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Introduction
Understanding the time course and extent of drug effects is 

important in order to determine the best dose and dosing regimen 
to meet the needs of both clinical use and drug development [1]. 
Pharmacokinetic-pharmacodynamic (PKPD) models are used to 
describe the time course of drug effects and the study of these processes 
has been the subject of considerable attention. Pharmacokinetics (PK) 
defines models used to describe the change in concentrations of the 
drug in the body over time and pharmacodynamics describes the 
relationship between concentration and effect. The combination of PK 
and PD (to give PKPD) therefore links drug effects to time. Recently 
the European Medicines Agency has instigated a working party to 
promote integration of PKPD modelling and simulation processes into 
drug development (see recent opinion piece [2]). Due to nonlinearities 
in the structure of PKPD models, it is common that PKPD models are 
expressed as ordinary differential equations. In addition, these models 
are generally cast in a population framework with random effects on 
the parameter and data levels. This leads to high dimensionality and 
when combined with time-stepping solvers for ordinary differential 
equations (ODEs) (e.g. algorithms based on the Runge Kutta technique) 
can be computationally intensive with many function calls required for 
estimation, optimisation (such as optimal design [3]) or simulation 
[4] processes. Rapid and accurate solutions for nonlinear differential
equations would provide a valuable asset to those development and
application of PKPD models.

Here we consider how to solve systems of first-order nonlinear 
ODEs. These have the general form:

0 0( , ); ( )dy F t y y t y
dt

= =		                                                                                                      (1)

where t is time, 1( ) ( ( ),..., ( ))my t y t y t=  is a m x 1 vector of 
response variables (i.e. concentrations and/or effects), and where 

: m mF ℜ×ℜ →ℜ  is a nonlinear function of y. Unfortunately, exact 
closed form solutions to such systems are only available in (relatively) 
few cases; for example, the Michaelis-Menten system for a zero 
order input where the exact solution may be written in terms of the 
Lambert-W function [5]. However, even if the solution cannot be 

written in closed form, there are many methods (both numerical and 
analytical) for generating approximate solutions which share many 
desirable characteristics with the exact solution and which are accurate 
to any order (see for example [6] for some introductory comments).

In this work we introduce an inductive method of generating 
approximate solutions to nonlinear systems based on an iterative 
linearization. We explore this method using a simple example that has 
no known closed form solution. Our intention is to provide a example, 
which in this case is given by a one-compartment first-order input 
Michaelis-Menten output model, for which no analytical solution 
exists and hence from which the methods we propose can be described 
as simply as possible. The proposed iterative linearization method has 
wide applicability to other nonlinear models, e.g. recursive systems 
such as the coagulation network [7] and more complicated systems of 
differential equations that contain Michaelis-Menten.

Theory

The first-order nonlinear systems (1) may be rewritten in the form:

0 0( , ) ( , ); ( )dy A t y y f t y y t y
dt

= + =
		                                        (2)

where A(t, y) is an m × m non-singular matrix, y(t) and f(t,y) 
are column vectors, and ( , ) ( , ) ( , )A t y y f t y F t y+ = . There are usually 
several different ways of writing (1) in this form, starting with 
the simple setting where A = 0 and f = F. Here we wish to focus on 
decompositions which reflect the linearization of the equation, i.e. 

0( ,0) yA t F y == ∂ ∂ . Starting with an (arbitrary) initial approximation
[0] ( )y t , we may inductively define a sequence of approximations [ ] ( )ny t  as 
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solutions now represented in a first-order linear system:
[ ]

[ 1] [ ] [ 1] [ ]
0 0( , ) ( , ); ( )

n
n n n ndy A t y y f t y y t y

dt
− −= + = (3)

We see that A and f now depend on the previous iteration )(]1[ ty n− ,  
which is a known quantity, rather than on the current value of y(t), 
and hence the nonlinearity is avoided. Since (3) is a first-order linear 
system, we can then apply the integrating factor formula given in 
Appendix B to write the solution as:

[ 1] [ 1]
0

0

( , ( )) ( , ( ))[ ] [ 1]( ) 0 ( , ( ))
t n t n
t

tA y d A s y s dsn n

t
y t e y e f y dτ

τ τ τ τ τ τ
− −∫ −∫= + ∫ .              (4)

Even if each integral cannot be solved algebraically, each of the 
integrals in this formula may be quickly and accurately estimated using 
Gaussian quadrature.

Application

Here we apply the inductive method described above to a nonlinear 
system that describes the concentration of a drug with first-order input 
and Michaelis-Menten output, i.e.

max
0; ( ) 0ak t

a
V CdCV k De C t

dt km C
−= − =

+
, (5)

where C(t0) is the initial concentration of drug in the blood (at 
time zero) with units of mg/L, D is dose (1 mg) and the parameters, 

ak (first-order absorption rate constant), Vmax (maximum velocity 
of the enzyme) and km (Michaelis-Menten constant – defined as the 
concentration for which the enzyme is at half-maximal rate). The 
parameters and their values are given in (Table 1).

This system can obviously be written in the form (eqn 2) by letting 
y(t) = C(t) and

max( , ) , ( , ) /ak t
a

V CA t C f t C k De V
km C

−= − =
+ ,

and hence, according to the inductive scheme above and starting 
with the naive initial estimate [0] ( )C t  = 0 (for all t), we can now generate 
successive approximations inductively which converge to the solution 
of (equation 5), i.e.

[ ]
[ ] [ ]max

[ 1]

// ( ); (0) 0
( )

a

n
k t n n

a n

V VdC k De V C t C
dt km C t

−
−

 
= − = + 

              (6)

For n = 1, 2, 3, .... Using the integrating factor formula in (eqn 4), 
we get the solution for the thn iterate expressed in integral form:

max
[ 1]

/
[ ] ( )

0
( ) /

t
n

a

V V dst kn km C s
aC t e k De Vd

τ τ τ
−−∫

−+= ∫                                      (7)

We see that for n = 1 this can be evaluated exactly to give the linear 
approximation, i.e.

( )max /( )[1]
max( ) / ( / )V t Vkm ak t

a aC t k D e e V km Vk− −= − −

Subsequent iterates can be estimated using Gauss-Legendre 
quadrature, i.e.

1 1 22
1 1 [ 1]

1 2 1

( 1) (1 ) max/
2 4 ( ( 3 ( 1))/4)[1]

1
1

( )
2

a j j N k
k n

j k j

k t x t x w V V
N

km C t x x xa
j

j

k DtC t w e
V

= −

 + −
 − − ∑  + + + + 

=

≈ ∑

where ijx , ijw  are Ni- point abscissas and weights for i = 1, 2 (these 
can be calculated using the method given in Trefethen [8]).

The convergence of the inductive estimates [ ] ( )nC t  can be seen in 
(Figure 1) (using N1 = N2 = 5 in the Gaussian quadratures). The choice 
of 5 iterations is arbitrary and can be chosen to suit the accuracy 
requirements of the particular use of the model. The lower dashed line 
represents the linear approximation [1] ( )C t . It is seen that as number of 
iterations increase the inductive approximations approach the solution 
provided by the ODE45 solver in MATLAB(MATrix LABoratories 
R2014a,The Math Works Inc). ODE45 is a medium order non-stiff 
differential equation solver that is based on the 4th order Runge-Kutta 
solution. We show this figure to provide a sense of the relative accuracy 
of the method as the number of iterations increases. In this setting the 
time-stepping ODE solution is in itself not accurate and hence is only 
providing a benchmark for the approach. A more rigorous approach 
to considering accuracy is shown in (Figure 2). Here we see that the 
relative error between successive approximations ( )

1
22[ ] [ 1]

0
( ) ( )

T n nC t C t dt−−∫
appears to be decaying exponentially as a function of n. This is 
significant because it means that the series:

( ) ( )[0] [1] [0] [2] [1]( ) ( ) ( ) ( ) ( ) ( ) ...C t C t C t C t C t C t= + − + − +

Will be absolutely convergent and hence the inductive 
approximation will approach the true (but unknown) solution. The 
accuracy of the inductive linearization can therefore be determined to 
any arbitrary level of accuracy. The choice used for the initial estimate 

[0] ( )C t  = 0 works well when the input coefficient ak D  is small in 
comparison to the output coefficient Vmax/km (so that C(t) <<km), but 
if the converse is true a different choice of [0] ( )C t  (closer to C(t)) could 
be used.

Discussion
Here we see how the solution to any system of first-order nonlinear 

ODEs can be approximated by a sequence of inductive approximations 
which are generated as solutions for first-order linear equations. 
This is a versatile and powerful technique of generating analytical 
approximations which are accurate across a broad range of times and 
parameter values. This means that the inductive method is particularly 
suitable for applications in optimal design and parameter estimation 
when the structural model is expressed in terms of nonlinear differential 
equations. We have attempted to keep the work here as simple as 
possible and apply the method to a simple set of differential equations, 
which we have written as a single differential equation. However the 
method can be used to solve larger sets of differential equations, including 
recursive systems, such as the coagulation system [6]. 

The inductive method has some potential advantages over the 
commonly used numerical time-stepping methods (e.g. Runge-Kutta, 
Adam’s, Gear’s etc.). 1) The method provides a solution which depends 
continuously upon time, thus avoiding the need to interpolate the 
approximation which can in some circumstances result in large and 
unexpected inaccuracies in model predictions. 2) Since the inductive 
solution is based on an algebraic approximation to the nonlinear system 
over the whole time domain of interest (e.g. a dose interval) rather 
than a small fraction of the time domain that is considered by time-
stepping ODE solvers then it is expected that the method would work 
equivalently well for stiff or non-stiff systems. Although further work 
would be desirable to characterise this property. 3) The solutions to the 
derivatives of the model with respect to parameter values are available in 
analytical form. 4) Time-stepping methods that use adaptive step-size 
requires the parameters are fixed before solving, whereas the inductive 
method provides a closed form approximation that is valid for any 
arbitrary set of parameter values. This is of particular importance for 
subsequent inference based on evaluation of the likelihood, such as 

Parameter Description Value, units
Vmax Maximum elimination rate 0.0734 mg/h
km Michaelis-Menten constant 0.3672 mg/L
V Volume of distribution 1 L
ka Absorption rate constant /h

Table 1: Parameters and their values for system (equation 5).
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in parameter estimation or evaluation of the information matrix for 
design. 5) For the example considered here it was not a requirement 
to have informative starting conditions, i.e. parameter values, for the 
linearization.. The disadvantage of the inductive linearization is the need 
for the user to define the model to the level of a closed form integral of 
the linearized, time-varying, model. While this is an important initial 
limitation of the method automated methods to create this integral are 
available and can be applied to this setting.

We have provided code in Appendix A for the implementation of 
the inductive method in MATLAB for the example considered here, and 
this can be easily modified to apply to other nonlinear systems. Note 
that for any nonlinear system there will always be at most two integrals 
at each step in the inductive process (such as in (equation 9)), and that 
in some cases one or both of these integrals may be solved exactly. In 
this work we have made no attempt to optimize the speed or accuracy 
of the inductive method in order that the method can be shown in its 
simplest form. Here we have used Gauss-Legendre quadrature to give 
precise estimates to the integrals in the inductive approximations, but 
there are also other methods with similar accuracy that could be used, 
e.g. Gauss-Kronrod quadrature (which allows the error to be estimated) 
and Clenshaw-Curtis quadrature (see Trefethen[8]).

There are other methods of generating approximate solutions to 

nonlinear systems, including asymptotic approximations, methods can 
be found in Zwillinger [9]. In all of these cases however the behaviour of 
the system at local values of the parameters needs to be known in order 
for these approximations to work. The advantage of time-stepping 
ODE solvers and the inductive linearization method presented here is 
the limited dependence on the values of the parameters, with the caveat 
of the requirement for solvers of time stepping systems to be either stiff 
or non-stiff solvers.

In conclusion, we present a linearization method for converting a 
system of nonlinear ODEs into an iterative system of (usually time-
varying) linear ODEs which can then be solved at each step using 
standard techniques.

Appendix A MATLAB code

function y = cn(t,n)

global d ka v km vmax N1 N2 x1 x2 w1 w2; % parameters

y = zeros(1,length(t));

if(n==1)

y = (ka*d/(v*(vmax/(km*v) - ka)))*(exp(-ka*t) ...- exp(-(vmax/(km*v))*t));

else

for j=1:N1

y1 = zeros(1,length(t));  for k=1:N2

y1 = y1 + (vmax/v)*(t*(1-x1(j))/4).*(w2(k)./(km + ...

cn(t*(x1(j)+3)/4 + t*(1-x1(j))*x2(k)/4,n-1)));

end

y = y + (ka*d/v)*(t/2).*w1(j).*exp(-ka*t*(x1(j)+1)/2 - y1);

end

end

Appendix B the integrating factor formula

Consider a system of first-order linear ODEs with time-varying 
coefficients, i.e. of the form:

0 0( ) ( ) ( ); ( )dy A t y t f t y t y
dt

= + = , (8)

where 1( ) ( ( ),..., ( ))ny t y t y t= , 1( ) ( ( ),..., ( ))nf t f t f t=  and 0 01 01( ,..., )ny y y=  are 
(column) n-vectors, and A(t) is an n × n (non-singular) matrix. To 
solve the system we take the A(t)y(t) term to the left hand side (LHS) 
and multiply the whole equation by the integrating factor 0

( )t
t A de τ τ−∫ , 

0 0
( ) ( )( ) ( ) ( )

t t
t tA d A ddye A t y t e f t

dt
τ τ τ τ− −∫ ∫ − = 

 
.

We then recognise that the LHS can be written as a derivative, i.e.

( )0 0
( ) ( )( ) ( )

t t
t tA d A dd e y t e f t

dt
τ τ τ τ− −∫ ∫= .

Integrating this equation from t0 to t, we derive the solution:
0

( ) ( )

0
( ) 0 ( )

t t
t

tA d A s ds

t
y t e y e f dτ

τ τ τ τ∫ ∫= + ∫
Even if they cannot be done exactly, the integrals in this formula 

can be transformed to integrals over the interval [−1,1] and hence 
estimated using Gauss-Legendre quadrature, i.e.

1

1
( )

2 2 2
b

a

b a a b b af t dt f x dx
−

−  + −  = +     
∫ ∫

12 2 2

N

j j
j

b a a b b aw f x
=

−  + −  ≈ +     
∑
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Figure 1: Convergence of inductive estimates [ ] ( )nC t  to solutions of (equation 5) 
for the parameters given in Table 1.
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Figure 2: Relative errors of successive inductive approximations (plotted in log10 
scale and calculated as ( )

1
22[ ] [ 1]

0
( ) ( )

T n nC t C t dt−−∫  for n = 2, ..., 7 with T = 24) for the 
parameters given in Table 1.
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Where xj, wj are the abscissas and weights respectively for Gauss-
Legendre quadrature.
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