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Introduction
The demand for a clean and immune supply of water for drinking, 

agriculture and recreation has accrued since the last few decades. The 
global production of chemicals has increased from 1 million ton in 1930 
to more than 400 smillion tons during the year 2005 and about 100,000 
different substances have been registered in the market, of which 30,000 
to 70,000 are in daily use [1]. Most of the chemicals used on land enter 
the aquatic environment via., wastewater from agricultural, industrial 
and domestic sources including municipal sewage treatment plants [2]. 
In some instances, these chemicals are capable of permanently altering 
the genetic material of exposed organisms, i.e., they are mutagens. In 
recent years, reports on the occurrences of malignancies and other 
biological conditions in aquatic organisms following exposure to 
suspected genotoxins have increased. Such exposure of aquatic fauna 
not only poses a high risk for non-target organisms including man 
via food chain in the ecological context, but also may lead to heritable 
mutations and loss in the genetic diversity with significant implications 
of the long term survival of exposed population. The studies related 
to the impact of genotoxic exposure in an organism, therefore, not 
only cover an attempt to elucidate the mechanism(s) involving direct 
changes to the genetic material, but also the genotoxic effects and 
changes at the level of gene pool and population [3]. 

The uncontrolled presence of genotoxins in aquatic environment 
poses significant toxicological risks to a myriad of non-target organisms 
and finds its way to the food chain, threatening the ecological balance 
and the biodiversity of the nature [4]. This is an unwanted situation 
and justifies the monitoring of the aquatic environment for the 
presence of genotoxins. Although it is clear that progress in any field 
of research depends primarily on the development of its methodology. 
In this context, recent advances in the development of techniques and 
diagnostic tools have certainly enhanced the understanding of how 
an organism interacts with its environment at individual, cellular 

and molecular level, and substantial progress has been made to assess 
the genotoxin induced genetic damage in the aquatic biota [3]. The 
biomonitoring of aquatic genotoxicity is cardinal for many folds. 
Initially, the detection of genotoxic effects in aquatic environment is 
needed to assess the health of aquatic organisms. Second, from the 
ecological perspective, the protection of genetic diversity in natural 
populations is important for population survival [5]. The exposure 
to genotoxins can damage the DNA of living cells and if these DNA 
lesions are not repaired, they can commence a cascade of biological 
consequences at the cellular, individual, community and finally at 
the population level [6]. The relevance of detecting the genotoxic 
risk assessment in contaminated aquatic environment(s) was firstly 
perceived in the late 1970’ s. Since then several tests have been flourished 
for evaluating genotoxicity in aquatic organisms. The possibility of 
using changes in DNA integrity to the genetic material as markers of 
exposure and effect of genotoxicants has been previously investigated 
[7]. The presence of DNA adducts has been taken as evidence of 
exposure to specific genotoxins [8]. These tests rely on the premise that 
any changes to DNA may have chronic and profound consequences 
[9]. Although some studies have highlighted the state of the art of 
methodologies from genotoxicological perspective [10-12], this review 
addresses this question again and to place it in somewhat a broader 
context. This review addresses the genotoxicity tests developed to date 
besides delving the latest knowledge and thinking on these cardinal 
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Abstract
Pesticide residues with genotoxic potential reach the aquatic environment and constitute a major issue that 

give rise to concerns at local, regional, national and global scales. Fish serves as an excellent genetic model for the 
genetic hazard assessment as they are very sensitive to changes in their environment. As there is a close consortium 
of DNA damage, mutation and induction of various types of genetic disorders, genotoxicity tests like chromosomal 
aberration test, micronuclei and comet assay are gaining credence and since past few decades many tests have 
been developed for evaluating genetic alterations in aquatic organisms. These tests rely on the premise that any 
change to DNA may have enduring and ardent consequences. Thus, the first aim of the genotoxicology is to describe 
the outcome produced by toxic substances in various test species, but only from the genetic point of view and to draw 
conclusions that can be extrapolated to man. This review summarizes the genotoxicity tests developed till date and 
the role of piscine model in genotoxicology. The text also delves the latest knowledge and thinking on these cardinal 
approaches for the assessment of aquatic environmental health, management and conservation, besides providing 
useful repository for the researchers especially dealing with aquatic genotoxicity tests. The perspectives for further 
research on the use of genotoxicology tests were also highlighted.
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approaches for the assessment of aquatic health, management and 
conservation. 

Genotoxicology- A Cursory Look
Genotoxicology is the systematic investigation of the effect(s) that a 

physical or chemical agent can exert on the genetic system of an organism 
and when present in our environment, interaction of such chemicals 
may give rise to cumulative effect(s), with genetic consequences for the 
future of the affected species. The genotoxicity is often confused with 
mutagenicity; but while all mutagens are genotoxic, not all genotoxic 
substances are mutagenic. The alteration can have direct or indirect 
effects on the DNA: the induction of mutations, mistimed event 
activation, and direct DNA damage leading to mutations. The primary 
objective of the genetic toxicology, however, is to detect and analyze the 
potential hazard of those agents that are highly specific for interaction 
with nucleic acids and produce alterations in genetic material at sub-
toxic concentration. Thus, its first aim is to describe the outcome 
produced by toxic substances in various test species, but only from the 
genetic point of view and to draw conclusions that can be extrapolated 
to man. The next aim is to investigate the mechanism(s) of action of 
the toxic substances, and on the basis of this knowledge to assess the 
environmental risks [13]. The beginning of the genotoxicology was 
marked by H.J. Muller’s discovery of sex linked recessive lethal mutation 
in Drosophila induced by the x-rays. The impetus in evolving the field 
of genotoxicity came from the study of Alexander-Hollaender, who led 
the foundation of the Environmental Mutagen Society (EMS), in USA 
[14]. The EMS and, in particular, its applied role in genotoxicology, has 
had a profound positive impact on many disciplines in toxicology and 
environmental risk assessment [15]. In 1973, after the establishment 
of International Association of Environmental Mutagen Societies 
(IAEMS), the beginning of active research in the field of genotoxicology 
was marked. National and international agencies became increasingly 
interested in mutagenesis, recognizing its importance not only for 
genetic diseases but also for carcinogenesis [13]. In the United States, 
agencies like National Institute of Health (NIH), National Toxicology 
Programme (NTP), Environmental Protection Agency (EPA), Food 
and Drug Administration (FDA) have supported the basic research in 
mutagenesis.

Agents that induce alterations in genetic material at sub-toxic 
exposure level are classified as genotoxic. These agents usually have 
common chemical or physical properties facilitating their interaction 
with genetic material. Most genotoxic agents damage nucleic acids at 
high exposure concentrations evoking acute and nonspecific cytotoxic 
effects in wide range of cellular processes. Thus, genetic toxicology 
has evolved to play a dual role in safety evaluation programmes. 
One role is the implementation of mutagenicity testing and risk 
assessment methods to evaluate the impact of genotoxic agents found 
in the environment, more specifically of those whose presence may 
alter the integrity of gene pool. The second role is the application of 
genetic test methods to the detection and mechanistic understanding 
of carcinogenic chemicals [16]. However, the ecological impacts 
of many genotoxins still remain poorly understood. The history of 
genotoxicology and electronic data collections may be reviewed online 
as the internet offers a wide range of digital resources for the field of 
genotoxicology. The popular Web based resources are TOXNET, 
GENE-TOX, TOXLINE, MEDLINE, PUBMED, Gateway, Entrez, 
Hazardous Substances Data Bank, CHEMIDPLUS at NLM, etc., As 
the molecular biology and computational tools improve, new areas 
such as structural activity relationship analysis, mutational spectra 
databases and toxicogenomics, which are the emerging areas within 

genotoxicology, have online resources as well [17].

Role of Piscine Model in Genotoxicology
Research on the genotoxic effects of different pollutants to fish 

has been primarily directed at determining the potential for chemical 
mutagenesis in these organisms. However, clastogenic activity may 
be a risk factor for genetic diseases in fish population, in addition to 
carcinogenesis. There is also continuing interest in developing in vivo 
genotoxicity assays with piscine model systems for assessing health 
risk to higher vertebrates [12]. Aquaculture is one of the most rapidly 
expanding food industries since fish have always been an important 
source of food for humans and, for large proportion of the population 
they represent a major source of protein [18]. On the other hand, the 
aquatic environment is a sink for many chemicals, as illustrated by the 
occasionally high pollution levels and frequencies of chemical spills, 
and fish have been the target of overt chemical pollution [1]. Fish have 
received particular attention as monitor system in the surveillance 
of aquatic ecosystem and indirectly the human health. For example, 
marine fish and shell fish, which are a major source of protein in 
many countries, are often contaminated with high concentrations of 
methyl mercury. Induction of chromosomal damage has been found 
in the lymphocytes of persons exposed to methyl mercury through 
consumption of contaminated fish [19].

In conventional eco-toxicity testing strategies, fish has been 
regarded as an indispensable component of integrated toxicity testing 
strategies for the aquatic organisms. The current guidelines at the OECD 
level are a good example of this with fish-targeted guidelines covering 
acute toxicity [20], early life stage toxicity [21] and juvenile growth test 
[22]. In particular, fish acute toxicity tests play an important role in 
environmental risk assessment and hazard classification, because they 
allow for first estimates of the relative toxicity of various chemicals in 
various species [23]. They have become widely required for the aquatic 
hazard assessment of new and existing synthetic substances as well as 
for use in the evaluation of complex effluents. Thus, in the “base set” of 
data requirements for all substances which are produced or imported in 
quantities of one ton or more per year, the acute toxicity for freshwater 
fish [20] is a mandatory component. Furthermore, no single species is 
universally sensitive to all chemicals. The single species LC50 data are 
questionable with respect to accuracy and, in more general terms, to 
toxicological relevance. Thus, it seems largely accepted that there is no 
most susceptible species that could be used in a possible conservative 
testing approach [24]. The retreat of the toxicity tests with the single 
most sensitive species is to ignore any knowledge of the complexity 
of ecosystems. Therefore, the susceptibility and tolerance of most fish 
populations may be hard to predict from single standard acute toxicity 
test. Multiple tests on various species are necessary to get an appropriate 
estimate of the range of susceptibilities to chemical substances.

The current spurt in the fish cytogenetical studies had its origin 
in the standardization of the newer techniques and in the realization 
of an immense applied value of the cytogenetic data of fish. The fish 
genotoxicity indeed stands on the threshold of a golden era with great 
prospects of its being used in applied research, such as monitoring 
of genotoxic agents [25]. Since most of the chemicals and pesticides 
used terrestrially end up finally in the aquatic system, it is the fish that 
are affected and should be monitored for these subtle but genetically 
damaging changes [26]. Induction of cytogenetic damage in fish could 
serve to monitor not only selected genotoxic agents in the laboratory, 
but also the presence of genotoxicants in surface waters and different 
aqueous ecosystems [27]. Several testing protocols have been developed 
earlier which permit evaluation of the mutagenic properties of various 
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chemicals and physical agents. Short term tests include acute toxicity, 
sister chromatid analysis, gross chromosomal changes, formation of 
micronuclei and effects on DNA. Long term studies can be carried out 
on mutagenicity and general toxicity. The modes of administration 
may be oral, intraperitoneal or in aqueous environment [28]. Exposure 
of fish to genotoxic agents may occur either by the digestive route or 
by the respiratory route following absorption of water borne chemical 
through the gills [12]. The fish is able to convert xenobiotics to active 
metabolites. It has also been successfully used to demonstrate the 
presence of genotoxic agents in the aquatic environment [12,27]. 

Applications of Genotoxicological Methods in 
Monitoring Aquatic Environment

The genotoxicity of various chemical agents in fish and other 
aquatic organisms have been assessed by several assays. These assays 
differ in their end points and specificities to explore the genotoxic 
effects induced by various toxicants at different levels in biological 
systems, but most of them are having their own limitations. 

Chromosomal Aberration Test
Chromosomal aberrations (CA) are one of the important biological 

consequences of exposure of the target organism to genotoxic agents. 
Chromosomal studies have received considerable attention in recent 
years, in part from a growing interest in the evaluation of genotoxicity 
of environmental toxicants and carcinogens. Chromosomal changes 
leading to mutations were first described in Oenothera [29]. During 
1930-1940 the CA along with their mechanism, behaviour and fate, 
following irradiation was studied in some insects like Drosophila 
and in plant systems, i.e., Allium and Tradescantia. The protocols 
gradually developed following the discovery of colchicine which was 
able to arrest cells at metaphase. However, studies of chemical effects 
of chromosomes were mainly limited to academic exercises till 1970’s, 
when concern over the deteriorating environmental situation led to an 
increasing interest for effective short term assays to screen mutagens 
and carcinogens. The cytogenetic tests emerged as a very important 
component of these systems [30].

CA may be defined as a missing, extra, or irregular portion 
of chromosome. A karyotype refers to a full set of chromosomes 
from an organism that can be compared to a normal karyotype for 
the species via genetic testing. CA usually occurs when there is an error 
in cell division following meiosis or mitosis. Cytogenic effects can be 
studied either in whole animals (in vivo) or in cells grown in culture (in 
vitro). In both cases, the animal or cell is exposed to the test substance 
and then afterwards treated with a metaphase-arresting Colchicine or 
Colcimide. Following suitable staining the metaphase cells are analysed 
microscopically for the presence of aberration. There are many types 
of CA and can be organized into two basic groups, structural and 
numerical aberrations.

The pioneering studies of Howard and Pelc [31] demonstrated 
that between two mitoses, the intervening interphase has three phases 
designated as G1 (pre-DNA synthetic), S (DNA synthesis) and G2 (post-
synthetic). Ionising radiation induced chromosome type of aberrations 
in G1, chromatid type of aberrations in G2 and most of the S phase. 
True radiomimetic chemicals, such as bleomycin and neocarcinostatin 
induce similar pattern of aberrations as ionising radiation. However, 
chemical mutagens, which do not induce directly DNA strand breaks 
but cause other lesions, were shown to induce only chromatid type 
aberrations irrespective of the DNA synthetic stage treated. An 
intervening S phase is necessary to visualize the aberrations. Short wave 

UV induces aberrations in a similar way as chemical mutagens. On this 
basis, chromosome breaking agents (clastogens) can be classified as S 
dependent and independent agents [32].

The morphological and numerical alteration of chromosome 
carrying DNA (genes) results in a quantitative alteration or 
rearrangement of genes and has been substantially studied in various 
research areas. The mammalian in vivo chromosomal aberration test 
has been successfully used for the detection of structural aberrations 
induced by the test substance in the bone marrow cells of animals, 
usually rodents [33,34]. In fact the chromosomal aberration test 
using cultured mammalian cells is one of the sensitive methods to 
predict environmental mutagens or carcinogens, and considered as 
complementary test to the Salmonella microsome assay (Ames test) by 
some workers [35]. 

Studies using Chromosomal Aberration Test in Fish
Of the estimated 20,000 fish species, a mere 500 have been studied 

for complete karyotype. In Indian context, the figure is far too less; 
the fish cytologists have determined the karyotypes of only about 125 
species to a satisfactory extent [25]. Genotoxic studies in different fish 
species using cytogenetic analysis have been reported by a number of 
workers [27]. Exposure of fish to various toxicants for a prolonged 
period, even at low levels, leads to chromosomal aberrations including 
gene alterations [25,36,37]. An advantage of chromosomal studies is 
that they reveal a measure of sub-lethal effects of xenobiotics in vivo.

Most fish typically have high chromosome numbers, greater than 
48 with small acrocentric chromosomes [38]. Given to this nature, 
different techniques have been used to perform cytogenetic studies; 
direct in vivo and indirect in vitro. Direct techniques are based on 
the use of colchicine to block quickly proliferating cell population of 
kidney, spleen and gill epithelia at the metaphase stage of the cell cycle. 
Just after the fish is sacrificed, cell samples are taken and treated for slide 
preparations [39]. The indirect test technique involve tissue cultures 
[40], that allow for the application of perfect doses of colchicine and the 
use of mitotic stimulants such as phytohaemeagglutinin (PHA). Each 
of this procedure has been optimized to obtain large number of well 
spread metaphases and used regularly for karyotypic analysis, and to 
assess the impact of genotoxic agents.

Fish as an in vivo model can be quite promising for screening 
the mutagenic properties of chemicals and environmental pollutants 
specially the agricultural runoff that routinely pollute our water bodies 
[12]. Kligerman is credited to develop a cytogenetic fish model (Umbra 
limi) in which chromosome damage was later accurately detected using 
physical and chemical agents [39]. The toxicity of different pesticides 
has been associated with changes in replication of DNA and DNA 
aberration that leads to mutation and hyperproliferation of cells due 
to local irritation [41]. In fish DNA repairing takes place at a much 
lower speed than in mammals [42], which render fish as a sentinel 
organism as far as bio-monitoring studies are concerned [4,12]. There 
is rich documented literature witnessing research on molecular level of 
different fish species showing ill effects of pesticides on genes and DNA 
levels [43-45].

The genotoxicity of contaminated water in the field and laboratory, 
for various in vivo and in vitro monitoring systems have successfully 
employed the fish cells. CA has been observed after exposure of fish 
species to different chemicals. Exposure of Channa punctatus to 
Dichlorvos (0.01 ppm) caused chromatid gaps, centromeric gaps, 
attenuation, chromatid breaks, extra fragments, and stubbed arm in 
kidney cells [25]; while exposure of the same species to fenvalerate 
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caused chromatid separation, chromatid break, deletion, fragments, 
gaps, and ring type chromosomes [46]. Interestingly longer exposure 
was associated with lower frequency of DNA aberrations. Cypermethrin 
caused changes in nucleic acids (RNA and DNA) in gonadal tissue of 
Colisa fasciatus. This test was equally effective in cultured cells and 
embryos in some parallel studies of fish and as well as on cell lines of 
Umbra limi [2,43,47].

There are several studies demonstrating the suitability of 
conventional cytogenetic techniques like chromosomal aberration test 
for the assessment of genotoxic effects of various toxicants using fish as 
bioindicator. Table 1 presents a list of some important studies, using 
fish as a model, to evaluate genotoxicity by chromosomal aberration 
test.

Micronucleus Assay (MNT)
The MNT is recognized as one of the most simple, reliable and 

successful assays for the in vivo evaluation of genotoxicity of various 
toxicants. Micronuclei (MN) were first described in the cytoplasm of 
erythrocytes more than a century ago and were called “fragment of 
nuclear material” by Howell or “intraglobularies corpuscules” in the 
terminology of Jolly in the late 18th century and early 1900. These 
structures are known by the haematologists as “Howell-Jolly bodies” 
[72]. It is now well-established that MN mainly originate from acentric 
chromosome fragments, acentric chromatid fragments or whole 

chromosomes that fail to be included in the daughter nuclei at the 
completion of telophase during mitosis because they did not attach 
properly with the spindle during the segregation process in anaphase 
[73]. These displaced chromosomes or chromosome fragments are 
eventually enclosed by a nuclear membrane and, except for their 
smaller size, are morphologically similar to nuclei after conventional 
nuclear staining. Scoring MN in interphase nuclei is technically easier 
and faster than scoring of chromosomal aberration in metaphase 
nuclei [27].

Salvadori highlighted that, whatever the type of DNA damage, MN 
is originated during cell division [74]. The DNA damage due to exposure 
to mutagenic agents is expressed in micronucleus form just after one 
cycle of cell division and is dependent on the proportion of cells under 
division. The increased interest in environmental genotoxicity studies 
went ahead with the development of a great number of tests to evaluate 
genotoxic effects in aquatic environments. Considering this, MNT, one 
of the most popular and promising tests on ecotoxicology, represents a 
cytogenetic indicator of DNA damage for over 30 years [73].

The MNT is a simple and sensitive assay for “in vivo and in vitro” 
evaluation of genotoxicity in aquatic environment as a part of the 
biomonitoring programs for several days followed by microscopic 
analysis of erythrocytes, gill, liver, kidney and fin cells [27]. Fish 
serves as useful genetic model for the assessment of pollution in 
aquatic ecosystems [75]. Fish respond to toxic agents similar to 
higher vertebrates and can allow the assessment of substances that 
are potentially hazardous to humans. Fish can, in fact, be the sentinel 
organisms that can indicate the risk of human exposure to drinking 
water contaminated with genotoxicants [72].

In India, studies on MNT have been initiated by Manna who 
reported presence of micronuclei in erythrocytes and chromosomal 
aberrations in Oreochromis mossambicus treated with aldrin, cadmium 
chloride and x-rays [76]. The percentage of micronuclei was low but 
chromosomal aberrations were higher in x-rays treated specimens. 
Das and Nanda noted an increase in micronuclei frequency in the 
erythrocytes of Heteropneustes fossilis exposed to mitomycin C and 
paper mill effluent [77]. Barat employed the MNT to screen the 
genotoxic effect of the pesticide Malathion on Channa punctatus 
at concentration of 0.033 mL/L for periods of 5,11 and 16 days and 
reported significant increase in the frequency of MN than that of the 
control [78]. MNT have been reported to be sensitive for detecting the 
genotoxic potential of the low levels of malathion pesticide in two fish 
species namely Mystus vittatus and C. punctatus in aqueous medium 
and there was also dose dependent increase in MN formation [79]. The 
study of Ateeq showed a positive dose-response relationship in fish for 
genotoxic and cytotoxic endpoints when exposed to two herbicides 
namely 2,4-dichlorophenoxyacetic acid (2,4-D) and butachlor [80]. 
The genotoxic endpoints in the study were MNT and chromosomal 
aberration test using C. punctatus as an experimental model. Ahmad 
studied the effect of pentachlorophenol (PCP) on fish genome using 
haematoxylin-eosin technique and observed that the frequency of 
micronucleated erythrocytes increased with the increase in exposure 
time [81]. Recently, Farah reported the strong genotoxic effects of 
PCP and 2,4-D in fresh water fish C. punctatus, using MNT and 
chromosomal aberration test [82]. The ameliorating effect of ethanolic 
neem leaf extract was also carried out in the study.

MNT has become a very popular tool for assessment of genotoxic 

Fish Chemical(s)/pollutants Reference

Notobranchus rechowi Ethylmethane-sulphonate and 
benzo(a)pyrene [48]

Boleophthalmus dussumieri Mitomycin-C, mercury, selenium and 
chromium [49]

Oreochromis mossambicus Malathion [50]
Cyprinus carpio Cadmium  nitrate [51]
Clarius lazera Ethylmethane sulfonate [52]
Channa punctatus Dichlorvos [25]
Heteropneustus fossilis Pentachlorophenol [53]
Oreochrochromis 
mossambicus Fenvalerate [54]

Channa punctatus Heavy metals [55]
Etroplus suratensis Methyl parathion and Phosphamidon [56]
Oreochromis niloticus and 
Clarias lazera Agricultural and industrial waste water [57]

Oreochromis mossambicus Ethylmethane sulfonate [58]
Channa punctatus Cypermethrin [59]
Mystus gulio Lambda-cyhalothrin [60]
Clarias gariepinus 2,4-dichlorophenoxyacetic acid [61]

Boleophthalmus dussumieri Bleomycin, Mitomycin-C and 
Doxorubicin [62]

Oreochromis mossambicus Carbamate pesticide methomyl [63]
Oreochromis niloticus Copper sulphate and lead acetate [64]
Channa punctatus Paper mill effluent [65]
Clarias batrachus Fluoride [66]
Oreochromis niloticus and 
Tilapia zillii Sewage discharge [67]

Channa punctatus Fenvalerate [46]
Cirrhinus mrigala Butachlor [68]
Channa punctatus Cypermethrin [37]
Cirrhinus mrigala Butachlor [69]
Cirrhinus mrigala Dyeing industry effluent [70]
Carassius carassius Endosulfan [12,71]

Table 1: Summary of some landmark genotoxicity studies in fish using chromosomal 
aberration test: a review.
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potential of various chemical agents by using fish as a model. Table 
2 shows some studies on fish, for the evaluation of genotoxicity of 
various xenobiotic agents, using MNT. 

Comet Assay
Since Singh launched the alkaline Single Cell Gel Electrophoresis 

(SCGE) protocol or comet assay to the scientific community, its uses and 
applications has been accreting [105]. The thematic areas of its current 
employment in evaluating the genotoxicology are vast, either in vitro or 
in vivo, both in the laboratory and in the field, terrestrial or aquatic. The 

comet assay developed by Singh and his coworkers was successfully 
acclimatized to fish erythrocytes with few modifications. The authors 
concluded that the assay as “extremely sensitive and should be useful in 
detecting DNA damage caused by environmental pollutants.” Since the 
past two decades, this premonitory statement has been recurrent and 
increasingly reinforced by an array of scientific publications, exploring 
a wide diversity of approaches, i.e., in vitro [106], in vivo [107], and 
as well as surveying wild native specimens [108]. Furthermore, in 
recent years we have witnessed a greater profusion of publications. For 
example in the last year (2014), 72 articles were published (according to 
a literature search on PubMed) evaluating DNA damage by comet assay 
in fish exposed to various genotoxins (Figure 1). This vast utilization of 
fish should also be regarded as a sign of primary concern of genetic 
ecotoxicologists over the health status of aquatic ecosystems.

The popularity of this test is due to its sensitivity, simplicity, cost 
effectiveness and time efficiency due to automatic scoring of the comets 
by using the image-analysis software. Furthermore, the German 
Federal Environmental Agency proposes the comet assay as a useful 
test for a reliable detection of genotoxins in surface waters. Alkaline 
comet assay is capable of detecting a wide variety of DNA damages 
such as DNA single-strand breaks, double-strand breaks, oxidatively 
induced base damages and alkali-labile DNA length: width ratio of the 
DNA mass in a variety of fish cells (erythrocytes, liver, gill and kidney) 
exposed to contaminated water samples, and the amount of damage 
increased with the duration of exposure. It is well-established that 
comet assay is applicable, virtually, to all species. A clear demonstration 
of this polyvalence is the finding that, since last two decades, this assay 
was successfully adapted to more than 90 fish species. This wide range 
of species includes mostly bony fish (Class Osteichthyes), both ray-
finned fish (Subclass Actinopterygii), the overwhelming majority of 
cases, and lobe-finned fish (Subclass Sarcopterygii) like Arapaima 
gigas [109]. The jawless fish (Class Agnatha) are represented with an 
interesting study with sea lamprey (Petromyzon marinus) describing 
the relationship between sperm DNA damage and fertilizing ability 
[110], while cartilaginous fish (Class Chondrichthyes) are completely 
unexplored. Some recent landmark studies on comet assay using 
piscine model are summarized in Table 3. In what concerns to the 
type of agent/contaminant tested, the application of comet assay in the 
field of aquatic genotoxicology has accompanied the evolution of other 
subareas of environmental toxicology involving piscine models. 

Figure 1: Graphical representation of different genotoxicity tests used to 
assess the genetic damage in fish since the last five years.

Fish Chemical(s)/pollutants Reference
Oreochromis mossambicus Aldrin, cadmium chloride and x-rays [76]

Cyprinus carpio and Tinca 
tinca

Aflatoxin B1, arochlor 1254, 
benzidene, benzo(a)pyrene and 
20-methylechloanthrene

[83]

Heteropneustes fossilis Mitocycin C and paper mill effluent: 
allylformate [77]

Esox lucius Radiocesium [84]

Oncorhynchus mykiss In situ to heavily polluted tributary of 
the River Po (Northern Italy) [85]

Carassius auratus gibelio Selenium, mercury and methyl-
mercury [86]

Salmo truttafario PCB77 [87]
Channa punctatus Malathion [78]
Oncorhynchus mykiss A textile industry effluent [88]
Cheirodon interruptus 
interruptus Pyrethroid λ-cyhalothrin [89]

Astyanax bimaculatus Cyclophosphamide, vinblastine 
sulfate [90]

Channa punctatus Malathion [79]

Oncorhynchus mykiss

Colchicine, mitomycin, 
cyclophophamide, acrylamide, 
methyl-methanesulfonate and 
N-ethyl-N-nitrosourea

[91]

Clarias batrachus 2,4-dichlorophenoxyacetic acid and 
butachlor [80]

Heteropneustes fossilis Pentachlorophenol [81]

Channa punctatus Pentachlorophenol and 
2,4-dichlorophenoxyacetic acid [82]

Anguilla Anguilla, Phoxinus 
phoxinus and Salmo trutta Metals, hydrocarbons, pesticides [92]

Cyprinus carpio Disinfectants (sodium hypochlorite, 
peracetic acid and chloride dioxide) [93]

Cyprinus carpio, Carassius 
gibelio, Corydoras paleatus

Cadmium chloride and copper 
sulphate [94]

Oreochromis niloticus and 
Tilapia rendalli Domestic sewage [95]

Scophthalmus maximus Dialkyl phthalate, bisphenol-A, 
tetrabromodiphenyl ether [96]

Oncorhynchus mykiss Mixture of heavy metals [97]
Clarias gariepinus, 
Oreochromis niloticus and 
Oreochromis aureus

Heavy metals [98]

Channa punctatus Chlorpyrifos [99]
Channa punctatus Malathion [100]
Cnesterodon 
decemmaculatus Aficida® (insecticide) [101]

Carassius carassius Agricultural runoff [102]
Apteronotus bonapartii Benzene [103]
Labeo rohita λ-cyhalothrin [104]
Carassius carassius Endosulfan [12,71]

Table 2: Assessment of genetic damage by micronucleus assay in fish after in vivo 
exposure to genotoxicants.
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Recent Developments and Correlations with other 
Biomarkers

For evaluating the environmental samples in the field of 
genotoxicology, recent advancement has been achieved [131]. 
A transgenic zebrafish has been established for the detection of 
genotoxins. It carries plasmids that are having the rpSL gene of 
Escherichia coli as a mutational target gene [132]. Another transgenic 
fish, that bikes multiple copies of a bacteriophage lambda vector 
harboring the cII gene as a mutational target, has been established by 
a technique originally developed for lambda transgenic rodents [133]. 
The p53 tumor suppressor gene, which is known to be implicated in 
cancer development, has been investigated as a possible biomarker for 
genotoxin in fish cells [134]. 

The combination of genotoxicity tests with other biomarkers to 
evaluate the genotoxin(s) based genetic damage has been assessed in 

many studies (Figure 2). Some of them show a positive correlation 
between the results given by the genotoxicity tests and other 
biomarkers. For instance, in one of our previous study [12], a positive 
correlation between oxidative stress and genotoxicity was observed on 
endosulfan (persistent organochlorine pesticide) exposure. Our data 
suggested that chronic exposure to endosulfan resulted in an increased 
oxidative stress, which was reflected by increase in LPO in erythrocytes, 
in a time and concentration dependent manner; antioxidative enzymes 
like glutathione, superoxide dismutase and catalase also fluctuated 
significantly in the fish blood of all the treatment groups. This type 
of positive correlation was also supported by many recent studies 
[37,135]. It is also interesting to note that the different genotoxicity 
tests also showed positive correlation between them. For instance, the 
studies performed by Mouchet showed a positive correlation between 
DNA strands breaks detection and micronuclei induction at most of 
the times [136,137]. This result was expected since the comet assay 

Fish Cell type Agent Exposure Concentration Response Reference

Anguilla Anguilla Erythrocytes

B(a)P
b-BF

Arochlor 1254
TCDD

0.1–50 mg/kg
0.1–50 mg/kg
0.1–50 mg/kg
0.01–2 mg/kg

+ [111]

Carassius auratus Erythrocytes PBTA-6 (dye) 3-9 h 1–100 mg/kg + [112]

Danio rerio Hepatocytes and 
gill cells

4-nitroquinoline-1-
oxide

0, 0.1, 0.3, 1.1, and 2.9 μg/l +
-
+

[113]

Clarias batrachus Erythrocytes
Herbicides:

2,4-D
Butachlor

48-96 h 25–75 ppm
1–2.5 ppm

C-R [114]

Channa punctatus Gill and kidney 
tissues Endosulfan (pesticide) 24-96 h 4–10 ppb C-R [115]

Cyprinus carpio Gill and liver 
cells MNNG 7 days 0.01–1 ppm (mg/l) + [116]

C. carpio Erythrocytes Lake water (Italy) 20 days Seasonal difference + [117]
Oncorhynchus

mykiss Erythrocytes Algal extracts
(P. fucoides) 7 days 0.5% + [118]

O. mykissO Erythrocytes Sediments from
Biobio River (Chile) 21 days PAHs

(2000–7000 ng/g d.w.) + [119]

C. auratus Erythrocytes Leachate from landfill sites (Japan) 96 h + [120]
C. auratus Erythrocytes Glyphosate 2-6 days 5–15 ppm D-R [121]

Plotosus lineatus Erythrocytes Diesel water soluble fraction (DWSF) 6–96 h; 15 days

Diesel oil added to 4 parts 
water. Water phase diluted to 
50%  WSF with dechlorinated 

water

+ [122]

D. rerio Freshly fertilized 
eggs

Sediments from Laguna lake (the 
Philippines) 3 h

430 mg/ml (100%)
(1:1); 215 mg/ml

(50%); 107.5 mg/ml (25%)
+ [123]

Geophagus 
brasiliensis, Cichla 
temensis, Hoplias 

malabaricus,
C. carpio and 

Steindachnerina 
insculpita

Erythrocytes Eutrophication Field study + [124]

O. mykiss Spermatozoa Cryopreservation + [125]

Labeo rohita Erythrocytes, 
liver and gill cells Phorate 24-96 h 0.001, 0.002 and 0.01 ppm C-R [126]

C. punctatus Gill cells Profenofos 24-96 h 0.58, 1.16 and
1.74 ppb, C-R [127]

A. anguilla Blood and liver Glyphosate-based herbicide 24-72 h 58 and 116 g l−1 + [128]

Ictalurus punctatus Ovary cell line Water and sediment from gypsum 
mining area Field study + [129]

C. catla,
L. rohita

Heart and gill 
cell lines Silver nanoparticles 96 h Environmental realistic 

concentration + [130]

(+) = DNA damage; (-) = No DNA damage; (C-R) = Concentration dependent response

Table 3: Genotoxicity studies in fish using the comet assay published during the last twelve years.
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reveals primary DNA damages and the micronucleus test measures 
unrepaired lesions that result from the non-repaired primary DNA 
damages, which are likely to be inherited by subsequent generations 
of cells.

In recent years fish also acted as sentinel organism for screening 
the natural products to evaluate their pharmacological activities [138-
140]. Fish, living in different aquatic environments also carry the risk of 
direct or indirect exposure to various xenobiotics, including pesticide 
residues [141]. In fish, pharmacological studies are still in preliminary 
stage and only few reports are available. One such report concerns 
about the antimutagenic and anticarcinogenic activity of chlorophyllin 
towards aflatoxin in rainbow trout [142]. The ameliorating effect of 
vitamin C, β-carotene and azadirachtin (principle compound of neem) 
against genotoxicity of ethyl methanesulfonate and cadmium chloride 
has been demonstrated in a fish, Oreochromis mossambicus [58]. 
Recently the antimutagenic effect of neem leaves extract in freshwater 
fish, Channa punctatus has been evaluated by cytogenetic tests [143].

In the recent years, as a sign of maturity, intensive attention 
has been devoted to the interference of non-contamination related 
factors, i.e., biotic and abiotic, with the genotoxicity expression. 
This is an important knowledge to permit an accurate assessment of 
the contribution genotoxins to the measured DNA damage. In this 
direction, hypoxia and hyperoxia, considered as critical stressors in 
the aquatic environment, were tested in Cyprinus carpio, revealing 
that both conditions increase oxidative DNA damage by 25% when 
compared to normoxic conditions [144]. Another study depicted that 
acute extreme exercise results in oxidative DNA damage in Leuciscus 
cephalus, suggesting that fish living in fast flowing contaminated 
waters are at intense risk [145]. The evaluation of the consequences of 
germ cell DNA damage on progeny outcomes has been regarded as a 
strategy to reflect potential chronic impacts of aquatic genotoxins in 

fish, since genetic damage in such cells, if unchecked, can be carried 
on to next generations. Therefore, it was concluded that a strong 
positive correlation exists between the DNA damage in sperm from 
parental fish (Salmo trutta and Salvelinus alpinus), exposed to the 
alkylating agent methyl methanesulfonate, and the incidence of skeletal 
abnormalities in the offspring; clearly indicating that DNA damage 
had been inherited [146]. The risk assessment of DNA-damaged 
germ cells in the reproduction is strictly acceptable in fish because of 
external fertilization or embryo development [125], since both gametes 
and embryos can be directly exposed to waterborne genotoxicants. 
This approach can represent an additional contribution to predict 
the impact of DNA damage on recruitment rate, progeny fitness, 
and thereby, on the population dynamics. Furthermore, it has been 
also evaluated that due to the transfer of damaged DNA to the future 
generation, the offsprings were subjected to elevated teratogenicity and 
mortality, depicting a strong relationship between genotoxicity and the 
declining wild populations [147].

Conclusion
The studies reviewed here clearly demonstrate that environmental 

genotoxicology holds the key to early detection and monitoring of 
genotoxins in aquatic environments, particularly when piscine model 
in taken into consideration. Fish serves as useful genetic model and 
the significance of assessment of genotoxicity in fish lies in the 
fact that higher vertebrates, including humans feeding on fish, are 
easily exposed to the genotoxic agents that are trapped in fish body. 
Ecotoxicological characteristics of fish such as its wide distribution and 
availability throughout the year, easy maintenance in the aquaria, cost 
effectiveness and commercial importance make fish an excellent model 
for genotoxicity studies. Furthermore, fish cells retain important traits 
like poikilothermic behaviour, unique xenobiotic metabolism, and low 
rate of repair mechanism [148], thus, making fish as sentinel organism 
for biomonitoring studies. 

Figure 2: Pictographic summarization of different genotoxic methods to evaluate the genetic damage in piscine model and their correlation with other biomarkers.
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Piscine model have been used in several eukaryotic genotoxicity and 
mutagenicity tests, which include its use in CA test, MNT and above all 
comet assay. Based on the studies reviewed, MNT has been widely used 
to screen the genotoxic effects of the pesticides. It has several advantages 
over CA test such as additional detection of aneugens, technically 
less demanding, ease of scoring and possibility of automation and 
micronuclei arise from two important types of genetic damage, i.e., 
clastogenesis and spindle disruption. Furthermore, MNT is often more 
sensitive cytogenetic test with the promising results. Comet assay has 
broad applicability when applied to fish, providing a sensitive, reliable, 
rapid and versatile system for the study of environmental genotoxicity. 
However, one of the virtues of this assay is unquestionably its cost-
effectiveness, compared to other genotoxicity techniques. Many 
disciplines in the aquatic genotoxicology are integrated in the task 
of identifying and comprehending each toxicant mode of activity in 
organisms, which is responsible for clinical signs of intoxication and 
death. The combined use of genotoxicity biomarkers, especially the 
comet assay with other biomarkers as well as standardization and inter-
laboratory calibration are recommended to further strengthen its use 
in environmental assessment studies. 

The elucidation of the type of DNA damage that is generated 
and the critical monitoring of DNA repair through lesion-specific 
enzymes during the comet assay, will add value to this assay in future 
genotoxicological studies for monitoring and risk assessment of aquatic 
organisms. Furthermore, it could also assist to evaluate the potential 
causes of their declining populations in specific environments. Despite 
the evidence here highlighted toward a functional association between 
genotoxicity measured at individual level and a negative impact at 
population level, so far, DNA damage measured by comet assay in fish 
has not succeeded to garner enough recognition to be incorporated 
into national and international risk assessment protocols, even though 
the comparison between this and other potential biomarkers as already 
showed higher efficiency in the distinction between impacted and 
reference sites. The unequivocal and convincing demonstration of its 
ecological relevance is probably the greatest challenge to comet assay 
on the next decade.

Overall, these few examples clearly illustrate that the application 
of the genotoxicity tests, particularly, the comet assay in genotoxicity 
assessment remains as purposeful as challenging. The swift integration 
of new methodological improvements to the comet assay protocol 
like DNA repair enzyme modifications shows that genotoxicologists 
are constantly improving approaches and protocols. Furthermore, it 
must be noticed, as showed by the reviewed studies, that ecotoxicology 
is probably one of the most diversified and complex field of research 
where genotoxicity assessment is surveyed as routine. As such, one may 
expect another decade of successful, although constantly improving, 
application of the genotoxicity.

In spite the fact that the new technologies are emerging, there is still 
no single ultimate solution for monitoring water quality. Consequently, 
it is important for the researchers to determine the most suitable 
genotoxicity tests that suits the needs and the facilities of their research 
institute, and then to select the available test model, as in research we 
have to always start with what we have.
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