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Introduction
Univariate time series modeling has a history that lasts for decades. 

Modern modeling approaches are highly specialized in the applications 
for which they are designed. Although many models are rather 
complex, most of them are still based on autoregressive processes, e.g. 
ARMA or ARIMA [1] and/or ARCH and GARCH models [2,3]. The 
usefulness of these models is quite indisputable. They estimate (“learn”) 
their parameters from historical data and thus, provide important 
information on the latent data generating process. ARMA family 
based models have been applied to manifold problems in practice. For 
example, Valipour et al. [4] show how to forecast dam inflow data based 
on ARMA and ARIMA models. In addition, Valipour et al. [5] compare 
the results to artificial neural network forecasts.

ARMA based models are widely accepted forecasting tools. The 
base models can be extended in many aspects. A usual extension to 
the model is the inclusion of seasonal effects (SARIMA, seasonal 
ARIMA), as applied to, e.g., hydrology research by Valipour [6]. 
However, the challenge is to find the proper model type, specification 
and parametrization for a given data set. Particularly in cases at which 
the model fit is not of interest per se but is only necessary to calculate 
out of sample forecasts of the data, incorrect modeling may lead to 
vastly false predictions. Furthermore, the model’s accuracy depends on 
a sufficient number of historical observations. Valipour [7] determines 
the number of observations necessary for reliable results in a practical 
example. To overcome this hazard, an alternative idea is to use those 
historical observations as prediction values that are the most likely 
ones, dependent on the respective state of the time series data. The 
outcome of this idea is a predictor known as Mycielski algorithm. 
This forecasting method is based on pattern matching. Other pattern 
matching algorithms than the Mycielski approach has been researched. 
For example, Croonenbroeck [8] shows how to pick an optimal match 
by a local entropy criterion. Samy et al. [9] provide an overview of 
artifical neural network based pattern matching as well as CLONAL 
Propagation, which is designed to simulate a natural biology immune 
system.

The Mycielski algorithm is developed by Ehrenfeucht and Mycielski 
[10]. It is originally proposed as a pseudo random number generator. 
Jacquet et al. [11] describe a modification of this algorithm to impose 
a universal predictor. Besides, Hocaoglu et al. [12] use the method for 
wind speed prediction, and compare their results to the data measured 
at three different sites in Turkey.
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Abstract
Univariate time series analysis is usually performed by arbitrarily complex parametric modeling. At least for prediction, 

a simple non-parametric alternative is the Mycielski algorithm, a forecasting method based on pat- tern matching. 
The reproducible research presented here shows how to perform out of sample forecasts using the methodology of 
Mycielski. The algorithm provides well results in scenarios where usual univariate models such as ARIMA family models 
return limited accuracy. In this article we describe the idea of the Mycielski based prediction algorithm in general. We 
contribute a reference implementation in R and give a short example.
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Gan et al. [13] apply the method to another three more wind speed 
measurement stations. More recently, Croonenbroeck and Ambach [14] 
apply the algorithm to wind power data and compare this predictor to 
sophisticated parametric models.

The Mycielski algorithm is similar to Markov chain models. These 
models build up transition probabilities from one condition to another. 
Thus, they learn from the history of the whole data set. In contrast, the 
Mycielski algorithm directly picks values out of the history as predictors. 
It uses the successor of the longest matching pattern in the entire 
history of data that is identical to the chain in the most recent history. 
This straightforward approach comes to reliable results as long as there 
is a large number of historical observations available. Additionally, 
the results are quite well if there is some periodicity in the data, i.e. 
if patterns return after a certain while. While there are many ways at 
hand to model periodicity, e.g. by Fourier series, B-Splines or SARIMA 
models, all of these approaches require a proper parametrization. The 
Mycielski approach, however, does not, since it is a non-parametric 
procedure. If, in contrast, the data set is highly non-seasonal, it cannot 
be predicted well using the Mycielski approach.

This article contributes a reference implementation of the Mycielski 
algorithm in R. In addition, we provide an example where we use the 
Mycielski algorithm as predictor. The paper is structured as follows. 
Section 2 provides a short introduction of the methodology. Section 
3 discusses the implementation in R. Section 4 presents a real world 
example and Section 5 concludes.

Mycielski Algorithm
Assume a time series {xt}t∈N. Now, a forecast for time t + k is 

desired, based on historical data for time 1, 2, . . . , t. The Mycielski 
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that function contains the forecast value and the length of the longest 
matching chain. Finally, three pieces of information are returned from 
the main function: The pseudo OOS

forecast, the respective actual value and the chain length (Listing 1).

The search function, as in listing 2, sets up a for loop that increases 
the pattern length d by one at each cycle. The matching pattern is 
generated and the in sample data is prepared. Subsequently, the low-
level function IsIdentical () is called. This function performs the search 
and comparison run and simply returns the index µ of the historical 
value that succeeds the longest chain. As aforementioned and by default, 
the function searches for the longest chain length, but it is possible to 
set up a shorter matching pattern. The best forecast may depend on the 
pattern length and the tolerance, so therefore it is possible to adjust τ 
and to limit d.

Whenever Is Identical () is unable to find a matching chain, the 
returned object is of length 0 and function MSearch () deals with this 
accordingly (Listing 2).

Finally, the function Is Identical () begins by setting up the 
tolerance interval. Then, a cascaded for loop is launched that runs 
through the data (outer loop) and through the pattern (inner loop). 
To conserve computing time, the inner loop is aborted as soon as one 
of the observations does not fit the pattern. The returned object either 
contains the index µ or is an empty object, if no match could have been 
found. Listing 3 shows the code (Listing 3).

For convenience, we also provide a wrapper function GetMycielski 
() that expects the data set. The beginning and ending of the pseudo 
out of sample period (Begin and End) must be provided. Furthermore, 
the function allows for choosing the forecasting horizon, tolerance, 

algorithm picks a short pattern from the most recent history of the 
data and searches the entire his- tory for that pattern. Say, the pattern 
is denoted as p ∈ Rd and consists of d elements. In the simplest case, 
d = 1, so p = xt. Every successor of historical observations that are 
identical to xt is then a possible predictor for time t + 1. In the more 
general case, we observe that the kth successor of that observation 
would be the predictor. Whenever multiple candidates are found, d is 
increased by 1, so in the second step, d = 2 and p = (xt−1, xt). That 
pattern is searched again. The algorithm continues until the longest 
matching chain is found or a maximum chain length limit is reached. 
As soon as no longer chain can be found, the longest previously found 
chain is taken. 

The default assumption of our function is that the respective 
successor of the longest matching chain is the most probable predictor. 
However, Jacquet et al. [11] argue that a fractional maximal suffix is 
used to build a universal predictor. Formally, Jacquet et al. [11] as well 
as Hocaoglu et al. [12] note the algorithm as follows. The forecast is 
calculated as

x̂t+k = ft+k (x1, . . . , xt) ,                                                                (1)

Where f (·) performs the iterative search algorithm: Let µ be the 
index of the kth successor of the longest matching string, which itself 
ends at index o. Then µ is found by

µ = arg max (xt = xo, xt−1 = xo−1, . . . , xt−L+1 = xo−L+1)     (2)

Where L denotes chain length. Thus, it follows that ft+k (x1, . . . , 
xt) = x̂t+k = xµ.1

The data is usually denoted in decimal values. Therefore, it is 
unlikely to find long strings that exactly match the search pattern. To 
overcome this, our implementation does not search for exact matches 
in the history, but only for similar ones. This fuzzy search method can 
be applied by searching for chains that may not match exactly, but only 
lie within a certain tolerance interval. Our code allows for choosing a 
proper tolerance level when calling the prediction function. We denote 
the one-sided tolerance level as τ . Moreover, we assume the tolerance 
interval to be symmetric, so the tolerance interval width is 2τ. However, 
a generalization for non-symmetric intervals is straightforward.

Note: 1If L extends to the entire set of observations, no prediction 
can be found. Thus, for real-world scenarios, one could incorporate 
an upper limit for L and if it is reached, the most recent value of 
observations could be taken as a forecast (martingale assumption).

Implementation in R
The main function expects the committed data object to be a simple 

numeric vector. Vectors of type “ts” as defined in package t-series can 
also be used. The code aims at generating pseudo out of sample (OOS) 
forecasts to compare those forecasts to the actual values. Hence, a 
modification for usage as a plain out of sample forecaster for real world 
problems would be straightforward, and be basically a simplification of 
the code.

The main function expects five mandatory arguments: The data as 
a numeric vector (Data), the index of the vector element for which a 
forecast is to be found (Desired), the forecasting horizon (Steps, basically 
k, as discussed in section 2), the level of tolerance (Tolerance, τ ) and an 
upper chain length level (MaxLength).

The function, as provided in listing 1, begins by preparing the 
return object (of type list ()), isolates the in sample data set and then 
calls the actual search function MSearch (). The returned object from 

1  G e t F o r e c a s t =  f u n c t i o n ( D a t a , D e s i r e d , S t 
e p s , T o l e r a n c e , M a x L e n g t h )

{
2 R e t O b j =  l i s t ( )
3
4 T e m p  =  D a t a [ 1 : ( D e s i r e d  - S t e p s ) ]
5 O b j =  M S e a r c h ( D a t a  =  T e m p , T o 

l e r a n c e  =  T o l e r a n c e , M a x L e 
n g t h  = M a x L e n g t h )

6
7 F o r e c a s t =  D a t a [ O b j $ R e s u l t s [ 1 ] +  ( O 
b j $ L e n g t h  - 1 ) +  ( S t e p s  -

1 ) ]
8 A c t u a l =  D a t a [ D e s i r e d ]
9

10 R e t O b j $ F o r e c a s t =  F o r e c a s t
11 R e t O b j $ A c t u a l =  A c t u a l
12 R e t O b j $ L e n  =  O b j $ L e n g t h
13
14 r e t u r n ( R e t O b j )
15 }

Listing 1: The main function, GetForecast().
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minimum chain length and maximum chain length (Steps, Tolerance, 
MinLength and MaxLength). The latter four parameters are optional 
and are set to default values, if not provided.

The function, see listing 4, performs the search. Moreover, it provides 
progress information during the computation and returns a list object that 
contains fore- casts, actual values and the lengths of the observed chains for 
each forecast. All entries for which no matching chain was found (this also 
includes the case that found chains are shorter than the provided parameter 
MinLength) are set to NA (Listing 4).

Out of Sample Predictions
As an example, we use a publicly accessible data set [15]. The data 

describe the monthly production of milk in pounds per cow in the 
United States, time frame January 1962 through December 1975 (168 
observations). The data has originally been provided by Cryer [16] and 
is also available via R package fma by Makridakis et al. [17].

1  M S e a r c h  =  f u n c t i o n ( D a t a , T o l e r a n c e , M a x 
L e n g t h ) {
2 F i n d i n g s  =  a s . n u m e r i c ( )
3 R e t u r n L i s t =  l i s t ( )
4 f o r  ( L e n  i n  1 : M a x L e n g t h )
5 {
6 M y P a t t e r n  =  D a t a [ ( l e n g t h ( D a t a ) - 
L e n  +  1 ) : l e n g t h ( D a t a ) ]
7 S e a r c h  =  D a t a [ 1 : ( l e n g t h ( D a t a ) - 
L e n ) ]
8
9 D i d F i n d  =  I s I d e n t i c a l ( S e a r c h , M 
y P a t t e r n , T o l e r a n c e )

10
11 i f ( l e n g t h ( D i d F i n d ) = =  0 )
12 {
13 R e t u r n L i s t $ L e n g t h  =  L e n
14 R e t u r n L i s t $ R e s u l t s  =  F i n d i n g 
s
15 r e t u r n ( R e t u r n L i s t )
16 } e l s e
17 {
18 F i n d i n g s  =  D i d F i n d
19 R e t u r n L i s t $ L e n g t h  =  L e n
20 R e t u r n L i s t $ R e s u l t s  =  F i n d i n g 
s
21 }
22 }
23 R e t u r n L i s t $ L e n g t h  =  L e n
24 R e t u r n L i s t $ R e s u l t s  =  F i n d i n g s
25 r e t u r n ( R e t u r n L i s t )
26 }

Listing 2: Function MSearch().

1  I s I d e n t i c a l =  f u n c t i o n ( F i n d , P a t t e r n , T o 
l e r a n c e  =  0 ) {
2 P l u s  =  P a t t e r n  +  T o l e r a n c e
3 M i n u s  =  P a t t e r n  - T o l e r a n c e
4
5 n  =  l e n g t h ( F i n d )
6 k  =  l e n g t h ( P a t t e r n )
7
8 F o u n d  =  a s . n u m e r i c ( )
9 F o u n d C o u n t e r =  0

10 F o u n d I n d i c a t o r =  F A L S E
11 f o r  ( i i n  1 : ( n  - k ) )
12 {
13 f o r  ( j i n  1 : k )
14 {
15 i f ( F i n d [ i +  j - 1 ] 

>=  M i n u s [ j ] &   F i n d 
[ i +  j - 1 ] <= P l 
u s [ j ] )

16 {
17 F o u n d I n d i c a t o r =  T R U E
18 } e l s e
19 {
20 F o u n d I n d i c a t o r =  F A L S E
21 b r e a k
22 }
23 }
24 i f ( F o u n d I n d i c a t o r )
25 {
26 F o u n d C o u n t e r =  F o u n d C o u n t e r 
+  1
27 F o u n d [ F o u n d C o u n t e r ] =  i
28 }
29 }
30 r e t u r n ( F o u n d )
31 }

Listing 3: Function IsIdentical().

Panel (a) in (Figure 1) presents the time series plot of the data. 
The structure suggests a strong yearly periodic pattern and an overall 
increasing trend. We use the first 129 observations as an in sample 
data set and seek to obtain out of sample forecasts for observations 130 
through 168.

We choose the tolerance τ = 2, and for the minimum chain length 
we set d = 2. The function auto.arima () from package forecast 
suggests an ARI M A (1, 1, 3) model for the data. Thus, we compare 
our Mycielski forecasts to forecasts generated from an ARI M A (1, 1, 
3) model fit using functions arima () and predict t (). The results of 
the out of sample performance are shown in panel (b) of Figure 1.

While the sparse parametrization of the ARIMA model rather 
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1  G e t M y c i e l s k i =  f u n c t i o n ( D a t a , B e g i n , 
End , S t e p s  =  1 , T o l e r a n c e  =

0 ,
2  M i n L e n g t h  =  0 , M a x L e n g t h  =  1 0 ) {
3 O l d P e r c e n t =  0
4
5 F o r e c a s t s  =  a s . n u m e r i c ( )
6 A c t u a l =  a s . n u m e r i c ( )
7 L e n  =  a s . n u m e r i c ( )
8
9 n  =  E n d  - B e g i n  +  1

10 j =  1
11
12 M y T e x t =  " 0 % . "
13 c a t ( M y T e x t )
14 f l u s h . c o n s o l e ( )
15
16 f o r  ( i i n  B e g i n : E n d )
17 {
18 D o R u n  =  G e t F o r e c a s t ( D a t a  =  D a t a , 
D e s i r e d  =  i , S t e p s  =

S t e p s , T o l e r a n c e  =  T o l e r a n c e , 
M a x L e n g t h  =  M a x L e n g t h )

19 i f ( l e n g t h ( D o R u n $ F o r e c a s t ) = =  0 ) 
D o R u n $ F o r e c a s t =  0
20 F o r e c a s t s [ j ] =  D o R u n $ F o r e c a s t
21 A c t u a l [ j ] =  D o R u n $ A c t u a l
22 L e n [ j ] =  D o R u n $ L e n
23 i f ( L e n [ j ] <  M i n L e n g t h ) F o r e c a 
s t s [ j ] =  N A
24
25 P e r c e n t =  r o u n d ( j / n  *  1 0 0 )
26
27 i f ( P e r c e n t ! =  O l d P e r c e n t )
28 {
29 b  =  n c h a r ( M y T e x t )
30 c  =  r e p ( " \ b " , b )
31 c a t ( c , s e p  =  " " )
32 f l u s h . c o n s o l e ( )
33
34 O l d P e r c e n t =  P e r c e n t
35
36 M y T e x t =  p a s t e ( P e r c e n t , " % . " 
, s e p  =  " " )

37 c a t ( M y T e x t )
38 f l u s h . c o n s o l e ( )
39 }
40
41 j =  j +  1
42 }
43 R e t u r n O b j A l l =  l i s t ( )
44 R e t u r n O b j A l l $ F o r e c a s t =  F o r e c a s t s
45 R e t u r n O b j A l l $ A c t u a l =  A c t u a l
46 R e t u r n O b j A l l $ L e n  =  L e n
47
48 c a t ( " \ n " )
49 f l u s h . c o n s o l e ( )
50
51 r e t u r n ( R e t u r n O b j A l l )
52 }

Listing 4: Wrapper function GetMycielski ().

Figure 1: Milk production over time. The entire sample from January 1962 
to December 1975 is shown on the left hand side (a). The actual values, 
Mycielski predictions and ARIMA predictions (out of sample) from October 
1972 to December 1975 are shown on the right hand side (b).

Figure 2: Densities of forecasting errors for the Mycielski approach and the 
ARIMA model.
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1  l i b r a r y ( z o o )
23  p l o t ( M i l k $ M o n t h , M i l k $ M i l k , x l a b  =  " 
T i m e " , y l a b  =  " M o n t h l y  m i l k p r o d u c t i o n  i 
n  p o u n d s  p e r c o w " , t y p e  =  " l " , l w d  =  2 )
45 # #
67  M y c i e l s k i =  G e t M y c i e l s k i ( M i l k $ M i l k , 
B e g i n  =  1 3 0 , E n d  =  1 6 8 , S t e p s

=  1 , T o l e r a n c e  =  2 , M i n L e n g t h  =  2 )
8
9  M y c i e l s k i $ F o r e c a s t =  n a . a p p r o x ( M y c i e l s k 
i $ F o r e c a s t )

10 M y c i e l s k i $ M o n t h  =  M i l k $ M o n t h [ 1 3 0 : 1 6 8 ]
11
12 A R I M A . f i t =  a r i m a ( M i l k $ M i l k [ 1 : 1 2 9 ] , 
o r d e r  =  c (1 , 1 , 3 ) )
13 A R I M A . f o r e c a s t =  p r e d i c t ( A R I M A . fit , n 
. a h e a d  =  3 9 )
14
15 p l o t ( M y c i e l s k i $ M o n t h , M y c i e l s k i $ A c t u a l 
, x l a b  =  " T i m e " , y l a b  =  "

M o n t h l y  m i l k  p r o d u c t i o n  i n  p o u n d s  p 
e r c o w " , t y p e  =  " l " , l w d  =
2 , c o l =  " b l u e " )

16 l i n e s ( M y c i e l s k i $ M o n t h , M y c i e l s k i $ F o r e c 
a s t , l w d  =  2 , c o l =  " r e d " )
17 l i n e s ( M y c i e l s k i $ M o n t h , A R I M A . f o r e c a s t $ 
p r e d , l w d  =  2 , c o l =  " g r e e n "

)
18
19 l e g e n d ( x  =  1 0 8 3 5 6 3 1 5 , y  =  9 7 0 , c ( " A c t u a 
l " , " M y c i e l s k i " , " A R I M A " ) ,

c o l =  c ( " b l u e " , " r e d " , " g r e e n " ) , l 
t y  =  1 , b t y  =  " n " , l w d  =  2 )

20

early leads to the typical behavior of following the mean of the 
process, the Mycielski forecasts follow the actual data’s periodic pattern. 
Root Mean Squared Error (RMSE) for Mycielski is RM SEMycielski 
= 250.025, and for the ARIMA model we obtain RM SEARIMA = 
386.803. In addition, we obtain M AEMycielski = 28.692 and M 
AEARIMA = 49.568 for the respective Mean Absolute Errors 
and M AP EMycielski = 3.428 and M AP EARIMA = 5.659 for the 
respective mean Absolute Percentage Errors. To provide more insight 
into the distribution of the errors, (Figure 2) provides the kernel density 
estimates of both series of errors. Finally, listing 5 provides our analysis 
code (Listing 5). 

Conclusion
The pattern matching approach, i.e. the Mycielski algorithm, 

provides a simple non-parametric approach for univariate data 
forecasting. No fitting, i.e. no parameter estimation is necessary, as the 

21 l i b r a r y ( f o r e c a s t )
22
23 a c c u r a c y ( M y c i e l s k i $ F o r e c a s t , M y c i e l s k i $ 
A c t u a l )
24 a c c u r a c y ( A R I M A . f o r e c a s t $ p r e d , M y c i e l s k 
i $ A c t u a l )
25
26 M y c i e l s k i $ E r r o r s  =  M y c i e l s k i $ A c t u a l - 
M y c i e l s k i $ F o r e c a s t
27 A R I M A . e r r o r s  =  M y c i e l s k i $ A c t u a l - A R I 
M A . f o r e c a s t $ p r e d
28
29 a  =  d e n s i t y ( M y c i e l s k i $ E r r o r s )
30 M L i m X   =  c ( m i n ( a $ x ) , m a x ( a $ x ) )
31 M L i m Y   =  c ( m i n ( a $ y ) , m a x ( a $ y ) )
32 a  =  d e n s i t y ( A R I M A . e r r o r s )
33 A L i m X   =  c ( m i n ( a $ x ) , m a x ( a $ x ) )
34 A L i m Y   =  c ( m i n ( a $ y ) , m a x ( a $ y ) )
35
36 M y L i m X   =  c ( m i n ( M L i m X [ 1 ] , A L i m X [ 1 ] ) , 
m a x ( M L i m X [ 2 ] , A L i m X [ 2 ] ) )
37 M y L i m Y   =  c (0 , m a x ( M L i m Y [ 2 ] , A L i m Y [ 2 ] 
) )
38
39 p l o t ( d e n s i t y ( A R I M A . e r r o r s ) , x l i 

m    =  M y L i m X , y l i m    =  M y L i m Y , m 
a i n  =  " D e n s i t y  o f E r r o r s " , c 
o l =  " g r e e n " , l w d  =  2 , x l a b  =  
" " )

40 l i n e s ( d e n s i t y ( M y c i e l s k i $ E r r o r s ) , c o l =  
" r e d " , l w d  =  2 )
41 l e g e n d ( " t o p l e f t " , c ( " M y c i e l s k i " , " A R I 
M A " ) , c o l =  c ( " r e d " , " g r e e n " )

, l t y  =  c (1 , 1 ) , l w d  =  2 )
Listing 5: Data analysis code.

algorithm “learns” from the data on the fly. Our straightforward and 
reproducible code can serve as a reference implementation for methods 
comparison and improvements on the Mycielski idea.

This papers shows the implementation of the Mycielski algorithm in 
R and provides an example on publicly available data for reproducibility. 
The exam- ple emphasizes the quality of the pattern matching approach 
as a forecasting method. It shows that the obtained forecasts are able 
to follow and exploit a periodic pattern of the data. Therefore, the 
algorithm is able to outperform simple models that are widely used in 
time series analysis. Still, models that are particularly designed for some 
underlying data set usually provide much better performance. Thus, the 
Mycielski algorithm mostly provides its strength in scenarios at which 
little or nothing is known about the data generating process “behind” 
the observed data.
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