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Abstract  

Background One useful application of pattern matching algorithms is identification of major histocom-
patability complex (MHC) ligands and T-cell epitopes. Peptides that bind to MHC molecules and interact 
with T cell receptors to stimulate the immune system are critical antigens for protection against infectious 
pathogens. We describe a genomes-to-vaccine approach to H. pylori vaccine design that takes advantage 
of immunoinformatics algorithms to rapidly identify T-cell epitope sequences from large genomic datasets. 

Results To design a globally relevant vaccine, we used computational methods to identify a core genome 
comprised of 676 open reading frames (ORFs) from amongst seven genetically and phenotypically diverse 
H. pylori strains from around the world. Of the 1,241,153 9-mer sequences encoded by these ORFs, 
106,791 were identical amongst all seven genomes and 23,654 scored in the top 5% of predicted HLA 
ligands for at least one of eight archetypal Class II HLA alleles when evaluated by EpiMatrix. To maximize 
the number of epitopes that can be assessed experimentally, we used a computational algorithm to in-
crease epitope density in 20-25 amino acid stretches by assembling potentially immunogenic 9-mers to be 
identically positioned as they are in the native protein antigen. 1,805 immunogenic consensus sequences 
(ICS) were generated. 79% of selected ICS epitopes bound to a panel of 6 HLA Class II haplotypes, repre-
senting >90% of the global human population.  

Conclusions  The breadth of H. pylori genome datasets was computationally assessed to rapidly and care-
fully determine a core set of genes. Application of immunoinformatics tools to this gene set accurately pre-
dicted epitopes with promising properties for T cell-based vaccine development.  

Background  
A genomes-to-vaccine strategy for rational vaccine 

design rests on the premises that (i) a minimal set of 

immunogens capable of inducing a robust and sus-

tained immune response to a pathogen can be dis-

covered using immunoinformatics, and (ii) admini-

stration of these immunogens, in a suitable delivery 

vehicle together with adjuvant, will result in       

protection from disease. Our approach is to identify 

the minimal, essential information needed to 

achieve this goal. That data is encoded, in part, by T

-cell epitopes, short peptide sequences displayed by 

antigen presenting cells to T cells, critical mediators 

of adaptive immunity. Four major steps comprise 

our genomes-to-vaccine strategy, which can be 

thought of as a funnelling process (Figure 1): (i) 

Genomes are mined using computational tools to 

identify genes that encode proteins with promising 

vaccine antigen properties such as secretion, up-

regulated expression, immunogenicity and viru-

lence; (ii) immunoinformatics tools are then used to 

map protein sequences for short, linear putative T-

cell epitopes; (iii) sequences are synthesized as pep-

tides and evaluated for human leukocyte antigen 

(HLA) binding and antigenicity in survivors of in-

fection or vaccinees and (iv) prototype epitope-

based vaccines are evaluated for immunogenicity 

and efficacy in humanized mice. We adopted this 

genomes-to-vaccine strategy to design a vaccine 

against Helicobacter pylori (H. pylori), a motile, 

gram-negative spiral bacterium that colonizes gas-

tric mucosa. Approximately one-half of the world‟s 

population is infected with H. pylori, and the infec-

tion persists for life unless treated with combination 
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antimicrobials. Natural immune response does not 

eliminate infection nor does it confer protective im-

munity against re-infection after antimicrobial ther-

apy. Chronic infection may lead to development of 

chronic     gastritis, peptic ulceration, and even gas-

tric adenocarcinoma and lymphoma; hence the need 

for a protective vaccine [1]. 

 

Here, we set out to characterize the human T cell 

response to H. pylori infection using an informatics-

driven epitope mapping approach. H. pylori im-

munopathogenesis has been thoroughly character-

ized, providing important insights into how this bac-

terial pathogen interfaces with the host immune sys-

tem and evades host defenses, allowing it to persist 

in the gastric environment [2]. How H. pylori man-

ages to trigger epitope-specific immune responses at 

the molecular level is not yet well-understood and 

requires further investigation in order to develop 

prophylactic and therapeutic vaccines. The avail-

ability of sequenced H. pylori genomes and immu-

noinformatics tools capable of their analysis enables 

experimental analysis of sequences that directly 

stimulate and inhibit multi-functional human T cell 

responses.  An example of the use of this genomic 

sequence data would be to predict how T cells will 

respond to stimulation by H. pylori sequences that 

have homologues in the human genome and the hu-

man gut microbiome in order to understand the im-

pact of H. pylori infection on autologous and het-

erologous immunity. This information is especially 

valuable to rational vaccine design because vaccines 

should not contain cross-reactive epitopes that can 

break self-tolerance and lead to autoimmune dis-

ease. 

In preliminary studies, we computationally identi-

fied T-cell epitopes from the H. pylori J99 and 

26695 genomes that stimulated long-lived immune 

responses and cleared infection in a p27 knockout 

mouse model of H. pylori infection [3,4]. Here, in 

the first phase of a more expansive and translational 

study, we computationally screened seven H. pylori 

genomes to identify T-cell epitopes that may serve 

as human vaccine immunogens. This involved mul-

tiple steps in a funnelling process that progressively 

narrowed down the search universe to yield a set of 

sequences for experimental evaluation: (i) Open 

reading frame (ORF) amino acid sequences were 

compared across genomes to identify conserved 

proteins. (ii) 9-mer sequences completely conserved 

across all genomes in this protein subset were iden-

tified using the Conservatrix algorithm. (iii) Among 

these sequences, potential HLA binders were pre-

dicted using the EpiMatrix epitope mapping algo-

rithm. (iv) Immunogenic consensus sequences (ICS) 

were constructed using EpiAssembler. (v) Se-

quences bearing homology to human sequences 

were triaged. (vi) Finally, ICS were selected for ex-

perimental validation and (vii) assayed for binding 

to multiple HLA alleles. 

 

Results and Discussion  
H. pylori genomes 

We assembled the seven H. pylori genomes avail-
able in the public domain as of September 2009 in 
order to represent, as widely as possible, the breadth 
of genetic diversity of H. pylori strains available at 
the time of our computational analysis. Because 
different bacterial genotypes with a broad range of 
chronic inflammatory sequelae predominate in dif-
ferent human populations, vaccination with immu-
nogens common to these strains may provide effec-
tive protection worldwide.  

The 26695 strain of H. pylori was derived from a 
gastritis patient in the United Kingdom. Prior to 
sequencing, it underwent repeated subculturing. The 
26695 genome was the first to be sequenced and has 
since been the most thoroughly H. pylori genome 
characterized [5]. Therefore, 26695 served as the 
reference genome for comparison to the other six in 
our study. 

H. pylori strain J99 was isolated from a patient with 

duodenal ulcer disease in the USA in 1994 [6]. It 

underwent little subculturing prior to sequencing. 

The B128 strain was isolated from a patient with 

gastric ulcer disease, while 98-10, which is most 

closely related to H. pylori strains of East Asian 

Figure 1 - Genomes-to-

Vaccine Strategy. 

Genomes are mined using 

computational and experimen-

tal tools to identify genes that 

encode proteins with promis-

ing vaccine antigen properties 
such as secretion, up-

regulated expression and 

virulence. In silico. Immu-

noinformatics tools are then 

used to map protein sequences 

for short, linear putative T cell 

epitopes. In vitro. Candidates 

are synthesized as peptides 
and evaluated for MHC bind-

ing and antigenicity. In vivo. 

Prototype epitope-based 

vaccines are evaluated for 

immunogenicity and protec-

tion in humanized mice. Used 

with kind permission from 
Medicine and Health Rhode 

Island [25]. 
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origin, was isolated from a gastric cancer patient in 

Japan [7]. The HPAG1 strain was isolated from a 

Swedish patient with chronic atrophic gastritis, an 

inflammatory condition of the gastric mucosa, 

which is a precursor to lesion development and gas-

tric adenocarcinoma [8]. Shi470 was cultured from 

the gastric antrum of an Amerindian resident of a 

remote Amazonian village in Shimaa, Peru [9]. This 

strain is more closely related to strains from East 

Asia than other geographic regions, and is thought 

to represent the strains of Native Americans prior to 

European conquest. It represents the first com-

pletely sequenced strain that is not from an ethnic 

European. The G27 strain is a laboratory strain ex-

tensively used in H. pylori research, originally iso-

lated from the stomach of an Italian patient [10]. 

Thus, the genomes selected for this analysis repre-

sent geographically diverse isolates, of both labora-

tory and clinical origin, and are representative of the 

varied clinical outcome of H. pylori infection. 
  

Core genome determination 

We set out to discover vaccine immunogens com-

mon to the seven H. pylori strains in order to design 

a vaccine that will broadly cover H. pylori strains 

worldwide. To do this, we first identified the H. py-

lori core genome in a two-phased process involving 

comparative amino acid frequency followed by se-

quence similarity analyses. For every ORF in the 

reference strain (26695), ORFs in each of the other 

strains were screened for relatedness by amino acid 

composition. While composition is not as precise a 

measure of relatedness as sequence identity, the in-

formation it offers provides a rapid first-pass screen. 

We used the SΔn algorithm with a cut-off score of 

30, below which a query ORF was considered to be 

related to the reference strain ORF [11]. Related 

ORFs were then analyzed for sequence similarity by 

sequence alignment of the first 200 amino acids of 

the reference and query ORFs using the GOTOH82 

algorithm and BLOSUM50 matrix [12,13]. Analysis 

beyond the first 200 amino acids is not only compu-

tationally time intensive but also inefficient because 

it does not provide additional match-confirmation 

that could or could not be found before the 200 

amino acid cut-off. A query ORF with >80% se-

quence identity as compared with the reference 

ORF was considered a match. Matches for each ref-

erence ORF were then counted across genomes. 

Every ORF which had a match of >80% sequence 

identity in each of the 6 query genomes - represent-

ing conservation in all 7 genomes - was designated 

a member of the „core genome‟ and therefore se-

lected for downstream analysis. We found 676 

ORFs conserved across all seven genomes, repre-

senting 43% of the reference genome and corre-

sponding to a total of 4,732 ORFs out of 10,921 

ORFs in all seven genomes (Figure 2). With refer-

ence to the 26695 strain, 917, 1061, 1138, 1206 and 

1282 ORFs are found, respectively, in at least five, 

four, three, two or one of the other genomes. Of the 

1576 total ORFs in the 26695 genome, 294 (19%) 

are strain-specific (Figure 3).  

 

We note that the magnitude of the H. pylori core 

genome in the present study differs significantly 

from previously published studies. Using molecular 

biology methods or computational analyses, includ-

ing permutations of BLAST or application of 

BLAST combined with spatial analyses (e.g. 

synteny analysis), the number of ORFs comprising 

the core genome was determined to be approxi-

mately 1200 in previous studies [7,14,15,16]. As the 

total number of ORFs is close to double the 676 

reported here, we undertook a comparison of our 

dataset with select datasets representative from 

other studies to understand the discrepancy.  

The first determination of an H. pylori core genome 

was made by Salama et al. in 2000, which identified 

1281 sequences common to 15 strains using a whole 

genome microarray [14]. Five years later Gress-

mann et al. undertook a much larger sample size, 

testing 56 „representative strains‟, identified as a 

representative sample of an 800 strain unpublished 

data collection [15].  This study used microarray 

hybridization to find 1111 core genome sequences 

in a „virtual genome‟ representing 98% coverage 

Figure 2 - Informatic-Driven Reduction of Immuno-Relevant Sequence 

Space. 

Using comparative amino acid frequency and sequence similarity analyses, 

seven H. pylori genomes comprising 10,921 ORFs are reduced to a core 

subset of 4,732 ORFs. Of 1,241,153 peptides parsed, 106,791 were identi-

cal amongst all seven genomes, of which 23,654 are predicted to bind to at 

least one Class II HLA allele. These served as input into EpiAssembler, 
constructing 1,807 ICS, two of which were found to be homologous to the 

human genome by BLAST analysis.  
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overlap of the 26695 and J99 genomes. In 2009, 

McClain et al. identified 1237 core genes in 5 pub-

licly available genomes using a BLAST score ratio 

algorithm [7]. 

Finally, Fischer et al. in 2010 took the identification 

of an H. pylori core genome one step further by ap-

plying both homology via BLAST and synteny, 

conserved gene order, to find ~1200 core sequences 

in 7 strains [16].  

Had the Gressmann et al. study not utilized a 

„synthetic‟ genome sequence, it would have pro-

vided for an excellent reference to which our dataset 

could have been compared, as their 56-strain sample 

represented a collection of 800 strains. Instead, we 

compared our core genome with McClain et al., 

which utilized 5 strains, all of which were analyzed 

in the present study, and similarly employed 26695 

as the reference genome. Furthermore, McClain et 

al. used BLAST in the statistical analysis, therefore 

permitting a meaningful and efficient comparison of 

the resulting datasets.  We found that 672/676 

(99%) ORFs in the core genome of the present 

study are found in the McClain et al. dataset. Inter-

estingly, we found that the four ORFs not identified 

by McClain et al. (26695 Accession NP_206841.1, 

NP_207995.1, NP_208072.1 and NP_208329.1) are 

92%-98% identical in the seven genomes analyzed 

here. It is unclear how these highly similar genes 

were overlooked.  

We attribute the large difference in size between the 

two datasets to factors involving the phased method 

of triaging unrelated sequences in the present study 

by amino acid relatedness first and then sequence 

similarity, as well as the effect of the geographical 

distribution of strains upon composition of the core 

genome. First, a limited analysis of the ORFs      

present in McClain et al. but not identified in this 

study showed that the amino acid relatedness screen 

triaged genes that differed significantly in sequence 

at the N- or C-terminus across genomes as a result 

of gene “truncations.” The differences accounted for 

sufficiently lowered amino acid relatedness over 

entire ORF sequences thereby raising SΔn scores 

over the cut-off. Thus, the first screen for ORF simi-

larity accounts for discarded sequences. Further-

more, our higher stringency requirement of >80% 

sequence identity in comparison with the BLAST 

score ratio of 0.4 employed by McClain et al., 

which represents a 30% sequence identity over 30% 

of sequence length, may have resulted in a greater 

number of sequences of core sequences to be in-

cluded in McClain et al. 

Additionally, geographical diversity among H. py-

lori strains may account for differences in the core 

genome datasets. Of the 1237 core genes identified 

in McClain et al., a subset of alleles was highly di-

vergent in the East Asian strain 98-10, encoding 

proteins that exhibited <90% amino acid sequence 

identity when compared to the corresponding pro-

tein in the 4 other strains analyzed; similar results 

were shown for the J99 strain which is most closely 

related to H. pylori isolates from West Africa. Thus, 

the McClain et al. dataset contained some highly 

divergent strain sequences with <90% sequence 

identity present in 98-10 and J99 strains, many of 

which would not have met the 80% cut-off in this 

study.  Moreover, our core dataset included se-

quences present in two strains of East Asian origin, 

98-10 and Shi470, the latter of which is a Peruvian 

strain, but which is more closely related to strains 

from East Asia. The high sequence divergence in-

herent to East Asian H. pylori strains could also 

have accounted for the smaller size of our core. 

Therefore, choice of strain and variation in se-

quence composition of strains selected for analysis 

affect the resulting size of core genome determined.  

 

Conserved 9-mer search 

9-mer sequences parsed out of the 676 core genome 

ORFs from the reference strain were searched for 

identically parsed 9-mers in the matching ORFs of 

query strains using the Conservatrix algorithm [17]. 

A 9-amino acid frame was used because it is the 

length of a peptide that fits into the HLA binding 

pocket. We found that out of the 1,241,153 9-mers 

parsed, 106,791 were identical amongst all seven 

genomes (Figure 2). We next examined the poten-

tial immunogenicity of these sequences using com-

putational methods depicted below. 

Figure 3 - H. pylori Core and Dispensable Genomes. 

Using H. pylori 26695 as a reference strain, the genomes of seven H. pylori 

strains were compared to discover a core set of ORFs for identification of 

vaccine immunogen candidates. This Venn diagram illustrates the number 

of ORFs in 26695 that are common to at least one other genome. ORFs 

common to all genomes compose an H. pylori core genome. 
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Epitope mapping 

Each of the 106,791 9-mers was scored for pre-

dicted binding affinity to a panel of 8 Class II HLA 

alleles using EpiMatrix, a matrix-based algorithm 

for mapping T-cell epitopes [18]. The algorithm 

was previously benchmarked against similar predic-

tion tools, including SMM-align, IEDB ARB, TEPI-

TOPE, MHCPRED among others, and shown to 

have a sensitivity rating, on average, for HLA Class 

II predictions of 77%, which is 5-17% greater than 

the others [19]. A total of 23,654 9-mer sequences 

had a z-score ≥1.64 for at least one Class II HLA 

allele (Figure 2). The sequences were ranked ac-

cording to the cumulative EpiMatrix score for all 8 

alleles to serve as a starting point for the construc-

tion of immunogenic consensus sequences. 

 

ICS construction 

Immunogenic consensus sequences were built by 

EpiAssembler, an algorithm that maximizes epitope 

density in a 20-25 amino acid stretch by assembling 

potentially immunogenic 9-mers identical to their 

placement in the native protein antigen [17]. The 

basis for this approach to vaccine immunogen de-

sign lies in the observation that immunogenicity is 

not randomly distributed throughout protein se-

quences but instead tends to cluster. Designing vac-

cine immunogens with increased epitope density 

improves the possibility for epitope presentation to 

T cells in the context of more than one HLA allele, 

thereby broadly covering an HLA diverse human 

population. EpiAssembler produced 1,807 ICS from 

the input sequences (Figure 2). The number of 9-

mer epitopes per ICS ranges from 4 to 11 with an 

average of 6.52 ± 1.23 (standard deviation). Be-

cause a single 9-mer epitope may bind more than 

one HLA allele, the number of predicted 9-mer epi-

topes across all 8 alleles was counted for each ICS. 

The number of hits per ICS ranges from 12 to 55 

with an average of 22.72 ± 6.49 (standard devia-

tion).  

 

Human cross-reactivity 

To avoid potential cross-reactivity with human se-

quences that may stimulate autoimmunity, epitopes 

that are homologous to components of the human 

genome were triaged while the remaining “foreign” 

epitopes (i.e. those lacking homology to human) 

were considered safe to include in vaccine formula-

tions. As a standard practice, any peptide that shares 

greater than 70% identity (or more than 7 identities 

per 9-mer frame) with sequences contained in the 

human proteome is eliminated from consideration. 

Among the 1,807 ICS, two were significantly ho-

mologous to human sequences and were therefore 

excluded from the set of potential vaccine immuno-

gens (Figure 2).  

Cross reactivity with human gut microbiota is an 

equally important consideration in selection of vac-

cine immunogens. A major goal of the Human Mi-

crobiome Project, an NIH roadmap initiative, is to 

sequence and publish the genomes of gut microbi-

ota. A BlastiMer analysis of the ICS sequences will 

be performed as these genome sequences become 

available. 

 

ICS selection 

ICS to be studied by experimental methods in order 

to validate computational predictions must have 

Figure 4 - COGs Classification Analysis. 

COGs analysis of the H. pylori 26695 genome, core genome subset, and ICS. Metabolic (36% Whole Genome (WG), 26% Core Genome (CG), 53% ICS). 

Cellular processes/signalling (20% WG, 21% CG, 17% ICS). Poorly characterized (12% WG, 12% CG, 9% ICS).  Information storage/processing (17% WG, 

15% CG, 10% ICS). Not in COGs (15% WG, 25% CG, 11% ICS).  



 

Ardito et al. Immunome Research 2011, 7:2:1                

http://www.immunome-research.net/          

         Page 6 of 12 

physicochemical properties compatible with peptide 

synthesis and experimental conditions. Hydropho-

bicity is an important parameter to consider because 

hydrophobic peptides can be difficult to synthesize, 

purify and solvate in aqueous buffers. To address 

this concern, the average hydropathy score for all 

the amino acids in an ICS was calculated [20]. Of 

the 1,805 ICS, 28 had hydrophobicity scores >2 and 

were removed from further consideration. 

The remaining 1,777 ICS clusters were then ranked 

according to EpiMatrix ICS score, as calculated by 

summing the individual EpiMatrix scores for all 9-

mer epitopes scoring at least 1.64 for all 8 Class II 

HLA alleles. The top 120 clusters that were selected 

are comprised of sequences that originate from 101 

distinct ORFs with EpiMatrix scores ranging from 

51.59 to 104.18. With regard to immunogenic se-

quences previously identified, none of the ICS clus-

ters contain T-cell epitopes deposited in the Immune 

Epitope Database (http://www.immuneepitope.org/) 

and are therefore novel potential vaccine candidates.  

According to the clusters of orthologous groups 

(COGs) classification system, these ORFs consist of 

53% metabolic, 17% cell process and signaling, 

10% information storage and processing and 9% 

poorly characterized proteins (Figure 4) [21; http://

www.ncbi.nlm.nih.gov/sutils/coxik.cgi?gi=128]. In 

comparison with the distribution of ORFs for the 

entire 26695 genome, metabolic proteins are strik-

ingly over-represented in the ICS dataset, while the 

other protein groups are closer in proportion. It is 

possible that H. pylori metabolic proteins, as a 

group, are more divergent than the others. Indeed, 

metabolic proteins of Salmonella enterica subspe-

cies typhi and typhimurium have the greatest ten-

dency for divergence, while their information proc-

essing proteins are least likely to evolve [22]. Thus, 

greater sampling of sequence space during evolu-

tion to acquire new metabolic functions may come 

at the detriment of host immune evasion with an 

increase in potential T cell immunogenicity. We 

further investigated whether the greater frequency 

of epitopes originating in metabolic proteins was 

pre-determined by core genome ORF selection and 

found that metabolic proteins are under-represented 

in the core genome in comparison with the whole 

genome (Figure 4). Thus, over-representation of 

metabolic proteins among ICS clusters suggests that 

they may be a special class of potential vaccine im-

munogens.  

Because machine generated ICS are not optimally 

designed for peptide synthesis, the top 120 se-

quences were reviewed and “hand-edited” before 

attempting synthesis. This involved (i) dividing ICS 

where two distinct regions of immunogenic density 

were observed and (ii) trimming sequences to center 

around high scoring 9-mers for >3 HLA alleles. 

Hand-edited sequences that raised hydrophobicity 

scores over the cut-off described above were tri-

aged. In total, 109 ICS with EpiMatrix scores     

ranging from 12.29 to 88.93 were submitted for 

peptide synthesis and 78 were successfully pro-

duced. 

 

HLA binding 

ICS peptides were assayed in vitro for their capacity 

to bind multiple HLA types, including DRB1*0101, 

DRB1*0301, DRB1*0401, DRB1*0701, 

DRB1*1101 and DRB1*1501. Of the 468 ICS pep-

tide-HLA binding interactions assayed, 54% dis-

played strong binding (estimated IC50<10 M), 24% 

showed moderate or weak binding (10 

M<estimated IC50<100 M) and 21% displayed no 

binding (estimated IC50>100 M) (Table 2). 

All peptides bound to at least one of the HLA al-

leles for which they were predicted to bind, 97% 

bound to two alleles, 87% bound to three, 79% 

bound to four, 65% bound to five and 44% bound to 

all. These data support the use of this approach for 

the high-volume genomic screening for vaccine 

candidates. Therefore, we will proceed to the next 

step in the genomes-to-vaccine development proc-

ess with these highly conserved, highly promiscu-

ous candidate epitopes. 

We analyzed the proportion of HLA binding pep-

tides that were correctly predicted by immunoinfor-

matic methods to assess the concordance of compu-

tational predictions and experimental results. We 

classified each binding reaction categorically as ei-

ther a true positive, false positive, or true negative 

with positive predictions defined as epitopes scoring 

≥1.64 on the EpiMatrix Z-scale and binding HLA at 

IC50<100µM. All but three ICS peptides were pre-

dicted to bind all HLA alleles assayed. As the three 

ICS below the EpiMatrix cut-off for a positive bind-

ing prediction failed to bind HLA in vitro, there 

were no false negative results in these assays. Over-

all, the proportion of true positive predictions is 

79% (Figure 5). With respect to each allele assayed, 

the values are 81% for DRB1*0101, 63% for 

DRB1*0301, 62% for DRB1*0401, 88% for 

DRB1*0701, 94% for DRB1*1101 and 87% for 

DRB1*1501. Categorical evaluations of each pep-

tide‟s EpiMatrix prediction association to in vitro 

HLA-binding were collected into a 2x2 contingency 

table. By chi-squared test, the association between 

immunoinformatic predictions (EpiMatrix Z-score 

≥1.64) and HLA-binding results (IC50<100µM) is 

highly significant (p = 0.0007).  
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Table 1  - Top 120 Immunogenic Consensus Sequences 

SEQUENCE refers to the amino acid sequence of the given ICS. SOURCE PROTEIN refers to the protein description from which each ICS is derived. 26695 

ACCESSION NUMBER refers to the GenBank accession number source of the initial 9-mer “seed” for each ICS. EPX CLUSTER SCORE refers to the 
overall sum of significant scores aggregated and normalized. 
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Table 1  - Top 120 Immunogenic Consensus Sequences (continued) 

SEQUENCE refers to the amino acid sequence of the given ICS. SOURCE PROTEIN refers to the protein description from which each ICS is derived. 26695 

ACCESSION NUMBER refers to the GenBank accession number source of the initial 9-mer “seed” for each ICS. EPX CLUSTER SCORE refers to the 
overall sum of significant scores aggregated and normalized. 
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Table 2  - Validation of HLA Binding Prediction in HLA Binding Assay 

PEPTIDE ID refers to a four-digit identifier for each ICS peptide. 26695 ACCESSION NUMBER refers to the GenBank accession number source of the 

initial 9-mer “seed” for each ICS peptide. SEQUENCE refers to the amino acid sequence of the given ICS peptide. DRB1 ALLELES refers to the alleles 
tested for ICS peptide binding; estimated binding affinities are IC50 <1 µM (dark gray), 1 µM < IC50 < 10 µM (medium gray), 10 µM < IC50 < 100 µM (light 

gray), IC50 >100 µM (white). 
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A number of possible explanations may account for 

the lack of accord between positive predictions and 

actual binding, including peptide folding, peptide 

aggregation under assay conditions, or the predic-

tive accuracy of immunoinformatic algorithms. In a 

large, retrospective comparison of the EpiMatrix 

with epitope mapping algorithms in the public     

domain, EpiMatrix was >75% accurate across all 

the HLA Class II alleles studied here, which is as 

accurate as or more accurate than other epitope pre-

diction tools [18]. Therefore, it is likely that a sig-

nificant part of the discrepancy between predictions 

and HLA binding is due to peptide design and 

physical properties. 

 

 

Conclusions  

 

Using a genomes-to-vaccine approach described 

here, we were able to systematically narrow down 

over 1.2 million 9-mer sequences from seven bacte-

rial genomes to an experimentally feasible number 

of potential vaccine candidates that demonstrate the 

capacity to bind HLA. In so doing, we derived a 

conservative estimate of the H. pylori core genome 

in comparison with previously reported core ge-

nomes. Furthermore, we observed that metabolic 

proteins might comprise a special group of H. pylori 

vaccine immunogens; the same may be the case in 

other microbial species but requires further investi-

gation.  

In future studies, we will further validate the ICS 

peptides by evaluating their antigenicity through 

activation of T cells cytokine production in periph-

eral blood and gastric biopsy specimens obtained 

from H. pylori-infected patients. In addition, ICS 

peptide immunogenicity will be evaluated in vivo 

using humanized mice that express HLA DR1, DR3 

and DR4. Broadly antigenic and immunogenic ICS 

will then be concatenated to generate a multi-

epitope sequence for production of DNA and pro-

tein vaccines that will be assessed for immuno-

genicity and protection against H. pylori infection. 

 
Methods 
Immunoinformatics 

Seven H. pylori genomes were downloaded from 

the National Center for Biotechnology Information 

(www.ncbi.nlm.nih.gov) in September 2009, includ-

ing Helicobacter pylori 26695 (Accession 

NC000915; 1576 ORFs), Helicobacter pylori J99 

(Accession NC000921; 1489 ORFs), Helicobacter 

pylori HPAG1 (Accession NC008086; 1536 ORFs), 

Helicobacter pylori G27 (Accession NC011333; 

1493 ORFs), Helicobacter pylori Shi470 

(Accession NC010698; 1569 ORFs), Helicobacter 

pylori B128 (Accession NZABSY00000000; 1731 

ORFs) and Helicobacter pylori 98-10 (Accession 

NZABSX00000000; 1527 ORFs). Sequences were 

downloaded in GenPept format, where the accession 

number and corresponding amino acid sequence 

were exported and then uploaded to an in-house 

database. Conservatrix was used to parse input se-

quences into 9-mer strings and to search the result-

ing dataset for matching segments. A frequency ta-

ble showing each unique segment in the dataset and 

the number of times that the sequence occurs was 

produced. The EpiMatrix algorithm was used to 

compare the amino acid sequence of each given 9-

mer peptide to the coefficients contained in the ma-

trix and produced a raw score. In order to compare 

potential epitopes across multiple HLA alleles, Epi-

Matrix raw scores were converted to a normalized 

“Z” scale. Peptides scoring ≥1.64 on the EpiMatrix 

“Z” scale (typically the top 5% of any given sam-

ple), are likely to be MHC ligands and are consid-

ered “hits”. Class II epitopes were identified for 8 

archetypal alleles that cover >90% of the human 

Figure 5  - Comparison of Computa-

tional Predictions and HLA Binding 

Assay Results. 

All ICS are predicted to bind at least one 

HLA allele tested in assay but not all are 

predicted to bind all six alleles. True posi-

tives represent sequences predicted to be 
HLA ligands (EpiMatrix Z-score ≥1.64) 

and bind in assay (IC50 <100 M). False 

positives are sequences predicted to bind 

but do not in assay. True negatives are 

sequences not predicted to bind and do not 

bind in assay. No sequences that bound 

HLA in assay were predicted not to bind, 

thus there are no false negatives. With 
respect to each individual HLA allele, true 

positive predictions are 81% for 

DRB1*0101, 63% for DRB1*0301, 62% 

for DRB1*0401, 88% for DRB1*0701, 

94% for DRB1*1101, and 87% for 

DRB1*1501. Overall, binding predictions 

were confirmed in 79% of cases. 
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populat ion  (DRB1*0101,  DRB1*0301, 

DRB1*0401, DRB1*0701, DRB1*0801, 

DRB1*1101, DRB1*1301 and DRB1*1501) [23].  

ICS construction begins with selecting a single 9-

mer sequence to “seed” growth. EpiAssembler 

searches for the highest-scoring segments that natu-

rally overlap either the N-terminal or C-terminal of 

the “seed” epitope. Each time an overlapping seg-

ment is identified, it is added to the seed sequence. 

The extended sequence then becomes the new 

“seed” sequence and the process is repeated until 

the resulting sequence is no greater than 25 amino 

acids long. The significant EpiMatrix scores con-

tained within these ICS clusters are then aggregated 

to create an EpiMatrix cluster immunogenicity 

score. The choice of seed sequence at the beginning 

of each individual ICS construction was the highest 

ranking EpiMatrix-predicted epitope remaining in 

the list generated by epitope mapping. The Blas-

tiMer algorithm, which automates the process of 

submitting sequences to the BLAST engine at NCBI 

(www.ncbi.nlm.nih.gov/blast) and records results in 

a database that can be browsed, exported, or ren-

dered in a report format, was used to search the non-

redundant human genome database. 

Peptide Synthesis 

Peptides were manufactured using 9-

fluoronylmethoxycarbonyl (Fmoc) chemistry by 

21st Century Biochemicals (Marlboro, MA). Pep-

tides were purified to >80% as ascertained by ana-

lytical reversed phase HPLC. Peptide mass was 

confirmed by tandem mass spectrometry. 

 

HLA Binding Assay 

Class II HLA binding assays were used to screen 

predicted epitope sequences for binding multiple 

HLA alleles. We employed a competition-based 

HLA binding assay initially described by Steere et 

al. [24]. In 96-well plates, non-biotinylated test pep-

tides at three concentrations (1, 10 and 100 μM) 

competed for binding to soluble Class II molecules 

(50 nM) against a biotinylated standard peptide at a 

fixed concentration (0.1 µM) at 37°C for 24 hours 

to reach equilibrium. Class II molecules were then 

captured on ELISA plates using pan anti-Class II 

antibodies (L243, anti-HLA-DR). Plates were 

washed and incubated with Europium-labeled strep-

tavidin for 1 hour at room temperature. Europium 

activation buffer was added to develop the plates for 

15-20 minutes at room temperature before they 

were read on a Time Resolved Fluorescence (TRF) 

plate reader. All assays were performed in triplicate. 

An IC50 value was estimated to classify peptides as 

very high affinity binders (< 1 μM), high affinity (1 

μM< x<10 μM), moderate affinity (10 μM< x<100 

μM) or low affinity (>100 μM). Peptides classified 

as very high, high or moderate affinity were consid-

ered binders; those in the low affinity category were 

considered non-binders. Binding assays were per-

formed for 6 alleles: DRB1*0101, DRB1*0301, 

DRB1*0401, DRB1*0701, DRB1*1101 and 

DRB1*1501, which provided a broad representation 

of class II HLA allele binding pockets [23]. 
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