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Introduction
Nitrogen-containing heterocycles are a very important group of 

organic compounds because of their wide application in medicine, 
agriculture, and technology. Among these, indole and quinoline 
derivatives are of significant synthetic interest due to their diverse 
range of biological activities. Substituted indoles have been referred 
to as “privileged structures” since they are capable of binding to 
many receptors with high affinity [1]. Cycloocta[b]indoles, an 
emerging class of biologically relevant indole analogues that has 
been found in many naturally occurring alkaloids such as macroline, 
ajmaline, macrocarpamine, villalstonine, O-acetyl macralstonine 
and macralstonine (Figure 1) and known to exhibit wide range of 
pharmacological properties such as antiamoebic, antiplasmodic, 
antiprotozol and antihypertensive activities [2-5]. The cycloocta[b]
indole framework has recently been a subject of biology-oriented 
synthesis (BIOS) [6] and their analogues are promising targets for 
developing a novel class of potent and selective Mycobacterium protein 
tyrosine phosphatase B (MptpB) inhibitors against Mycobacterium 
tuberculosis [7]. The diverse biological activities of these alkaloids 
validate the cycloocta[b]indole core (Figure 2) as a promising scaffold 
for the generation of bioactive compounds. Compounds containing a 
quinoline framework have been found applications as pharmaceuticals 
and agrochemicals, as well as being general synthetic building blocks 
[8-10]. Industrial, biological, and synthetic significance places this 
scaffold in a prestigious position. Studies on new quinoline derivatives 
appear frequently in the chemical literature. Therefore, significant effort 
continues to be directed toward the development of new quinolines. 
In particular, there is much current interest in the quinoline ring 
system especially in the area of medicinal chemistry, and moreover it 
is a ubiquitous sub-structure found in many biologically active natural 
products [11-15]. Recently, the pyrrolo[2,3-c]carbazole, the common 
core of the marine alkaloids known as the dictyodendrins was found 
to possess excellent anti-tumour properties [15]. In continuation of 
our ongoing interest in the development of general synthetic routes 
to potentially bioactive condensed nitrogen heterocycles, [16,17] 
we recently focused our attention on a relatively less studied class 
of heterocycles i.e., cycloocta[b]indole which incorporate both the 
quinoline and the pyrrolo moiety. Thus it was of interest to design a 
synthetic route to the hitherto unreported cycloocta[b]indole molecular 
systems possessing quiolino and pyrrolo moiety in order to get the 
respective quinolinocycloocta[b]indoles and pyrrolocycloocta[b]
indoles which may therefore lead to a play vital role in biological 

as well as pharmaceutical systems. In this Letter, we report a high-
yielding, versatile, and simple one pot method for the (i) solvent-free, 
p-TsOH assisted rapid synthesis of quinolinocycloocta[b]indoles via
Friedlander annulation reaction of 5,7,8,9,10,11-hexahydrocyclooct
a[b]indole-6-ones with 2-amino-5-methyl-benzophenone, 2-amino-
5-chloro-benzophenone and (ii) pyrrolo cycloocta[b]indoles by the
condensation of 5,7,8,9,10,11-hexahydrocycloocta[b]indole-6-ones
with glycine under POCl3 condition.

Experimental section

General procedure for the synthesis of 4-chloro-/4-methyl-6-
phenyl-7,8,9,10-tetrahydro-15H-quinolino[2’,3’:8,7]cycloocta[b]
indole (2 and 3): A mixture of an appropriate 5,7,8,9,10,11-hexa
hydrocycloocta[b]indol-6-one (1, 0.001 mol) and the respective 
benzophenones (2-amino-5-chlorobenzophenone and 2-amino-5-
methylbenzophenone, 1 mmol) was refluxed at 100°C for 3 h in the 
presence of catalytic amount of p-TsOH. After the completion of the 
reaction, the reaction mixture was cooled to room temperature, diluted 
with water and it was extracted using ethyl acetate. The organic layer 
was thoroughly washed with water and dried over anhydrous sodium 
sulphate. Upon removal of the solvent a brown crude product was 
obtained. It was purified by column chromatography over silica gel 
using petroleum ether : ethyl acetate (99 : 1) mixture as an eluent to 
afford the corresponding 4-chloro-/4-methyl-6-phenyl-7,8,9,10-
tetrahydro-15H-quinolino[2’,3’:8,7]cyclo octa[b]indole (2 and 3).

4-Chloro-12-methyl-6-phenyl-7,8,9,10-tetrahydro-15H-
quinolino[2’,3’:8,7]cycloocta[b]indole (2a): Yellow solid; yield: 82%; 
m.p.245-247°C; IR (KBr, cm-1) νmax: 3308 (N-H), 1624 (C=N); 1H NMR 
(400 MHz, CDCl3) (ppm) δH: 9.05 (b s, 1H, N15-H), 8.09-7.20 (m, 11H,
C2, C3, C5, C11, C13, C14, C2’, C3’, C4’, C5’ and C6’-H), 3.23-3.02 (m, 4H,
C7 and C10-H), 2.49 (s, 3H, C12-CH3), 1.95-1.81 (m, 4H, C8 and C9-H);
13CNMR (100 MHz, CDCl3) (ppm) δC: 152.5 (C15b), 145.6 (C6), 140.8
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(C1a), 137.9 (C1’), 134.9 (C14a), 132.0 (C2), 131.2 (C4), 130.0 (C12), 129.3 
(C3’, C4’ and C5’), 128.2 (C10b), 127.8 (C6a), 127.1 (C3), 126.7 (C2’ and 
C6’), 125.4 (C15a), 124.1 (C5), 122.9 (C5a), 121.5 (C11), 120.2 (C13), 115.1 
(C10a), 110.8 (C14), 29.7 (C9), 27.4 (C8), 24.5 (C7), 22.5 (C10), 20.8 (C12-
CH3); MS: m/z (M+, 422); Anal. calcd. for: C28H23ClN2: C, 79.51; H, 5.48; 
N, 6.62. Found: C, 79.56; H, 5.41; N, 6.57%.

4 , 1 2 - D i c h l o r o - 6 - p h e n y l - 7 , 8 , 9 , 1 0 - t e t r a h y d r o - 1 5 H -
quinolino[2’,3’:8,7]cycloocta[b]indole (2b): Yellow solid; yield: 78%; 
m.p.214-216°C; IR (KBr, cm-1) νmax: 3329 (N-H), 1624 (C=N); 1H NMR 
(400 MHz, CDCl3) (ppm) δH: 9.40 (b s, 1H, N15-H), 8.00-6.96 (m, 11H, 
C2, C3, C5, C11, C13, C14, C2’, C3’, C4’, C5’ and C6’-H), 3.31-2.29 (m, 8H, C7, 
C8, C9 and C10-H); 13CNMR (100 MHz, CDCl3) (ppm) δC: 151.1 (C15b), 
146.9 (C6), 142.4 (C1a), 136.5 (C1’), 133.1 (C14a), 132.5 (C4), 131.8 (C2), 
129.9 (C3’, C4’ and C5’), 128.0 (C12), 127.5 (C10b), 126.6 (C6a), 127.1 (C3), 
126.9 (C2’ and C6’), 125.0 (C15a), 123.9 (C5), 123.2 (C5a), 122.5 (C11), 
121.3 (C13), 114.2 (C10a), 111.5 (C14), 30.7 (C9), 28.6 (C8), 25.5 (C7), 23.7 
(C10); MS: m/z (M+, 442); Anal. calcd. for: C27H20Cl2N2: C, 73.14; H, 
4.55; N, 6.32. Found: C, 73.09; H, 4.51; N, 6.37%.

4-Chloro-14-methyl-6-phenyl-7,8,9,10-tetrahydro-15H-
quinolino[2’,3’:8,7]cycloocta[b] indole (2c): Yellow solid; yield: 70%; 
m.p.198-200°C; IR (KBr, cm-1) νmax: 3345 (N-H), 1609 (C=N); 1H NMR 
(400 MHz, CDCl3) (ppm) δH: 9.55 (b s, 1H, N15-H), 8.01-7.07 (m, 11H, 
C2, C3, C5, C11, C12, C13, C2’, C3’, C4’, C5’ and C6’-H), 3.10-2.70 (m, 4H, 
C7 and C10-H), 2.47 (s, 3H, C14-CH3), 2.27-1.75 (m, 4H, C8 and C9-H); 
13CNMR (100 MHz, CDCl3) (ppm) δC: 150.7 (C15b), 147.6 (C6), 143.4 
(C1a), 136.8 (C1’), 134.8 (C14a), 133.3 (C2), 132.6 (C4), 128.5 (C3’, C4’ 
and C5’), 127.0 (C10b), 126.7 (C2’ and C6’), 126.3 (C6a), 125.6 (C3), 125.0 
(C15a), 123.6 (C5), 122.7 (C12), 121.8 (C5a), 120.8 (C13), 120.2 (C14), 119.9 
(C11), 113.6 (C10a), 31.5 (C9), 29.6 (C8), 25.5 (C7), 23.7 (C10), 18.8 (C14-
CH3); MS: m/z (M+, 422); Anal. calcd. for: C28H23ClN2: C, 79.51; H, 5.48; 

N, 6.62. Found: C, 79.56; H, 5.41; N, 6.57%.

4 - C h l o r o - 6 - p h e n y l - 7 , 8 , 9 , 1 0 - t e t r a h y d r o - 1 5 H -
quinolino[2’,3’:8,7]cycloocta[b]indole (2d): Yellow solid; yield: 75%; 
m.p.210-212°C; IR (KBr, cm-1) νmax: 3331 (N-H), 1604 (C=N); 1H NMR 
(400 MHz, CDCl3) (ppm) δH: 9.21 (b s, 1H, N15-H), 8.05-7.00 (m, 12H, 
C2, C3, C5, C11, C12, C13, C14, C2’, C3’, C4’, C5’ and C6’-H), 3.25-1.67 (m, 
8H, C7, C8, C9 and C10-H); 13CNMR (100 MHz, CDCl3) (ppm) δC: 155.0 
(C15b), 147.8 (C6), 145.8 (C1a), 135.8 (C1’), 134.9 (C14a), 133.5 (C4), 132.7 
(C2), 129.5 (C3’, C4’ and C5’), 127.5 (C10b), 126.9 (C2’ and C6’),126.6 (C6a), 
125.7 (C3), 124.7 (C15a), 123.5 (C12), 122.9 (C5), 122.6 (C5a), 121.5 (C11), 
120.8 (C13), 113.0 (C10a), 112.2 (C14), 32.3 (C9), 31.6 (C8), 27.5 (C7), 25.7 
(C10); MS: m/z (M+, 408); Anal. calcd. for: C27H21ClN2: C, 79.30; H, 5.18; 
N, 6.85. Found: C, 79.36; H, 5.22; N, 6.90%.

4 , 1 2 - D i m e t h y l - 6 - p h e n y l - 7 , 8 , 9 , 1 0 - t e t r a h y d r o - 1 5 H -
quinolino[2’,3’:8,7]cycloocta[b]indole (3a): Yellow solid; yield: 80%; 
m.p.232-234°C; IR (KBr, cm-1) νmax: 3314 (N-H), 1596 (C=N); 1H NMR 
(400 MHz, CDCl3) (ppm) δH: 9.55 (b s, 1H, N15-H), 8.03-7.03 (m, 11H, 
C2, C3, C5, C11, C13, C14, C2’, C3’, C4’, C5’ and C6’-H), 3.33-3.08 (m, 4H, C7 
and C10-H), 2.47 (s, 3H, C12-CH3), 2.11 (s, 3H, C4-CH3), 1.38-1.29 (m, 
4H, C8 and C9 -H); 13CNMR (100 MHz, CDCl3) (ppm) δC: 153.8 (C15b), 
142.7 (C6), 140.6 (C1a), 138.4 (C1’), 133.7 (C4), 132.3 (C14a), 132.2 (C10b), 
131.6 (C12), 131.2 (C3), 129.2 (C3’, C4’ and C5’), 128.6 (C2), 127.9 (C6a), 
127.5 (C2’ and C6’), 126.8 (C5), 125.3 (C15a), 125.0 (C5a), 123.8 (C11), 
122.0 (C13), 114.0 (C10a), 113.1 (C14), 29.8 (C9), 27.7 (C8), 26.2 (C7), 23.5 
(C10), 21.8 (C12-CH3), 21.2 (C4-CH3); MS: m/z (M+, 402); Anal. calcd. 
for: C29H26N2: C, 86.53; H, 6.51; N, 6.96. Found: C, 86.58; H, 6.47; N, 
7.00%.

12-Chloro-4-methyl-6-phenyl-7,8,9,10-tetrahydro-15H-
quinolino[2’,3’:8,7]cycloocta[b]indole (3b): Yellow solid; yield: 77%; 
m.p.202-204°C; IR (KBr, cm-1) νmax: 3328 (N-H), 1589 (C=N); 1H NMR 
(400 MHz, CDCl3) (ppm) δH: 9.33 (b s, 1H, N15-H), 8.25-7.23 (m, 11H, 
C2, C3, C5, C11, C13, C14, C2’, C3’, C4’, C5’ and C6’-H), 3.30-3.08 (m, 4H, 
C7 and C10-H), 2.38 (s, 3H, C4-CH3), 1.90-1.76 (m, 4H, C8 and C9-H); 
13CNMR (100 MHz, CDCl3) (ppm) δC: 155.2 (C15b), 143.4 (C6), 142.1 
(C1a), 137.7 (C1’), 135.1 (C4), 134.2 (C14a), 133.6 (C10b), 131.7 (C3), 129.6 
(C3’, C4’ and C5’), 128.2 (C12), 127.9 (C2), 127.2 (C6a), 126.9 (C2’ and C6’), 
125.2 (C5), 124.3 (C15a), 123.0 (C5a), 122.1 (C11), 121.3 (C13), 113.0 (C10a), 
112.1 (C14), 30.1 (C9), 28.3 (C8), 25.6 (C7), 24.1 (C10), 20.5 (C4-CH3); MS: 
m/z (M+, 422); Anal. calcd. for: C28H23ClN2: C, 79.51; H, 5.48; N, 6.62. 
Found: C, 79.56; H, 5.41; N, 6.57%.

4 , 1 4 - D i m e t h y l - 6 - p h e n y l - 7 , 8 , 9 , 1 0 - t e t r a h y d r o - 1 5 H -
quinolino[2’,3’:8,7]cycloocta[b]indole (3c): Yellow solid; yield: 74%; 
m.p.206-208°C; IR (KBr, cm-1) νmax: 3345 (N-H) 1609 (C=N); 1H NMR 
(400 MHz, CDCl3) (ppm) δH: 9.40 (b s, 1H, N15-H), 8.06-7.23 (m, 11H, 
C2, C3, C5, C11, C12, C13, C2’, C3’, C4’, C5’ and C6’-H), 3.26-2.87 (m, 4H, 
C8 and C9-H), 2.55 (s, 3H, C14-CH3), 2.15 (s, 3H, C4-CH3), 2.20-1.65 (m, 
4H, C7 and C10-H);13CNMR (100 MHz, CDCl3) (ppm) δC: 154.2 (C15b), 
143.8 (C6), 141.4 (C1a), 137.9 (C1’), 136.0 (C4), 135.8 (C14a), 133.1 (C10b), 
132.0 (C3), 129.5 (C3’, C4’ and C5’), 128.0 (C2), 126.9 (C6a), 126.5 (C2’ and 
C6’), 126.0 (C5), 124.2 (C15a), 123.0 (C5a), 123.1 (C12), 121.0 (C13), 120.1 
(C14), 119.8 (C11), 113.0 (C10a), 29.5 (C9), 28.0 (C8), 25.9 (C7), 23.8 (C10), 
20.2 (C4-CH3), 19.5 (C14-CH3); MS: m/z (M+, 402); Anal. calcd. for: 
C29H26N2: C, 86.53; H, 6.51; N, 6.96. Found: C, 86.58; H, 6.47; N, 7.00%.

4 - M e t h y l - 6 - p h e n y l - 7 , 8 , 9 , 1 0 - t e t r a h y d r o - 1 5 H -
quinolino[2’,3’:8,7]cycloocta[b]indole (3d): Yellow solid; yield: 81%; 
m.p.218-220°C; IR (KBr, cm-1) νmax: 3362 (N-H), 1615 (C=N); 1H NMR 
(400 MHz, CDCl3) (ppm) δH: 9.05 (b s, 1H, N15-H), 8.00-7.00 (m, 12H, 
C2, C3, C5, C11, C12, C13, C14, C2’, C3’, C4’, C5’ and C6’-H), 3.24-3.08 (m, 
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MHz, CDCl3) (ppm) δC: 157.8 (C12b), 139.1 (C11a), 131.2 (C7b), 131.0 
(C3), 128.8 (C3a), 124.5 (C12a), 123.0 (C9), 122.4 (C8), 121.0 (C10), 113.6 
(C7a), 112.7 (C11), 57.1 (C2), 30.5 (C6), 28.6 (C5), 25.1 (C7). 22.2 (C4); MS: 
m/z (M+, 270); Anal. calcd. for: C16H15ClN2: C, 70.98; H, 5.58; N, 10.35. 
Found: C, 71.03; H, 5.52; N, 10.40%. 

Results and Discussion
Despite numerous methods reported such as Skrup, the Dobner-

von Miller, or the Combes syntheses [18], the Friedlander and Pfitzinger 
annulations is still the most simple and straightforward approach for 
the synthesis of poly substituted quinolines and related azaheterocycles. 
Hence our plan was to utilize the Friedlander annulations protocol for 
the construction of quinoline ring on cycloocta[b]indole frame work. 
The synthesis of the envisaged title molecules, shown in Schemes 1 
and 2 involved various 5,7,8,9,10,11-hexahydrocycloocta[b]indole-6-
ones (1) as the starting precursor. Accordingly synthesis of the desired 
quinolinocycloocta[b]indoles (2) / (3) was achieved through the 
acid catalyzed condensation of 5,7,8,9,10,11-hexahydrocycloocta[b]
indole-6-one (1) with 2-amino-5-chloro-benzophenone / 2-amino-5-
methyl-benzophenone. The choice of an appropriate reaction medium 
is crucial for successful synthesis. To accelerate the acid catalyzed 
condensation of 5,7,8,9,10,11-hexahydrocycloocta[b]indole-6-ones 
(1) with 2-amino benzophenones, various catalysts and solvents such 
as H+/AcOH, CF3COOH, p-TsOH/toluene and p-TsOH/neat were 
examined and were shown to have a significant impact on the yield 
of the reaction. The desired product was obtained in fairly good yields 
with high purity up to 85–88% when the reaction was carried out 
under p-TsOH/neat condition. Moderate yields were observed when 
CF3COOH, p-TsOH/toluene were used. The yield decreased when 
H+/AcOH was used. Consequently p-TsOH was used as the catalyst 
of the choice. With the optimized reaction condition in hand the acid 
catalyzed condensation of 5,7,8,9,10,11-hexahydrocycloocta[b]indole-
6-ones (1) with 2-amino benzophenones was carried out. The products 
(2) and (3) were purified by column chromatography. The structures 
of all the products are in good agreement with their IR and 1H NMR 
and 13C NMR spectroscopic data. For instance the absence of carbonyl 
group stretching and the presence of C=N stretching at 1624 cm-1 in 
the IR spectrum revealed the formation of 2a. The 1H NMR spectrum 

4H, C8 and C9-H), 2.18 (s, 3H, C4-CH3), 1.90-1.72 (m, 4H, C7 and 
C10-H); 13CNMR (100 MHz, CDCl3) (ppm) δC: 152.5 (C15b), 144.4 (C6), 
141.1 (C1a), 138.2 (C1’), 134.1 (C4), 133.6 (C14a), 132.6 (C10b), 131.9 (C3), 
129.0 (C3’, C4’ and C5’), 126.4 (C2), 126.0 (C2’ and C6’), 125.6 (C6a), 125.1 
(C5), 123.3 (C15a), 123.0 (C12), 122.9 (C5a), 122.1 (C11), 120.9 (C13), 112.6 
(C10a), 111.5 (C14), 29.6 (C9), 27.6 (C8), 25.0 (C7), 23.4 (C10), 20.8 (C4-
CH3); MS: m/z (M+, 388); Anal. calcd. for: C28H24N2: C, 86.56; H, 6.23; 
N, 7.21. Found: C, 86.51; H, 6.18; N, 7.27%.

General procedure for the synthesis of 3-chloro-4,5,6,7-
tetrahydropyrrolo[2’,3’:8,7] cyclo octa[b]indole (4)

A mixture of the appropriate 5,7,8,9,10,11-hexahydrocycloocta[b]
indol-6-one (1, 1 mmol) and glycine (1 mmol), 20 mL of phosphorous 
oxychloride was refluxed at 120°C for 5 h. The reaction was monitored 
by using TLC. After the completion of the reaction, it was poured 
into ice water and then neutralized with sodium bicarbonate solution, 
extracted with ethyl acetate. The combined organic layers were dried 
over anhydrous sodium sulphate. It was then purified by column 
chromatography over silica gel using petroleum ether:ethyl acetate 
mixture (95:5) and recrystallized from ethanol to yield the respective 
3-chloro-4,5,6,7-tetrahydropyrrolo[2’,3’:8,7]cycloocta[b]indole (4).

3-Chloro-9-methyl-4,5,6,7-tetrahydropyrrolo[2′ ,3′ :8,7]
cycloocta[b]indole (4a): Brown solid; yield: 71%; m.p.145-147°C; IR 
(KBr, cm-1) νmax: 3386 (N-H), 1600 (C=N); 1H NMR (400 MHz, CDCl3) 
(ppm) δH: 9.60 (s, 1H, N12-H), 7.52-7.24 (m, 3H, C8, C10 and C11-H), 
3.96 (s, 2H, C2-H), 3.20-2.95 (m, 4H, C4 and C7-H), 2.46 (s, 3H, C9-
CH3), 1.79-1.35 (m, 4H, C5 and C6-H); 13CNMR (100 MHz, CDCl3) 
(ppm) δC: 161.1 (C12b), 134.9 (C11a), 132.5 (C7b), 132.0 (C3), 131.5 (C9), 
128.6 (C3a), 125.4 (C12a), 124.4 (C8), 122.0 (C10), 113.6 (C7a), 112.8 (C11), 
54.6 (C2), 33.4 (C6), 30.1 (C5), 25.7 (C7). 22.5 (C4), 20.6 (C9-CH3); MS: 
m/z (M+, 284); Anal. calcd. for: C17H17ClN2: C, 71.70; H, 6.02; N, 9.84. 
Found: C, 71.75; H, 6.06; N, 9.90%. 

3,9-Dichloro-4,5,6,7-tetrahydropyrrolo[2′,3′:8,7]cycloocta[b]
indole (4b): Brown yellow solid; yield: 67%; m.p.152-154°C; IR (KBr, 
cm-1) νmax: 3372 (N-H), 1592 (C=N); 1H NMR (400 MHz, CDCl3) 
(ppm) δH: 9.39 (s, 1H, N12-H), 7.48-7.07 (m, 3H, C8, C10 and C11-H), 
4.00 (s, 2H, C2-H), 3.05-1.20 (m, 8H, C4, C5, C6 and C7-H); 13CNMR 
(100 MHz, CDCl3) (ppm) δC: 159.5 (C12b), 136.2 (C11a), 134.2 (C7b), 
132.2 (C3), 128.0 (C9), 127.6 (C3a), 124.2 (C12a), 122.4 (C8), 121.0 (C10), 
112.8 (C7a), 111.7 (C11), 56.5 (C2), 32.5 (C6), 29.6 (C5), 26.1 (C7). 23.2 
(C4); MS: m/z (M+, 304); Anal. calcd. for: C16H14Cl2N2: C, 62.97; H, 4.62; 
N, 9.18. Found: C, 63.02; H, 4.57; N, 9.14%. 

3-Chloro-11-methyl-4,5,6,7-tetrahydropyrrolo[2′,3′:8,7]
cycloocta[b]indole (7c): Yellow solid; yield: 72%; m.p.184-186°C; IR 
(KBr, cm-1) νmax: 3364 (N-H), 1624 (C=N); 1H NMR (400 MHz, CDCl3) 
(ppm) δH: 9.19 (s, 1H, N12-H), 7.68-7.18 (m, 3H, C8, C9 and C10-H), 
4.03 (s, 2H, C2-H), 3.18-2.96 (m, 4H, C4 and C7-H), 2.44 (s, 3H, C11-
CH3), 1.99-1.68 (m, 4H, C5 and C6-H); 13CNMR (100 MHz, CDCl3) 
(ppm) δC: 158.6 (C12b), 138.2 (C11a), 133.0 (C7b), 131.2 (C3), 127.9 (C3a), 
124.1 (C12a), 123.2 (C9), 121.0 (C10), 120.9 (C11), 120.4 (C8), 112.6 (C7a), 
54.6 (C2), 31.7 (C6), 28.1 (C5), 26.7 (C7). 24.5 (C4), 19.6 (C11-CH3); MS: 
m/z (M+, 284); Anal. calcd. for: C17H17ClN2: C, 71.70; H, 6.02; N, 9.84. 
Found: C, 71.75; H, 6.06; N, 9.90%. 

3-Chloro-4,5,6,7-tetrahydropyrrolo[2′,3′:8,7]cycloocta[b]
indole (7d): Orange yellow solid; yield: 60%; m.p. 164-166°C; IR (KBr, 
cm-1) νmax: 3364 (N-H), 1605 (C=N); 1H NMR (400 MHz, CDCl3) (ppm) 
δH: 9.11 (s, 1H, N12-H), 7.60-7.25 (m, 4H, C8, C9, C10 and C11-H), 3.95 
(s, 2H, C2-H), 3.21-1.69 (m, 8H, C4, C5, C6 and C7-H); 13CNMR (100 
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of 2a furnished multiplets of signals between δ 8.09-7.20 attributed to 
aromatic protons. The broad singlet at δ 9.05 was due to NH function 
of indole core. The remaining protons appeared in the corresponding 
region. The proposed structure has also been established by their 13C 
NMR and mass spectral analysis. Similarly the 1H-NMR spectrum 
of 3a furnished a broad singlet at δ 9.55 accountable for indole N-H 
and a multiplet between δ 8.03-7.03 was due to aromatic protons and 
two singlets at δ 2.47 and 2.11 attributed to C12 and C4 methyl protons 
which strongly support the structure of the obtained product as 3. 
Furthermore, the 13C NMR gave strong evidence for the formation 
of compound 3. The identities of the other compounds 2b to 3d 
were established in the same way with all spectroscopic data readily 
assignable (Table 1). To explore further the synthetic potential of this 
tandem protocol, 5,7,8,9,10,11-hexahydrocycloocta[b]indole-6-one (1) 
was treated with glycine under POCl3 condition. The structure of 4 is 
fully supported by spectral and analytical data. The structure of 4 was 
confirmed by the infrared absorption band of the C=N group at 1600 
cm-1 and C2 proton signal at δ 3.96 in the 1H-NMR and the sharp signal 
at δ 54.6 in the 13C NMR spectrum. The four compounds 4a to 4d are
based on the same chemical scaffold and are distinguished from each
other only by the presence, absence, or position of a methyl group at
the indole phenyl ring [19-21].

Conclusion
In summary, an efficient, general synthesis of quinolinocycloocta[b]

indoles has been developed by the p-TsOH assisted reaction of 
5,7,8,9,10,11-hexahydrocycloocta[b]indole-6-one (1) with 2-amino 
benzophenones using Friedlander annulations reactions under solvent 
free condition and the synthesis of pyrrolocycloocta[b]indole by the 
condensation of 7,8,9,10,11-hexahydrocycloocta[b]indole-6-one (1) 
with glycine. To the best of our knowledge, this is the first general 
synthesis of this class of compounds. The overall procedure is simple, 
the yields are consistently high thereby rendering our method even 
more useful. Pertinently we anticipate that the protocol described here 
could be explored further to have interesting implications in the fields 
of combinatorial chemistry and chemistry-driven drug discovery.

Appendix: Supplementary Data
Experimental procedures, 1H NMR and 13C NMR spectra of key 

compounds are given in Supplementary data.
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