 had five of the 
six conserved residues when compared between CYP2B and CYP2C 
subfamilies. Overall, the levels of amino acid conservation between 
subfamilies CYP2B and CYP2C were in the order: CSM 8 > 10 > 7> 11 
> 9 (Table 3). In contrast, all the CSM of CYP2A and CYP2D showed 
very poor amino acid conservation with the CYP2B and CYP2C 
subfamilies. These correlations suggest that the CYP2B and CYP2C 
enzymes have overlapping structural and functional characteristics, 
while CYP2A and CYP2D have unique structural and functional 
characteristics. Indeed, these results are strongly correlated with the 
fact that the CYP2B and CYP2C enzymes show remarkable flexibility 
in the E-H regions and can accommodate ligands of variable size and 
shape through ligand-induced conformational adaptation [12,14,16,18-
19,51]. In contrast, CYP2A and CYP2D show small structural changes 
in these regions and can accommodate a small number of ligands with 
similar shape and size [52-56]. 

Strong conservation of the residues in CSM 8 and 10 between 
CYP2B and CYP2C strongly suggest that these residues have common 
functions in these subfamilies, perhaps in regulating the flexible 
regions of the protein and/or stabilizing the protein. In contrast, 
although CSM 7, 9, and 11 have a high rank, the residues in these CSM 
significantly differ between CYP2B and CYP2C subfamilies (Table 
3). These observations suggest that these CSM have important and 
specific functions within the CYP2 subfamily, such as metabolism 
of specific substrates and enzyme cooperativity. This is consistent 
with the fact that CYP2C9 metabolizes small substrates and shows 
enzyme cooperativity, while CYP2C8 metabolizes large substrates and 
shows Michaelis-Menten kinetics [57-59]. Similarly, CYP2B enzymes 
generally do not show enzyme cooperativity and metabolize substrates 
of diverse size and shape [9,14]. 

Since CSM 8 is in the E-F loop and CSM 10 is in the G’-G loop in 
CYP2B4 structure, we propose that they act as a switch in regulating 
the flexibility of CSM 9 (F helix) and CSM 11 (H helix), respectively, in 
addition to the regions between these CSM. CSM 8 may also regulate 
the flexibility of CSM 7. This is consistent with the fact that CSM 7 
is located at plastic region 3 (177-188) and CSM 9-11 are located at 
plastic region 4 (203-298) [14]. The proposed model is consistent with 
our recent studies with CYP2B4 CSM 8 mutagenesis, in which, we 
suggested the role of CSM 8 as a switch to regulate the flexibility of 
the F-G regions [22]. Further site-directed mutagenesis of CSM 7-11 
followed by X-ray crytallography and ITC of the selected mutants can 
be performed with representative enzymes of the CYP2B (2B6) and 
CYP2C (2C9) subfamilies to identify the role of these CSM in regulating 
substrate/inhibitor selectivity, regio- and stereoselectivity, enzyme 
cooperativity, and protein stability. Similarly, to identify the role of 
CSM 7, 9, and 11 in substrate selectivity and enzyme cooperativity in 
CYP2B and CYP2C subfamilies, residues of CYP2B6 from these CSM 
can be swapped with the CYP2C9 residues followed by biochemical 
and biophysical characterizations. 

Analysis of CSM 7, 8, 10, and 11 in important drug- and 
xenobiotic-metabolizing enzymes of CYP1, 2, and 3 families

We analyzed CSM 7, 8, 10, and 11 in fifteen important human 
drug- and xenobiotic-metabolizing CYP enzymes (Table 4). The results 
showed that amino acid residues in CSM 8 are extremely conserved 
within CYP subfamilies (CYP 2A, 2B, 2C, 2D, and 2E) and are well 
conserved between the subfamilies. However, they are relatively 

4-CPI-bound CYP2B4 closed structure (1SUO) Ligand-free CYP2B4 open structure (1PO5)

Figure 1: Open (ligand-free, 1PO5) and closed (4-CPI-bound, 1SUO) 
structures of CYP2B4 showing CSM 7-11 in the E-H region of the protein. 
The figures were generated using MOLMOL and Microsoft Publisher files. 
The CSM 7-11 are labeled and shown in different colors. The I-helix is shown 
in light green color.

CSM CYP1 (1A1) CYP2 (2B4) CYP3 (3A4)

7
166

EAEVLISTLQ
175(2.0)a 172

CAPCNVIC
178(2.4) 187

FGVNIDS
195(2.0)

8
183

HFNPYRY
189(1.8) 186

RFDYKD
191(2.0) 212

RFDFLD
217(2.0)

9 Absent
217

FELFSGF
223(1.4)

Absent

10
224

FGEVVGSG
231(1.4) 226

HFPGTHRQI
234(1.8) 224

IVFPFLI
230(1.8)

11
251

FKDLNEKFYSF
261(1.4) 260

PRDFIDVY
267(2.4) 258

ESRLEDT
265(2.0)

The number of CYP sequences analyzed for each family is shown in parenthesis
The CYP sequences used from various species are presented earlier (22)
The colors of the residues in the motifs represent the rank order of sequence 
conservation as a function of relative entropy; red is the least conserved (<75%), 
black is intermediate (75-90%), and blue represents the most conserved (>90%)
aThe rank is shown in parenthesis
“Absent” in CYP1 and CYP2 represents lack of CSM 9 based on PCPMer motifs 
analysis.
Residues and their numbers in the motifs for each CYP family are based on the 
specific CYP indicated in the first row
Table 2: Identification and analysis of PCPMer motifs in CYP1 (19), CYP2 (175), 
and CYP3 (26) families in the E-H regions.
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less conserved between CYP1, CYP2, and CYP3 families. Similarly, 
amino acid residues in CSM 10 are highly conserved within CYP 
subfamilies, but relatively less conserved between the subfamilies. On 
the other hand, amino acid residues in CSM 7 and 11 are relatively 
less conservedcompared to CSM 8 and 10 within and between the 
subfamilies/families. An intriguing finding is that the individual 
residues as well as number of residues in CYP1A enzymes are 
significantly different from the residues of CYP2A, CYP2B, CYP2C, 
CYP2D, CYP2E, and CYP3A enzymes at all the CSM. This can be 
explained from the fact that CYP2B, CYP2C, CYP2E, and CYP3A 
enzymes show flexibility and accept an array of ligands with different 
size, shape, and hydrophobicity [12,52,13-14,57,58,60]. On the other 
hand, CYP1A enzymes show the least flexibility in the E-H regions 
and they have compact active site structures as shown by X-ray crystal 
structure and homology modeling [54,55,61].

Although there are similarities in amino acid conservation among 
the CYP families and subfamilies, there are many differences in terms 
of amino acid identity. These similarities and differences may be 

associated with similar, overlapping, as well as unique characteristics 
of each CYP enzymes. For example, the third residue of CSM 8 is acidic 
(Asp or Glu) in most enzymes, however, CYP1A1 and CYP3A7 have 
Gln, CYP3A5 has Gly, and CYP2A6 and CYP2B6 have His. Similarly, 
the first residues of CSM 8 in most enzymes are Arg, but CYP1A1, 
CYP1A13, and CYP2E1 have His and CYP3A5 has Lys. Another 
intriguing observation is that the third residue of CSM 11 is Asp in all 
the enzymes, except CYP1A2 and CYP3As enzymes. While comparing 
all the CSM in CYP2C enzymes, we find that the residues in CSM7 are 
identical in all the CYP2C enzymes, while there are small differences 
in other CSM. For examples: 1) CYP2C19 has Phe189 instead of Tyr 
in CSM 8; 2) CYP2C8 has Cys225 instead of Tyr, CYP2C18 has Leu226 

instead of Phe, and Ser229 instead of Thr in CSM 10;3) CYP2C9 has 
Gln261 instead of Arg and CYP2C18 has Ala260 instead of Pro in CSM 
11. Similarly, while comparing residues at all the CSM in CYP3A 
enzymes, we find the following: 1) CYP3A7 has Ser192 instead of Arg 
in CSM 8; 2) CYP3A7 has Lys224 instead of Ile in CSM 9; 3) CYP3A5 
has Leu225 instead of Val in CSM 10; 4) CYP3A5 has Lys258 instead of 

The number of CYP sequences analyzed for each family is shown in parenthesis
The CYP sequences used from various species are presented earlier (22)
The colors of the residues in the motifs represent the rank order of sequence conservation as a function of relative entropy; red is the least conserved (<75%), black is 
intermediate (75-90%), and blue represents the most conserved (>90%)
a The rank is shown in parenthesis. The rank of CYP2A and CYP2D are ≤1.2
“Absent” in CYP2A and CYP2D represents lack of their respective CSM based on PCPMer motifs analysis
Residues and their numbers in the motifs for each CYP2 subfamilies are based on the specific CYP indicated in the first row

Table 3: Identification and analysis of PCPMer motifs of CYP2A (12), CYP2B (10), CYP2C (33), and CYP2D (25) enzymes in the E-H region.

CSM CYP2A (2A6) CYP2B (2B4) CYP2C (2C8) CYP2D (2D6)

7 Absent
177

NIICSIVF
184(2.4) 172

CAPCNVIC
179(2.8) 180KAVSN184

8
193

YKDKEFLS
200

187RFDYKD
192(2.2) 186

RFDYKD
191(2.2) 192GRRFEYDDP200

9
217

GQLYEMFSSVM
227 210

SSFSSQVFELFS
221(2.4) 211

PWIQVCNNFP
220(2.2) 225

NAVPVLLHIPALAGK
239

10 Absent
226

HFPGTH
231(2.0) 225

CFPGTH
230(1.8) Absent

11
260

DPNSP
264 261

PRDFIDVY
268(1.6) 260

PRDFIDC
266(2.0) Absent

The CSM in all the CYPs is based on PCPMer motifs identified in the respective CYP1, CYP2, and CYP3 families (Table 2)
The colors of the residues in the motifs represent the rank order of sequence conservation as a function of relative entropy; red is the least conserved (<75%), black is 
intermediate (75-90%), and blue represents the most conserved (>90%)
The order of residues conservation was determined manually using the known CYP sequences from various species in the respective families; 1A, 2A, 2B, 2C, 2D, 2E, 
and 3A
CSM 9 is not shown because it is not found in CYP1 and CYP3 families and is least conserved in CYP2 family

Table 4: Comparison and analysis of CSM 7, 8, 10, and 11 sequences in important drug metabolizing human CYP enzymes.

CYPs CSM 7 CSM 8 CSM 10 CSM 11

1A1
166

EAEVLISTLQ
175 183

HFNPYRY
189 224

FGEVVGSG
231 251

FKDLNEKFYSF
261

1A2
168

EAKALISRLQ
177 185

HFDPYNQ
190 226

FVETASSQ
232 253

FKAFNQRFLWF
263

2A6
177

TVSNVIS
183 190

RFDYKD
195 229

HLPGPQ
234 264

PRDFIDS
270

2A7
177

TVSNVIS
183 190

RFDYED
195 229

HVPGPQ
234 264

PRDFIDS
270

2A13
177

CVSNVIC
183 190

RFEYAN
195 229

HVPGPH
234 264

PRDLIDS
270

2B6
173

ITANIIC
180 187

RFHYQD
192 226

YFPGAH
231 261

PKDLIDT
267

2C8
172

CAPCNVIC
179 186

RFDYKD
191 225

CFPGTH
230 260

PRDFMDC
266

2C9
172

CAPCNVIC
179 186

RFDYKD
191 225

YFPGTH
230 260

PQDFIDC
266

2C18
172

CAPCNVIC
179 186

RFDYKD
191 225

YLPGSH
230 260

ARDFIDC
266

2C19
172

CAPCNVIC
179 186

RFDFLD
191 225

YFPGTH
230 268

PRDFIDC
274

2D6
180

KAVSNVIA
187 194

RFEYDD
199 232

HIPALA
237 217

PRDLTEA
223

2E1
174

CAPYNVIA
181 188

HFDYND
193 227

YLPGSH
232 262

PRDLTDC
268

3A4
189

FGVNIDS
195 212

RFDFLD
217 224

IVFPFL
229 258

ESRLEDT
264

3A5
189

FGVNIDS
195 212

KFGFLD
217 224

ILFPFL
229 258

KSRLNDK
264

3A7
189

FGVSIDS
195 212

RFNPLD
217 224

KVFPFL
229 258

EGRLKET
264
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Glu, CYP3A7 has Gly259 instead of Ser, CYP3A7 has Glu263 instead of 
Asp, and CYP3A5 has Lys264 instead of Tyr in CSM 11. In addition, 
there are many differences in amino acid residues among CYP3A4, 
3A5, and 3A7 at CSM 8, which is unusual compared with the CSM 
of other CYP families or subfamilies. These differences in amino acids 
either within or across the families/subfamilies may define unique 
role(s) for these CYP enzymes. The basis for these differences in the 
drug-metabolizing enzymes can be explored by swapping the amino 
acid residues in CYP enzymes between the families (e.g. CYP 2B6 vs. 
CYP3A4) and subfamilies (e.g. CYP2B6 vs. CYP2C9), as well as within 
the subfamilies (e.g. CYP2C8 vs. CYP2C9) and characterizing them 
for enzyme activity, substrate/inhibitor selectivity, substrate regio- and 
stereoselectivity, as well as enzyme cooperativity and stability.  

In conclusion, the combination of directed evolution, X-ray crystal 
structures, and CSM analysis has provided evidence that the E-H 
regions are the most important regions in CYP structure-function 
and dynamic/plasticity–function relationships. More specifically, the 
CSM analysis of the CYP families, CYP2 subfamilies, and individual 
drug-metabolizing CYP enzymes suggested important structural and 
functional roles in terms of plasticity and dynamic aspects of CSM 
7-11 in the E-H region, as well as important role of specific residues 
within these CSM. These CSM may play an important role in opening 
and closing of the substrate access/egress channel by modulating the 
flexible/plastic region of the proteinand overall protein stability that 
affects enzyme function. The finding in the manuscript is significant 
and timely, because it is a step forward in understanding the complex 
nature of CYP structure-function relationships, especially in the 
flexible E-H regions, that are responsible for diverse drug metabolism 
and numerous drug interactions. Thus, further study using rational 
approaches of the E-H regions will help identify the specific role of CSM 
and/residues in CYP structure-function relationships. This information 
would be very useful for the design of CYP biocatalysts in order to 
improve activity and stability for industrial and medical purposes. A 
better understanding of the structure-function relationships in drug-
metabolizing CYP enzymes will enable us to accurately predict drug 
metabolism and drug interaction.  
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