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Introduction
Farnesyltransferase catalyzes the transfer of a farnesyl residue 

from farnesylpyrophosphate (FPP) to the thiol of a cysteine side chain 
of proteins, which carry at the C-termini the so-called CAAX-sequence. 
C represents a cysteine which side chain is farnesylated; A, amino 
acids which normally, but not necessarily, carry aliphatic side chains, 
and X mostly methionine or serine (Fu and Casey, 1999; Wittinghofer 
and Waldmann, 2000; Bell, 2000). Farnesyltransferase has been 
identified in different parasites pathogenic to humans, for example 
in Plasmodium falciparum (Chakrabarti et al., 1998; Chakrabarti et 
al., 2002). P. falciparum is a target of particular importance, which 
is responsible for 300-500 million clinical cases every year, and 1-3 
million deaths (Sachs and Malaney, 2002; Ridley, 2002).

In eukaryotic cells, protein farnesyltransferase (PFT) transfers 
a 15-carbon farnesyl group from farnesyl pyrophosphate (FPP) to 
the C-terminals of selected proteins which include Ras GTPase, 
whereas protein geranylgeranyltransferase-1 (PGGT-1) transfers a 
20-carbon geranylgeranyl moiety to the g-subunits of heterotrimeric
Gproteins (Yokoyama et al., 1992). The inhibition of these enzymes
in mammalian cells is exploited in cancer chemotherapy (Lobell et
al., 2001). The genome sequence data of Plasmodium falciparum
indicates the absence of PGGT-1 in the parasite (www.plasmodb.
org). This has led to the investigation of P. falciparum PFT (PfFT) as
potential target for the development of new antimalarials (Ohkanda
et al., 2001; Wiesner et al., 2004; Carrico et al., 2004; Glenn et al.,
2005; Ryckebusch  et al., 2005; Kettler  et al., 2005; Glenn et al.,
2006).

Homology modeling has been recently used in the generation of 
reasonable 3D models of various lipoxygenases which were in turn 
successfully used in various structure based drug design strategies 
(Aparoy et al., 2008; Kenyon et al., 2006; Reddy et al., 2008). The 
root mean square deviation (RMSD) of the model with respect to 
Cα atoms of the template was measured using the Combinatorial 
Extension (CE) method (Shindyalov and Bourne, 1998). In this study, 

we attempt to construct a model structure for human PfFT protein by 
taking the crystal structure of farnesyltransferase protein 1JCQ 2.3A 
(Human) and 2ZIR 2.4A (Rat) as templates, which are having same 
catalytic dominies and analyse the template protein structures by 
ramachandran plot in Discovery studio 2.5 and found zero residues in 
disallowed region. 3D-profiles verification, Procheck and alignment 
of structures to calculate RMSD (Aparoy et al., 2008) were performed 
as validation methods. The 3D structure of PfFT is subsequently used 
to carry out the binding site studies and to perform docking studies 
against the modeled protein with different active inhibitors (available 
in supplementary information) which were collected from literature 
(Bendale et al., 2007).

Materials and Methods
Identification of templates

All molecular simulations were performed on the HP workstation 
using Discovery studio 2.5, 2009 software from Accelrys, USA. The 
amino acid sequence of PfFT 3D7 was obtained from the protein 
sequence databank in the Swiss-prot or Uniprot_KB (Q8IHP6) at 
the site www.expasy.org (Gardner et al., 2002). The BLAST program 
against the Protein Data Bank (PDB) available at NCBI was used to 
select a template structure for homology modeling of PfFT 3D7. The 
crystal structure of farnesyltransferase protein 1JCQ 2.3 Å (Human) 
and 2ZIR 2.4 Å   (Rat) were obtained from the PDB (Berman et al., 
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2002) database. From BLAST results 1JCQ showed 88% sequence 
identity and 2ZIR showed 68% sequence identity with target protein 
PfFT 3D7. 

Model construction

The first requirement in the construction of the PfFT structural 
model is the multiple sequence alignment between these templates 
and the target sequences. The sequence alignment is based on 
identifying structurally conserved regions (SCR) common to the 
template and target. The multiple sequence alignment was performed 
in the Discovery studio 2.5 sequence analysis protocol called “Align 
multiple sequences” (Wolf et al., 2009; Yona et al., 2000; Smith et al., 
1994; Galtier et al., 1996). The three sequences, the two of templates 
and PfFT were given as input for the protocol which aligns them and 
gives the output as shown in the Figure1. The side chain refinement 
for the residues is done on the basis of the protein structure health 
report using the “side chain refinement” protocol.

Discovery studio 2.5 (MODELER)  is used to construct the protein 
model for the target sequence, under protein modeling protocol 
cluster (Blundell et al., 1988; John and Sali, 2003; Fiser and Sali, 2003) 
implemented on HP systems with Linux (Redhat OS) work station. The 
output of ‘align multiple sequences’ given as input for this protocol 
to copy the coordinates of structurally conserved regions of template 
into the query sequence (PfFT 3D7). Three models were generated 
and the model showing the least RMS deviation with respect to trace 
(Cα atoms) of the crystal structure of the templates, 2ZIR and 1JCQ 
was saved for further refinement and validation.  Energy refinement 
of the 3 models were done after they are built (Sali and Blundell, 
1994; Greer, 1980) and this BFGS (Broyden-Fletcher-Goldfarb-Shanno) 
energy refinement method gives best conformation to the model. 
Ligand from 2ZIR copied into the query structure (Homology user 
guide). After the energy refinement the newly built model that is 
refined with all its conserved regions should be now refined at the 
loop regions (Fiser and Sali, 2003).

Model validation

The quality of the refined PfFT structure Figure 4 obtained 

was checked with Profile-3D. The Profile-3D tests the validity of 
hypothetical protein structures by measuring the compatibility of the 
hypothetical structure with its own amino acid sequence (Profile-3D 
user guide).

The stereo chemical quality of the protein structures is examined 
by a Ramachandran plot created using the PROCHECK (Laskowski et 
al., 1993) program. The number of residues that are in the allowed or 
disallowed regions of the Ramachandran plot in Figure 2 determines 
the quality of the model. Alignment of the modeled structure with 
the reference or template structures separately was performed as 
another validation method to test the reliability of the modeled 
structure. Two main issues need to be addressed to obtain an optimal 
structure alignment here. The first issue is the global optimization 
problem i.e., a large number of combinations of residues equivalent 
in 3D space has to be searched to determine the optimal solution. The 
second issue is the determination of a target function i.e., whether 
the alignment is optimized to align either the largest number of 
residues, or for the lowest RMSD. The similarity of a pair of proteins 
is calculated based on the coordinates of their Cα atoms.

Docking studies

The binding site in the new model was identified and subsequently 
docked with some active inhibitors for studying receptor-ligand 
interactions. The docking studies were carried out with GOLD (Jones 
et al., 1997; Jones et al., 1995) (Genetic Optimization for Ligand 
Docking) which is a genetic algorithm for docking flexible ligands 
into protein binding sites. The modeled receptor protein is prepared 
by minimizing only the added hydrogens on side chain and backbone 
of the receptor molecule. The CHARMm force field is applied to the 
model and the hydrogens are minimized. An Input Site Sphere is 
specified for GOLD to determine the binding cavity. Input inhibitors 
that were selected from literature were given for docking. The 
scoring function used by GOLD, is defined by the following energy 
terms (Verdonk et al., 2003).

GOLD Fitness = Shb_ext _ Svdw_ext _ Shb_int _ Svdw_int, (1)

Figure 1: Sequence alignment of PfFT 3D7 and templates.
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Figure 2: Ramachandran plot of modeled protein PfFT 3D7.

Where Shb_ext is the protein-ligand hydrogen-bond score and Svdw_

ext  is the protein-ligand van der Waals score. Shb_int is the contribution 
to the Fitness due to intramolecular hydrogen bonds in the ligand 
this term is switched off in all calculations presented in this work (this 
is the GOLD default, and generally gives the best results); Svdw_int  is the 
contribution due to intramolecular strain in the ligand.

Results and Discussion
The search for the best template for modelling of PfFT was carried 

out using blast against PDB. The rat protein farnesyltransferase 
(PDB id. 2ZIR) showed 36% identity and 55% similarity while human 
protein farnesyltransferase (PDB id. 1JCQ) showed 35% identity and 
55% similarity. The multiple sequence alignment showed 18% identity 
and 36.5% similarity Figure 1.The initial model of PfFT was generated 
using modeler in Discovery studio 2.5. the initial model was also 
energy refined during generation itself by selecting the option ‘true’ 
in ‘refine loops’ parameter. The generated model was again subjected 
to loop refinement which will refine all the main chain confirmations 
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of those residues lying in the structurally variable regions or loops. 
Later, the main chain part of loop refined model was subjected to side 
chain refinement so that side chain conformations of those residues 
lying in the structurally variable regions or loops were also refined. 
After initial validation, the 3D-profiles resulting score of the modeled 
protein was observed as 255.8 that lie between expected high score 

Figure 3a: Alignment between PfFT 3D7 (Green) and 1JCQ (Magenta).

Figure 3b: Alignment between PfFT 3D7 (Green) and 2ZIR (Orange).

Figure 4: Alignment between PfFT 3D7 (Green) and 2ZIR (Orange).

of 408.5 and expected low score of 183.836. The Ramachandran plot 
of the PfFT satisfied the tests with 88.2% of the residues in the most 
favoured regions, 11.2% in additional allowed regions and 0.6% in 
disallowed region, which are (> 10 Å) far from our binding site.

The compatibility between the active site of the PfFT homology 
model, and the 3D-structures of the templates were checked 
by superimposing the backbones of the three enzymes. The 
superimposition of modeled PfFT to that of 1JCQ and 2ZIR gives 
root-mean-square deviation (rmsd) values equal to 0.46 Å and 1.07 Å. 
Figure 3a, Figure 3b shows the alignments of modeled protein with 
templates.

Evaluation of the docking results was based on protein-ligand 
complementarity considering steric properties as well as calculated 
potential interaction energy in the complex and ligand intramolecular 
energy. All compounds interact with the PfFT active site through 
hydrogen bonds with the residues Arg-551, Tyr-824 and Tyr-600.  
Table 1 lists High active compounds with their docking scores. Gly 
559, Trp 652, Tyr 554 and Cys 603 were some of the important amino 
acids present in the active site of the target.  Figure 5a and Figure 5b 

Compound ED50 Docking score
1 1.8 80.09
2 3 72.19
3 6.2 67.47
4 9 75.21
5 6 81.57
6 9 80.09
7 10 75.96
8 10 78.43
9 11.5 73.76

10 12 74.36

Table 1: High active compounds with docking score.

Figure 5a: Compound 1 shows H-bonds with Tyr-600,Tyr-824.

Figure 5b: Compound 2 shows h-bonds with Arg-551, Tyr-824
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show the docking poses of compound 1 and compound 2 with the 
modeled protein.

Conclusion
Even though the identity and similarity are low, the Modeled 

protein was found to be evidently reliable after running procheck and 
by finding out main chain RMSD between the target and template 
protein. The main aim is the identification, exploitation and analysis 
of new molecular drug targets at structural level. This computational 
approach will lead to the discovery and structural development of 
novel drug targets for PfFT 3D7.
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