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Introduction
Immune checkpoint inhibitors have resulted in significant advances 

in cancer therapeutics however; the treatment of advanced cancers 
affecting organs and involving distant metastasis remains extremely 
difficult [1-6]. Clinical benefit of an anti-programmed death 1 (PD1) 
immune checkpoint inhibitor was shown in patients with progressive 
metastatic colorectal cancer with mismatch repair-deficiency [7]. 

Antigen-presenting cell (APC)-based immunotherapy using active 
dendritic cells (DCs) is under investigation for developing therapeutic 
vaccination against cancer [8]. Autologous DC-based immunotherapy 
appears to trigger few adverse reactions with limited clinical 
effectiveness if conventional evaluation procedures such as response 
evaluation criteria in solid tumors (RECIST) are employed [9,10]. 
Long-term acquired immunity following DC vaccination produces a 
delayed separation of survival curves with an advantage pertaining to 
prolonging the overall survival [11,12]. 

Human leukocyte antigen (HLA) molecules containing cancer 
antigen peptides on DCs bind with T cell receptors on the CD8+ 
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Abstract
Although treating advanced cancers that affect organs with distant metastasis remains challenging, the pace 

of recent advances has accelerated; these advances have particularly focused on the inhibitors of key immune 
potentiates. Research on therapeutic vaccination involving active dendritic cell (DC)-based immunotherapy is also 
being performed for the induction of an efficient immune response against cancer-associated antigens by the acquired 
immune system. Cancer vaccines prepared with autologous monocyte-derived mature DCs have been generated 
using granulocyte–macrophage colony-stimulating factor and interleukin-4, which are principally attributed to the 
presence of tumor-associated antigens. Wilms’ tumor 1 (WT1) is an attractive target antigen that is widely detected 
in many cancers. DC-based immunotherapy targeting WT1 may elicit a strong therapeutic response to cancers. 
DC vaccines primed with HLA class I/II-restricted WT1 peptides (WT1-DC) are a feasible option for patients with 
advanced cancers. Immune response monitoring using tetramer analysis and/or enzyme-linked immunosorbent 
spot assay has been applied to determine the efficacy of WT1-DC. The inhibition of immune suppressors and 
acceleration of anti-cancer immunity with WT1-DC may comprise a promising future therapeutic strategy for treating 
advanced cancers.
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killer and CD4+ helper T cells, producing an immune response against 
cancers. In contrast, immune suppressor cells such as regulatory T 
cells, and myeloid-derived suppressor cells (MDSCs) suppress the auto 
reactive and anti-cancer immunity [13-15]. Moreover, tolerogenic DCs 
with immunosuppressive cytokines induce antigen-specific anergy and 
regulatory properties in memory CD4+ T cells [16-18]. Conversely, 
inflammatory DCs are driven by infection or inflammation release 
inflammatory cytokines, including tumor necrosis factor and the 
inducible nitric oxide synthase [19]. Moreover, inflammatory DCs 
drive Th1- and Th17-mediated immunity and facilitate the induction 
of regulatory T cells [20,21] (Figure 1). Immune suppressive factors are 
also produced by cancer cells; these factors include transforming growth 
factor (TGF)-β, interleukin (IL)-10, vascular endothelial growth factor 
(VEGF), prostaglandin E2 (PGE2), and programmed death-ligand 1 
(PD-L1) [22] (Figure 1). Chemotherapeutic drugs, targeted anti-cancer 
agents and various other biological and physicochemical therapies such 
as radiation therapy have been identified as employing immunogenic 
cell death. DCs are primed with cancer cells succumbing to these 
immunogenic cell death inducers [23]. Radiation therapy aside from the 
induction of cancer cell death is useful to shift an immunosuppressive 
tumor microenvironment to a more beneficial immune stimulation. 
Radiation therapy can also enhance the expression of HLA class I on the 
surface of cancer cells, boosting the recognition and killing of irradiated 
cancer cells through T cells and NK cells [24]. DCs in combination 
with chemoradiotherapy may accelerate the development of acquired 
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cancer immunity to induce antigen-specific cytotoxic T lymphocytes 
(CTLs) [25,26]. Chemoradiotherapy induce immunogenic cell death, 
which could trigger T-cell immunity mediated by high-mobility group 
box 1 protein in patients with oesophageal squamous cell cancer [27]. 
Radiotherapy and chemotherapeutic drugs with off-target effects may 
allow the in situ modulation of regulatory T cells and other suppressors 
within the tumor microenvironment (Figure 1). DCs and regulatory T 
cells are more resistant to radiation than other lymphocytes in mouse 
model [28,29]. Human monocyte-derived DCs as well as macrophages 
are more radio resistant than monocytes [30]. Tumor necrosis factor α 
and interferon (IFN)-γ secreted by activated T cells react with cancer 
cells, which causes the formation of complex of PD-L1 on cancer cells 
with PD1 on activated T cells. PD1-PDL1 complex suppresses the 
interactions between HLA molecule and T cell receptor, resulting in 
regression of anti-cancer immunity [31].

DC Vaccine and Vaccination

A manufacturing technique is being developed to promote the strong 
induction of T cells against tumor antigens. Oil adjuvants for peptide 
vaccines act by locally accelerating the activation of lymphocytes [32]. 
However, DCs have potential bioactivity that can be used as a suitable 
adjuvant [33-34]. DCs expressing tumor-specific antigens used in active 
cancer immunotherapies [35,36] have been conventionally generated 
using peripheral monocytes with granulocyte-macrophage colony-
stimulating factor (GM-CSF) and interleukin-4 (IL-4). Antigenic 
peptides, protein, tumor lysate, and RNA have been used to deliver 
cancer-associated antigens into DCs [37-42]. Sipuleucel-T (Provenge®, 
Dendreon Corporation, Seattle, WA ), which has been approved by 
the US Food and Drug Administration (FDA), is an autologous, DC-
based immunotherapy for patients with metastatic hormone-refractory 

prostate cancer. Sipuleucel-T is manufactured using patient’s blood 
cells exposed to a recombinant fusion protein comprising a prostatic 
acid phosphatase with GM-CSF, which enhances its activity against 
prostate cancer. The autologous DC product is administered as per a 
3-dose schedule with approximately 2-week intervals between each 
dose. This regimen yields a survival benefit of 4.1 months when given 
to patients with hormone-resistant prostate cancer [43].

Among potential cancer antigens such as Wilms’ tumor 1 (WT1); 
mucin 1, cell surface associated (MUC1); human epidermal growth 
factor receptor 2 (HER2); carcinoembryonic antigen (CEA); survivin; 
and prostate-specific antigen (PSA), WT1 was identified to be the 
most potent cancer-associated antigen fulfilling immunological and 
clinical effectiveness criteria with respect to therapeutic functions, 
immunogenicity, specificity, and oncogenicity [44]. WT1 has recently 
been shown to regulate the expression of VEGF, a major mediator 
of angiogenesis, suggesting it to be another target within the cancer 
microenvironment [45,46]. Furthermore, the WT1 peptide was 
restricted to HLA-A*24:02 and modified WT1235–243 peptide 
(CYTWNQMNL) and the second amino acid (methionine: M) was 
replaced with tyrosine (Y), which can more effectively induce cytotoxic 
T cells than wild-type peptides [47-50]. The WT1-332–347–class II 
peptide is compatible with HLA-DRB1*04:05, HLA-DRB1*08:03, 
DRB1*15:01, DRB1*15:02, DPB1*05:01, or DPB1*09:01. Phase I 
clinical trials of this peptide have been conducted for various types of 
cancers and hematological malignancies [51-53].

DC vaccines primed with HLA class I/II-restricted WT1 peptides 
(WT1-DC) have been shown to be safe and feasible with few adverse 
reactions reported for patients with advanced cancers, including 
lung, breast, stomach, biliary tract, pancreatic, colorectal, ovarian, 

Figure 1: Dendritic cells and other immune cells in the cancer environment. DCs are primed with cancer cells succumbing to immunogenic cell death induced by 
chemotherapeutic drugs and radiation therapy, which affect various effector T-cell populations. Immune suppressor cells, such as regulatory T cells and myeloid-
derived suppressor cells, suppress the anti-cancer immunity. Immune suppressive factors are also produced by cancer cells. An activated T cell expressing PD1 is 
suppressed through interaction with PD-L1 on cancer cells as well as on DCs. Immune checkpoint inhibitors accelerates the development of the acquired cancer 
immunity. Radiotherapy and chemotherapeutic drugs with off-target effects allow the in situ modulation of suppressors within the tumor microenvironment. 
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and high-grade gliomas [54-62]. Clinical studies have indicated the 
efficacy of DC vaccination as an add-on to chemotherapy [54-59] 
and chemoradiotherapy [62,63] and even suggested a survival benefit 
in some patients. Combinations of adjuvant chemotherapy and/or 
radiotherapy as well as the periods required for adaptation to these 
therapies have been investigated. The development of combination 
therapies that potentially include immune checkpoint inhibitors may 
help improve the outcomes of personalized therapy for cancer patients.

Immune Monitoring

Immunological monitoring of DC vaccination using tetramer 
analysis and/or enzyme-linked immunosorbent spot (ELISPOT) 
assays in clinical studies and trials requires both reproducibility and 
validation. The presence of WT1 antigen-specific cytotoxic T cells 
(WT1-CTLs) is defined according to the following criteria: presence 
of greater than 0.02% WT1-positive CD8+ T cells among the 50,000–
10,000 lymphocytes analyzed with no evidence of false positive cells 
and WT1-positive cell population being clustered but not diffused with 
slight modification, as previously described [64]. ELISPOT assays were 
performed to measure WT1-specific IFN-γ production by peripheral 
blood mononuclear cells (PBMCs). The presence of WT-CTLs was 
defined according to the following criteria: presence of at least 15 WT1-
specific spots per 1 × 106 PBMCs and at least 50% more WT1-specific 
spots than negative peptide (HIV peptide) spots [64].

We determined WT1-CTLs by both WT1-peptide/HLA-A*24:02 
tetramer analysis and ELISPOT assay after one course of DC vaccination 
during maintenance chemotherapy in a patient with gastric cancer. 
After one course of DC vaccination, the immune monitoring assay 
demonstrated that WT1-CTLs comprised 1.10% of the CD8+ T cell 
population (Figure 2A), with over 100 WT1-specific spots observed in 
ELISPOT assays (Figure 2B, upper panel). ELISPOT assays performed 
using WT1-332 (HLA-class II peptide) also demonstrated a specific 
number of IFN-γ-spots (Figure 2B, lower panel). Specific WT-CTLs 
were persisted for more than 1 year after DC vaccination.

DC Vaccination Technology

Allogeneic vaccines induce T cell infiltration and aggregate 
formation in pancreatic cancer, resulting in the induction of 

immunosuppressive regulatory mechanisms [65]. However, allogeneic 
DC vaccination targeting WT1 also represents a potential strategy 
for treating patients with relapsed leukemia following hematopoietic 
stem cell transplantation (HSCT). Subsequent evidence of immune 
monitoring would provide proof of the validity of this concept. This 
strategy may be safe, tolerable, and even feasible for pediatric donors 
and patients with relapsed leukemia following HSCT, as previously 
described [66]. In this report, a 15-year-old girl with acute lymphoblastic 
leukemia received allogeneic DC vaccination pulsed with WT1 peptide 
after her third HSCT. The vaccines were generated from the third HSCT 
donor, the patient’s younger 12-year-old sister, who was a HLA-A*24:02 
match. The patient received 14 vaccine doses with no occurrence of 
graft-versus-host disease or any systemic adverse effects, except for a 
grade 2 local skin reaction at the injection site. WT1-specific immune 
responses were detected post-vaccination by both WT1-tetramer 
analysis and ELISPOT assay. The patient experienced 44 months of 
remission after the third HSCT with DC vaccination, whereas she had 
been in remission for less than 14 months between her second and third 
HSCT. This suggests that WT1-specific DC vaccination contributed to 
extended remission after the patient’s third HSCT. These findings form 
the basis for developing individualized therapy for future prospective 
HSCT clinical trials.

One potential way to overcome the phenomenon of tumor cells 
escaping immune detection is the generation of IFN-DCs from 
monocytes using GM-CSF and IFN-α previously described in a clinical 
study on metastasized medullary thyroid carcinoma [67] under Good 
Gene, Cell and Tissue Manufacturing Practice conditions. Mature 
IFN-DCs would induce CTLs together with their adaptive antitumor 
effects as well adoptive immunotherapy with natural killer cell activity 
independent of HLA antigen expression [67,68]. Another approach is 
the administration of granulocyte colony-stimulating factor (G-CSF), 
resulting in the upregulation of adhesion molecules, to evaluate the 
hypothesis of increased acquired immunity using G-CSF-primed DC 
vaccines.

Immune checkpoint inhibitors are rapidly being developed as 
cancer therapeutic agents [69]. In combination with DC vaccination 
and immune checkpoint inhibition, further studies are required 
to evaluate whether the number of effector memory T cell present 

Figure 2: Detection of Wilms’ tumor 1-specific T cells induced by dendritic cell vaccination. (A) WT1-tetramer assay performed on cells from a patient with gastric 
cancer undergoing DC vaccination. (B) ELISPOT assay using the modified WT1235–243 peptide and WT1332–347–class II peptide on samples from a patient with gastric 
cancer undergoing DC vaccination. Control tetramer was used with human immunodeficiency virus (HIV) env (RYLRDQQLL, residue 584–592).

A B
500

400

300

200

100

0

500

400

300

200

100

0



Citation: Shimodaira S, Hirabayashi K, Koya T, Higuchi Y, Yanagisawa R, et al. (2016) An update on Dendritic Cell-Based Cancer Immunotherapy. 
Immunome Res 12: 106. doi: 10.4172/17457580.1000106

Page 4 of 5

Volume 12 • Issue 1 • 1000106
Immunome Res
ISSN: 1745-7580 IMR, an open access journal

prior to vaccination and the exhausted marker of PD1-positive CTLs 
after DC vaccination influence the efficacy of DC vaccination and/
or immune check point inhibitors. Such future clinical trials could 
reveal the effectiveness of DC vaccine in combination with immune 
checkpoint inhibitors in treating cancers, sarcomas, and hematopoietic 
malignancies in the near future. Biomarkers that predict the potential 
efficacy of DC vaccination targeting WT1 are highly relevant to current 
standards of personalized cancer therapy.
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