

Research Article

OMICS International

An Empirical Study on the Dynamic Relationship between Crude Oil Prices and Nigeria Stock Market

Rabia Najaf*

Department of Accounting and Finance, University of Lahore, Islamabad Campus, Pakistan

Abstract

In this paper, we have examined the crude oil price on the performance of Nigerian stock exchange and exchange rate act as the plausible countercyclical tool. We have applied the different models and collected the results that crude oil prices have direct impact on the stock exchange of Nigeria. The Nigeria stock exchange is regulated by the Securities and Exchange Commission. Nigeria stock exchange has the automated trading system. The basic facility of Nigeria trading system is (ATS), it is helpful to remote trading system. Consequently, most of the investors do trade with the method of ATS. This study is also proving that Nigeria stock exchange has influenced on the performance of the economy. Impact of oil crisis on the Nigeria stock exchange. Impact of crude oil crisis on the development of country. Effect of exchange rate policy on the performance of Nigeria stock exchange.

Keywords: Nigerian stock exchange; Exchange commission; ATS; Crude oil

Introduction

Robust of the studies have been done about the fluctuations effect of crude oil on the stock exchange of Malaysia. Financial market is known as the crucial way to analysis the impact of decrease crude oil prices on the stock exchange stock exchange of Malaysia. According to Kumar oil crisis has impact worst on the performance of stock exchange. In this paper, discussed the two main dimestions1) impact of oil crisis on the importing country 2) impact of oil prices on the exporting countries. Soytas, 2006 have analyzed the impact of oil crisis on the Nigeria stock exchange, for this purpose they have utilized the VAR model. It is very effective model to analysis the impact of crude oil prices on the stock exchange of all the stock exchange. This model is also affected to analysis the response of dependent variable on the logged values of the independent variables.

History of Nigeria stock exchange

First time the Nigeria stock exchange was established in 1960 with the name of Lagos stock exchange. After the sometimes, its name was changes now it is known as the Nigerian stock exchange. In 2016, there are listed near about 181 listed companies with the market capitalization of about N10.17 trillion. Nigeria stock exchanges is known as the third largest stock exchange of Africa. The Nigeria stock exchange is regulated by the Securities and Exchange Commission. Nigeria stock exchange has the automated trading system. The basic facility of Nigeria trading system is (ATS), it is helpful to remote trading system. Consequently, most of the investors do trade with the method of ATS. Every business day the trade has started from 9.30 am and close to 2.30 PM (Figure 1).

Objective of the Study

1) Impact of oil crisis on the Nigeria stock exchange.

2) Impact of crude oil crisis on the development of country.

3) Effect of exchange rate policy on the performance of Nigeria stock exchange.

Problem Statement

Impact of oil prices on the stock exchange of Nigeria.

Impact of International Crude Oil on the Different Stock Market

- 1) High profitability can be created with the lower cost of energy.
- 2) There is inverse relationship between crude oil and exchange rate.
- 3) In the different domestic market the demand of lower energy is very high.

*Corresponding author: Rabia Najaf, Department of Accounting and Finance, University of Lahore, Islamabad Campus, Pakistan, Tel: +92 (0)42 111-865-865; E-mail: rabianajaf@hotmail.com

Received September 12, 2016; Accepted September 27, 2016; Published October 04, 2016

Citation: Najaf R (2016) An Empirical Study on the Dynamic Relationship between Crude Oil Prices and Nigeria Stock Market. J Tourism Hospit 5: 245. doi: 10.4172/2167-0269.1000245

Copyright: © 2016 Najaf R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page 2 of 5

Hypothesis Study

HO: There is relationship between oil prices and stock exchange of Nigeria.

HA: There is no relationship between oil prices and stock prices of Nigeria (Figure 2).

Literature Review

Arouri, Lahiani and Nguyen observed that impact of crude oil by the various sectors of stock exchange of India. For this purpose, they had taken the data from 2002 to 2012 and applied the VECM model and proved that there is no positive relationship between oil prices and stock exchange of India [1].

Bollerslev, Engle and Wooldridge examined that impact of crude oil by the various sectors of stock exchange of France. For this purpose, they had taken the data from 2003 to 2013 and applied the VAR model and proved that there is no positive relationship between oil prices and stock exchange of France [2].

Cappiello, Engle and Sheppard analyzed that impact of crude oil by the various sectors of stock exchange of China. For this purpose, they had taken the data from 2004 to 2014 and applied the VECM model and proved that there is no positive relationship between oil prices and stock exchange of China [3].

Dhaoui and Khraief viewed that impact of crude oil by the various sectors of stock exchange of Japan. For this purpose, they had taken the data from 2001 to 2011 and applied the multi regression model and proved that there is no positive relationship between oil prices and stock exchange of Japan [4].

Guesmi, Fattoum and Ftiti observed that impact of crude oil by the various sectors of stock exchange of Pakistan. For this purpose, they had taken the data from 2001 to 2011 and applied the VAR model and proved that there is no positive relationship between oil prices and stock exchange of Pakistan [5].

Hung, Lee and Liu viewed that impact of crude oil by the various sectors of stock exchange of Jordan. For this purpose, they had taken the data from 2001 to 2011 and applied the GARCH model and proved that there is no positive relationship between oil prices and stock exchange of Jordan [6].

Dhaoui and Khraief analyzed that impact of crude oil by the various sectors of stock exchange of Nigeria. For this purpose, they had taken the data from 2005 to 2015 and applied the ARCH model

and proved that there is no positive relationship between oil prices and stock exchange of Nigeria [5,7-9].

Hung, Lee and Liu examined that impact of crude oil by the various sectors of stock exchange of Asian countries. For this purpose, they had taken the data from 2003 to 2013 and applied the VAR model and proved that there is no positive relationship between oil prices and stock exchange of Asian countries [10-15].

Felipe and Diranzo analyzed that impact of crude oil by the various sectors of stock exchange of UK. For this purpose, they had taken the data from 2004 to 2014 and applied the VECM model and proved that there is no positive relationship between oil prices and stock exchange of UK [16-22].

Engle viewed that impact of crude oil by the various sectors of stock exchange of USA. For this purpose, they had taken the data from 2001 to 2011 and applied the VAR model and proved that there is no positive relationship between oil prices and stock exchange of USA [23].

Gaps in literature

- 1) In the last studies, nobody had discussed about the alternative of oil.
- 2) In the past studies nobody has explained impact of crude oil on the economy condition.
- From the last studies nobody has major reason of increasing inflation rate day by day.

Methodology

In this paper, we have adopted the econometric data, it is based on the empirical facts. We have derived the hypotheses from here. We have showed the associations between dependent and independent variables.

Model specification

The following models of the capital market indicators were specified for this study:

Stock Price model, represented as SP=f(OP, GDP, EXR, INV, MPR); and its regression model is stated as ;

SP=a0+a1OP+a2 GDP+a3EXR+a4INV+a5MPR+µ1

Where,

SP=Stock Price (representing the stock market performance)

OP=Oil price

GDP=Gross Domestic Product

EXR=Exchange Rate

INV=Investment

MPR=Monetary Policy Rate

µ1=Stochastic Error term

Dependenvariable:sp

Method: Leastsquare

Included observations: 31 (Tables 1-12).

In the Table 1 is showing the equation of sp and op and predictor variables are significant at 0.128, 0.0109 and 0.0015 respectively all values have less than 0.05.

J Tourism Hospit, an open access journal ISSN: 2167-0269

Page 3 of 5

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.323688	0.294622	1.098655	0.2829
OP	0.011081	0.004125	2.686375	0.0128
GDP	-0.00466	0.001688	-2.76104	0.0108
EXR	-0.00111	0.001208	-0.92126	0.3662
INV	0.116203	0.032207	3.608137	0.0015
MPR	-0.01714	0.008975	-1.90946	0.0683
R-squared	0.800318	Mean dependent var		0.330334
Adjusted R-squared	0.758719	S.D. dependent var		0.412992
S.E. of regression	0.202864	Akaike info criterion		-0.17572
Sum squared resid	0.987684	Schwarz criterion		0.104526
Log likelihood	8.635712	Hannan-Quinn criter.		-0.08606
F-statistic	19.23832	Durbin-Watson stat		0.999702
Prob (F-statistic)	0			

Table 1: Model Specification.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-12.8386	12.68815	-1.01186	0.3218
OP	0.404382	0.177624	2.276628	0.0321
GDP	0.225637	0.072646	3.105998	0.0049
EXR	-0.0261	0.051999	-0.50189	0.6204
INV	-1.88583	1.386968	-1.35968	0.1867
MPR	0.144252	0.386456	0.373268	0.7123
R-squared	0.811832	Mean dependent var		11.552
Adjusted R-squared	0.772628	S.D. dependent var		18.32188
S.E. of regression	8.736495	Akaike info criterion		7.349752
Sum squared resid	1831.833	Schwarz criterion		7.629992
Log likelihood	-104.246	Hannan-Quinn criter.		7.439403
F-statistic	20.708	Durbin-Watson stat		2.115538
Prob (F-statistic)	0			

Dependent Variable: MC

Method: Least Squares Sample: 1981 2008

Included observations: 31.

Table 2: The MC Equation.

			1	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-12.8386	12.68815	-1.01186	0.3218
OP	0.404382	0.177624	2.276628	0.0321
GDP	0.225637	0.072646	3.105998	0.0049
EXR	-0.0261	0.051999	-0.50189	0.6204
INV	-1.88583	1.386968	-1.35968	0.1867
MPR	0.144252	0.386456	0.373268	0.7123
R-squared	0.811832	Mean dependent var		11.552
Adjusted R-squared	0.772628	S.D. dependent var		18.32188
S.E. of regression	8.736495	Akaike info criterion		7.349752
Sum squared resid	1831.833	Schwarz criterion		7.629992
Log likelihood	-104.246	Hannan-Quinn criter.		7.439403
F-statistic	20.708	Durbin-Watson stat		2.115538
Prob (F-statistic)	0			

Dependent Variable: MC Method: Least Squares

Sample: 1981 2008

Included observations: 31.

Table 3: The NLC Equation.

In the Table 2 is showing the MC equation and showing that GDP are significant with the values of 0.0321 and 0.0049 respectively.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-12.8386	12.68815	-1.01186	0.3218
OP	0.404382	0.177624	2.276628	0.0321
GDP	0.225637	0.072646	3.105998	0.0049
EXR	-0.0261	0.051999	-0.50189	0.6204
INV	-1.88583	1.386968	-1.35968	0.1867
MPR	0.144252	0.386456	0.373268	0.7123
R-squared	0.811832	Mean dependent var		11.552
Adjusted R-squared	0.772628	S.D. dependent var		18.32188
S.E. of regression	8.736495	Akaike info criterion		7.349752
Sum squared resid	1831.833	Schwarz criterion		7.629992
Log likelihood	-104.246	Hannan-Quinn criter.		7.439403
F-statistic	20.708	Durbin-Watson stat		2.115538
Prob (F-statistic)	0			
			t-Statistic	Prob.
Augmented Dickey-				
Fuller test statistic			-3.41698	0.0186
Test critical values:	1% level		-3.67932	
	5% level		-2.96777	
	10% level		-2.62299	

0.0025, 0.0003, 0.0000 and 0.0124 respectively.

Null Hypothesis: SP has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=0).

For the MC equation.

Table 4: Augmented Dickey-Fuller Unit Root Test on SP.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SP(-1)	-0.18569	0.054344	-3.41698	0.0021
С	0.015356	0.028921	0.530956	0.5999
R-squared	0.301888	Mean dependent var		-0.04759
Adjusted R-squared	0.276034	S.D. dependent var		0.141108
S.E. of regression	0.120066	Akaike info criterion		-1.3351
Sum squared resid	0.389218	Schwarz criterion		-1.24081
Log likelihood	21.35898	Hannan-Quinn criter.		-1.30557
F-statistic	11.67578	Durbin-Watson stat		1.977997
Prob (F-statistic)	0.002022			

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(SP)

Method: Least Squares

Sample (adjusted): 1981 2009

Included observations: 29 after adjustments.

Table 5: MacKinnon (1996) one-sided p-values.

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.58265	0.4785
Test critical values:	1% level	-3.67932	
	5% level	-2.96777	
	10% level	-2.62299	

Null Hypothesis: MC has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=7).

Table 6: Augmented Dickey-Fuller Unit Root Test on MC.

In the NLC equation there is not the investment is significant 0.4223. All other variables are significant with the values of 0.0025, 0.0003, 0.0000 and 0.0124 respectively.

Page 4 of 5

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MC(-1)	-0.1898	0.119864	-1.58265	0.1252
С	3.135381	2.498507	1.254903	0.2204
R-squared	0.084895	Mean dependent var		1.090346
Adjusted R-squared	0.051002	S.D. dependent var		11.82116
S.E. of regression	11.51577	Akaike info criterion		7.791783
Sum squared resid	3580.544	Schwarz criterion		7.886079
Log likelihood	-110.981	Hannan-Quinn criter.		7.821315
F-statistic	2.504777	Durbin-Watson stat		1.599451
Prob(F-statistic)	0.125147			

Exogenous: Constant,

Lag Length: 0 (Automatic - based on SIC, maxlag=7). **Table 7:** Null Hypothesis: NLC has a unit root.

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.95816	0.7554
Test critical values:	1% level	-3.67932	
	5% level	-2.96777	
	10% level	-2.62299	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(NLC) Method: Least Squares Date: 04/27/10 Time: 15:33 Sample (adjusted): 1981 2009 Included observations: 29 after adjustments.

Table 8: Augmented Dickey-Fuller test statistic.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
NLC(-1)	-0.04987	0.052048	-0.95816	0.3466
С	12.06895	8.079408	1.493791	0.1469
R-squared	0.032885	Mean dependent var		4.724139
Adjusted R-squared	-0.00294	S.D. dependent var		13.72667
S.E. of regression	13.74678	Akaike info criterion		8.145958
Sum squared resid	5102.303	Schwarz criterion		8.240257
Log likelihood	-116.117	Hannan-Quinn criter.		8.175493
F-statistic	0.918068	Durbin-Watson stat		2.439743
Prob(F-statistic)	0.346486			

Included observations: 28 after adjustments,

Standard errors in () and t-statistics.

Table 9: Sample (adjusted): 1982 2009.

The ADF statistic value is -3.418 and p value is 0.0186. The critical value is 2%, 5% and 10% level.

All the values are showing that these are stationarity.

The ADF statistic value is -1.584 and p value is 0.479. The critical value is 1%, 5% and 10% respectively. The value of MC is showing that there is no stationary.

Null Hypothesis: NLC has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=7).

Conclusion

Robust of the studies have done about oil prices and it is proved that oil is known as the key indicator of all the developing and under developing countries. Now a day the demands of oil prices are high and it has impacted on the prices of subsidies. According to setpen there is inverse relationship between oil prices and stock exchange. It is seen

J	Tourism	Hospit,	an	open	access	journal
15	SSN: 216	57-0269				

	SP	MC	NLC
SP(-1)	0.814218	4.154087	8.769695
	-0.21807	-17.3693	-17.4485
[3.73395]	[0.23917]	[0.50261]	
SP(-2)	-0.06341	-3.10081	-7.81972
	-0.19834	-15.7976	-15.8697
	[-0.31971]	[-0.19628]	[-0.49276]
MC(-1)	0.000981	0.286044	-0.14246
	-0.00363	-0.28832	-0.28964
	[0.27078]	[0.99213]	[-0.49188]
MC(-2)	-0.00265	-0.14072	0.0786
	-0.00286	-0.22681	-0.22884
	[-0.93108]	[-0.62045]	[0.34555]
NLC(-1)	0.001178	0.159615	0.546679
	-0.00198	-0.15868	-0.15949
	[0.59086]	[1.00598]	[3.42927]
NLC(-2)	-0.00136	-0.07794	0.349386
	-0.00194	-0.15406	-0.15486
	[-0.70482]	[-0.50593]	[2.25770]
OP	0.001418	0.580219	0.127034
	-0.00249	-0.19724	-0.19823
	[0.57237]	[2.94188]	[0.64212]
С	0.022623	-19.8763	20.64314
	-0.16345	-13.0187	-13.0881
	[0.13842]	[-1.526762	[1.58838]
R-squared	0.870554	0.795904	0.96494
Adj. R-squared	0.825247	0.724468	0.951419
Sum sq. resids	0.307576	1951.486	1969.459
S.E. equation	0.124012	9.877968	9.923101
F-statistic	19.21477	11.14181	76.47657
Log likelihood	23.42708	-99.1483	-99.3759
Akaike AIC	-1.10194	7.653448	7.672564
Schwarz SC	-0.72131	8.034078	8.044194
Mean dependent	0.252144	12.18358	156.0814
S.D. dependent	0.296653	18.81838	44.97583
Determinant resid covariance (dof adj.)		126.7048	
Determinant resid covariance		46.17525	
Log likelihood		-172.845	
Akaike information criterion		14.06037	

Unrestricted Cointegration Rank Test (Trace)

Sample (adjusted): 1983 2009

Included observations: 27 after adjustments Trend assumption: Linear deterministic trend Series: SP MC NLC Lags interval (in first differences): 1 to 2.

arences). 1 to 2.

Table 10: Schwarz criterion.

Hypothesized	Eigenvalue	Trace	0.05	Prob.**
No. of CE(s)		Statistic	Critical Value	
None *	0.568427	32.58108	29.79708	0.0234
At most 1	0.306707	9.892559	15.49472	0.2892
At most 2	8.65E-06	0.002336	3.841467	0.9595

Trace test indicates.

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

*denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values.

Table 11: Trace test.

J Tourism

Page 5 of 5

Hypothesized	Eigenvalue	Max-Eigen	0.05	Prob.
No. of CE(s)	-	Statistic	Critical Value	
None *	0.568427	22.68855	21.13163	0.04
At most 1	0.306709	9.890223	14.26461	0.3192
At most 2	8.65E-06	0.002336	3.841467	0.8594

Table 12: Hypothesized.

that oil prices have impacted on the transport. Therefore, our paper is trying to prove that increase in the prices of oil prices is main cause of inflation. It is not wrong saying that oil prices up and downs of oil prices have good and bad impact on the all the sort of stock exchange. Oil prices are also known as the uncontrolled variable.

Recommendation

- 1) There is need of proper policy to take decisions in the lower prices of oil.
- 2) Government should keep alternative in the worst situations.
- How many improve the development of the economy after oil crisis.
- 4) How can improve inflation rate such types of conditions.

References

- Arouri M, Lahiani A, Nguyen DK (2011) Return and volatility transmission between world oil prices and stock markets of the GCC countries. Economic Modelling 28: 1815-1825.
- Bollerslev T, Engle RF, Wooldridge JM (1988) A capital asset pricing model with time-varying covariances. Journal of Political Economy 96: 116-131.
- Cappiello L, Engle RF, Sheppard KK (2006) Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial Econometrics 4: 537-572.
- Engle RF, Sheppard K (2001) Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. Technical report, National Bureau of Economic Research.
- Dhaoui A, Khraief N (2014) Empirical linkage between oil price and stock market returns and volatility: evidence from international developed markets. economics discussion papers, No 2014-12, Kiel Institute for the World Economy.
- Guesmi K, Fattoum S, Ftiti Z (2014) Oil prices impact on stock markets: what we learned for the case of oil exporting countries? IPAG Business School Working Paper 2014: 443.
- 7. Hung J, Lee M, Liu M (2008) Estimation of value-at-risk for energy commodities via fat-tailed GARCH models. Energy Economics, 30: 1173-1191.

- 8. Felipe SP, Diranzo CF (2006) Volatility transmission models: A survey, Revistade Economia Financiera.
- 9. Engle RF (2003) Risk and volatility: Econometric models and financial practice. Noble Lecture, Salomon Centre NewYork.
- 10. Basher SA, Sadorsky P (2006) Oil price risk and emerging stock markets. Global Finance Journal 17: 224-251.
- Basher SA, Haug AA, Sadorsky P (2011) Oil prices, exchange rates and emerging stock markets. Energy Economics 34: 227-240.
- 12. Chen SS, Chen HC (2007) Oil prices and real exchange rates. Energy Economics 29: 390-404.
- 13. Ferson WW, Harvey CR (1995) Predictability and time-varying risk in world equity markets. Research in Finance 13: 25-88.
- 14. Filis G, Degiannakis S, Floros C (2011) Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis 20: 152-164.
- Fowowe B (2013) Jump dynamics in the relationship between oil prices and the stock market: Evidence from Nigeria. Energy 56: 31-38.
- Gavin M (1989) The stock market and exchange rate dynamics. Journal of International Money and Finance 8: 181-200.
- 17. Greenspan P (2004) Natural Gas Imports must grow, report of the United States' federal chief.
- Hamao Y (1989) An empirical examination of the arbitrage pricing theory: Using Japanese data. Japan and the World Economy 1: 45-61.
- Haug A, MacKinnon JG, Michelis L (1999) Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration. Journal of Applied Econometrics 14: 563-577.
- Huang BN, Hwang MJ, Peng HP (2005) The asymmetry of the impact of oil price shocks on economic activities: An application of the multivariate threshold model. Energy Economics 27: 455-476.
- Huang Y, Guo F (2007) The role of oil price shocks on China's real exchange rate. China Economic Review 18: 403-416.
- Huang RD, Masulis RW, Stoll HR (1996) Energy shocks and financial markets. Journal of Futures Markets 16: 1-27.
- 23. Jones C, Kaul G (1996) Oil and the stock markets. Journal of Finance 51: 463-491.