
Volume 5 • Issue 2 • 1000151J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Sharma and Kaur, J Inform Tech Softw Eng 2015, 5:2
DOI: 10.4172/2165-7866.1000151

Research Article Open Access

An Efficient Task Scheduling of Multiprocessor Using Genetic Algorithm
Based on Task Height
Ashish Sharma* and Mandeep Kaur

Department of Computer Science and Engineering , Guru Nanak Dev University, Regional Campus Jalandhar, India

*Corresponding author: Ashish Sharma, Department of Computer Science and
Engineering Guru Nanak Dev University, Regional Campus Jalandhar, India, Tel:
+91-183-2258802; E-mail: Iamashish90@gmail.com

Received May 25, 2015; Accepted June 26, 2015; Published July 06, 2015

Citation: Sharma A, Kaur M (2015) An Efficient Task Scheduling of Multiprocessor
Using Genetic Algorithm Based on Task Height. J Inform Tech Softw Eng 5: 151.
doi:10.4172/2165-7866.1000151

Copyright: © 2015 Sharma A, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Multi processor; Genetic algorithm; Schedule; Task
graph; Distribute system; Task height; Make span; Schedule time

Introduction
It is difficult to execute a single big problem on a single processor

in a reasonable time. Because of this, it is divided into number of tasks
and the length of each schedule must be so that it results in appropriate
scheduling in a multiprocessor system. The task scheduling [1,2]
problem in multiprocessors is to allocate the set of tasks to processors
such that optimal or sub optimal utilization of processors and minimum
scheduling time are achieved.

For mathematical modeling if task assignment problem, direct
acyclic graph (DAG) is used as each task is represented by its adjacent
node in the graph [3]. The edge between task ti to task tj represents
that task ti is not finished, task tj cannot start execution. The task
assignment objective is to schedule the n tasks to m processors, while
the priority of tasks is being taken care and the utilization is maximized.
The communication delay between processors and the data volume
transmitted between two tasks is also observed. Scheduling of tasks
in a multiprocessor system is an NP hard problem [4]. It is expensive
and time consuming to schedule tasks using traditional and dynamic
approaches. However using heuristic methods we can have the optimal
solution or nearly optimal solution for these problems. There are
many heuristic methods which can be used such as: min–min, max
min, duplex, minimum completion time (MCT), minimum execution
time (MET) [5], simulated annealing (SA) [6], tabu search [7]. One of
the heuristic method which is best for scheduling in multiprocessors
system is genetic algorithm (GA).

Review of Genetic Algorithm Literature for
Multiprocessors Task Scheduling

As scheduling is an NP-complete problem researchers try to apply
heuristics or meta-heuristics to get optimum or near to optimum
solution. People use a single heuristic or a combination of heuristics
and meta-heuristics. It is called the hybrid meta-heuristics.

Ahmad et al. [8] have proposed performance effective genetic
algorithm (PEGA). The PEGA efficiently finds the best solution from
the search space; The reason why PEGA is performance effective is
because of the effective utilization of genetic operators (crossover and
mutation).

Agarwal and Colak [9], proposed a metaheuristic approach -
called NeuroGenetic - which is a combination of an augmented neural

network and a genetic algorithm. The results showed that the neuro
genetic approach performs better than either the augmented neural
network or the genetic algorithms alone.

Parvan et al. [10], proposed a hybrid scheduling algorithm for
solving the independent task scheduling problem in grid which
comprises of GA with Firefly algorithm. It was indicated from the
results that as compared to the best processed method, the proposed
algorithm can decrease Makespan of 10%.

Mehrabi et al. [11], solved the task assignment problem by
considering load balancing with the use of a new method, based on the
genetic algorithms (GAs). GA uses a repair function to ensure valid
assignments during the process of algorithm.

Devi and Anju [12], in their study emphasize on development of a
multi objective scheduling algorithm using Evolutionary techniques for
scheduling a set of dependent tasks in a multiprocessor environment
which minimizes the makespan and reliability cost. NSGA-II is Elitist
Evolutionary algorithm that takes the initial parental solution without
any changes, in all iteration to remove the problem of loss of some
pareto-optimal solutions.

Diana et al. [13], proposed improved genetic algorithm (IGA) based
approach for the single mode resource constrained project scheduling
problem (RCPSP) with makespan minimization as objective. The
suggested way uses binary string based representations and operators
for chromosomes.

Awadall et al. [14] highlights two new approaches, modified list
scheduling heuristic (MLSH) and enhanced genetic algorithm by
constructing promising chromosomes. The result after comparison
shows that the proposed approaches works to enhance processor
efficiency and decrease task makespan.

Abstract
Static task scheduling in multiprocessor frameworks is one of the well-defined NP hard problem. Due to optimal

utilization of processors and in addition investing less time, the scheduling of tasks in multiprocessor frameworks is of
extraordinary significance. To solve NP hard problem using traditional strategies takes reasonable measures of time.
Over the time, various heuristic procedures were presented for comprehending it. Therefore, heuristic methods such
as genetic algorithms are appropriate methods for task scheduling in multiprocessor system. In this paper, a new GA
for static task scheduling in multiprocessor systems has been presented whose priority of tasks’ execution is based on
the height of task in graph and other mentioned parameters and then scheduling is performed. This proposed method
is simulated and then compared with basic genetic algorithm.

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 5 • Issue 2 • 1000151J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Sharma A, Kaur M (2015) An Efficient Task Scheduling of Multiprocessor Using Genetic Algorithm Based on Task Height. J Inform Tech
Softw Eng 5: 151. doi:10.4172/2165-7866.1000151

Page 2 of 5

chromosome is represented by the tuple (T,P), where T is set of tasks
and P is set processors in the framework. pi є P is shown a processor
that allocated to task ti є T. Each chromosome represents the execution
of tasks in the processor and also the sequence of tasks to processor
[16]. In below table there are three processors and 7 tasks that are
shown Table 2.

Generation of population

To generate population perform the steps shown below:

Repeat

Input number of tasks

Input number of processors

Check order of tasks

For i=0 to number_of_task

If (height [task[i]]=1)

Readytoexecute []=task[i]

end if

end for loop

Generate a random number x

Select readytoexecute[x]

Generate a random number y

Select machine [y]

adjust_height()

Repeat until there is no task with height 1

Adjust height

Tasks are queued in priority queue on the basis of their priorities.
As it is mentioned above, task must be ready to execute and must have
the higher priority and stand on priority queue. Adjust height function
arranges tasks in all the possible ways. Using this method we update
the task height which are dependent on the selected task. This change
is just limited to this population only as it is the local height concept.
In further populations global height parameter is considered.T1 is root
and if selected first then suppose its height is updated to 0 then height
of all children must be updated accordingly (Table 3).

After selecting each task for execution we update this table so that
we can find the dependencies and arrange them in respective order.
Scheduling is done based on tasks priority and in GA execution time,
the sequence of tasks priority is not changed but the sequence of
allocation of processors to the tasks is variant.

Dhingra et al. [15], have proposed that Optimizing different
parameters such as crossover, mutation, crossover probability, selection
function etc. can lead to efficient and effective genetic algorithm.

Proposed Algorithm
We propose a genetic algorithm for scheduling tasks in

multiprocessor environment. We have used the randomized height
based approach. Below we have listed the steps of our proposed GA for
tasks scheduling.

•	 Find height for each task in DAG

•	 Encoding chromosome

•	 Initial population

•	 Generate population

•	 Repeat (adjust height)

•	 Fitness Function

•	 Apply GA operators

•	 Update population

•	 Until stopping condition

Find height for each task in DAG

Height of each task can be calculated using DAG, if task is parent
of other task then its height is 1- height of its child or height of child is
1+ height of its parent. Below is the equation that calculates the height
of task.

Height [task]=0 (if task is root)

Otherwise

Height [task]=max (height (parents))+1

Calculation of height starts from entry node and ends at exit node
(Figure 1 and Table 1).

Encoding chromosomes

Chromosome shows the possible state of scheduling. Each

Figure 1: Directed acyclic graph.

Task T0 T1 T2 T3 T4 T5 T6
Height 1 2 2 2 2 3 4

Table 1: Tasks Height according to DAG.

Task T0 T1 T2 T3 T4 T5 T6
Processor 1 3 2 3 1 2 1

Table 2: Sequence of tasks to processors.

Task T0 T1 T2 T3 T4 T5 T6
Height 0 1 1 1 1 2 3

 Table 3: Adjusted task height.

Volume 5 • Issue 2 • 1000151J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Sharma A, Kaur M (2015) An Efficient Task Scheduling of Multiprocessor Using Genetic Algorithm Based on Task Height. J Inform Tech
Softw Eng 5: 151. doi:10.4172/2165-7866.1000151

Page 3 of 5

Fitness function

The aim of the proposed scheduling algorithm is to minimize the
schedule time of the parallel program. It is the measure which decides
the fitness of function. It is calculated in terms of minimum schedule
time so that utilization and speed up can be achieved [17]. We consider
the computation cost [18], communication delay between processors
and data volume transmitted between two tasks as well. We have
calculated the starting time and finish time of tasks.

We derive a formula to calculate starting time (ST) of a task which
is show below.

ST(task)=max (max[task at processor [id] [level order[task]], max
time on machine)

The finish time (FT) of that task is summation of starting time and
its execution time(ET). Its completion time is the available time for a
machine on which it is executed.

FT(task)=ST (task)+ET(on particular machine)

Fitness=max(FT(Pj)

for j=1,2,...,n

Where n is the number of processors and FT(Pj) is the finish time
of the final task in the processor Pj.

Reproduction

For reproduction, the pair of available solution is selected and then
the reproduction operators like crossover and mutation are applied. All
operators are discussed below.

Selection: The selection phase has two steps:

1) Applying a roulette wheel to select two chromosomes: After
chromosomes are ascend on the basis of their fitness, a roulette
wheel series is constructed based on their fitness [17]. Hence, the
chromosomes with low fitness, occupy more slots in the roulette wheel.
In this way the possibility of selecting chromosomes with best fitness is
higher. Then two chromosomes will be selected.

2) Applying a roulette wheel for selecting a task: A roulette wheel
is constructed for tasks based on their number of children. A task with
more sub tasks has more probability to be selected compared to a task
with fewer ones. The genetic operators like crossover, mutation will be
applied on the current generation to produce the next generation.

Crossover: Crossover operator is used to differ the analogy of
chromosomes from one generation to another. Single point crossover is
used in proposed algorithm. Crossover is applied on the chromosomes
so as to produce the best fit chromosome which has the best fitness
than its parent. The crossover starts with two parent chromosomes to
exchange subparts of them to create two new children chromosomes.

Following conditions must be satisfied for the reproduction of legal
chromosome:

1) The height of the tasks next to the crossover points should be
different.

2) The height of all the tasks immediately in front of the crossover
points should be equal.

Mutation: The mutation selects a chromosome and then randomly
exchanges the two tasks with the same height [17]. The mutation is
applied with a certain mutation rate (Mr) which is used to prevent the
search process from converging to the local optima prematurely.

Scheduling Algorithm
The code of proposed scheduling algorithm is shown below.

1. Generate the population

2. While (finish time of each machine in chromosome are equal or
generations number is no more than given number) do

For every chromosome in this population do

calculate fitness of every chromosome

End for

While next population is generated and complete do

choose chromosomes with best fitness values by roulette-selection

use single point crossover operator to create next generation
children

use mutation operator

End while

End while

The exit condition in proposed algorithm determines the equal
processing time for all processors and also the number of generations.
By using it the optimal parallelism can be achieved, as all processors
can have the equal or nearly equal processing time

Implementation and Experimental Results of Proposed
Algorithm
Implementation environment

A set of simulation is performed using Java on Eclipse platform on
a computer Pentium IV, having AMD processor 2.8 GHz, and 512 MB
memory of RAM to evaluate our suggested algorithm. To load tasks
and processors we used input file in which the number of tasks and
number of machines are described. The communication delay between
processors, computation cost(Execution time of tasks) and data volume
between two tasks is also mentioned in input file. Create population
method is used to create population of 1000 chromosomes. Height of
Node (int) method is used to determine the height of each task and
also adjusts the height. Fitness (int id) checks the fitness (makespan)
[14] of each task. Schedule task class is used to define and manage
tasks, processors, starting time and finish time of each task .procAvT
defines the processor available time. The task group is J30 and all
communication delays and costs are defined in this group.

Results and comparison

Following Figures shows the results achieved [19] (Figures 2-5).
The speedup and utilization and schedule time using this technique
are better than basic GA. Figure 3 shows the schedule time using our
proposed algorithm and schedule time using basic genetic algorithm. It
is clear that our algorithm is better than basic GA.

Conclusion
We proposed a height base GA to solve task scheduling problem

of dependent tasks in multiprocessor architecture. In this algorithm
priority of tasks is based on their height, children number and execution
time [20]. The experimental simulations applied on our algorithm using
various task graphs and number of generations and by comparing it
with Basic GA shows that proposed algorithm has less schedule time
than basic GA. Under the same the schedule length, finish time are

Volume 5 • Issue 2 • 1000151J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Sharma A, Kaur M (2015) An Efficient Task Scheduling of Multiprocessor Using Genetic Algorithm Based on Task Height. J Inform Tech
Softw Eng 5: 151. doi:10.4172/2165-7866.1000151

Page 4 of 5

also less. Therefore proposed algorithm can show effective behaviour
and can be used as an efficient and better scheduling system in many
applications.

References

1. Rewini HE, Lewis TG, Ali HH (1994) Task scheduling in parallel and distributed
systems. Prentice Hall.

2. Kwok Y, Ahmad I (1999) Static scheduling algorithms for allocating directed

task graphs to multiprocessors. ACM Computing Surveys 31: 4406-4471.

3. Ahmad I, Kwok YK (1999) Benchmarking and comparison of the task graph
scheduling algorithms. J Parallel Distributed Computing 95: 381-422.

4. Billionnet A, Costa MC, Sutter A (1992) An efficient algorithm for the task
allocation problem. J ACM 39 : 502-518.

5. Braun TD, Siegel H J, Beck N, Boloni L, Maheswaran M, et al. (2001) A
comparison of eleven static heuristic for mapping a class of independent tasks
onto heterogeneous distributed computing systems. Journal of Parallel and
Distributed Computing 61: 810-837.

6. Rahmani AM, Resvani M (2007) A novel static task scheduling in distributed
systems by genetic algorithm using simulated annealing. 12th International CSI
Conference, Iran 83.

7. Silva ML, Porto SCS (1999) An Object-Oriented Approach to a Parallel Tabu
Search Algorithm for the Task Scheduling Problem. Proceedings of the 19th
International Conference of the Chilean Computer Science Society 105-111.

8. Ahmad SG, Munir EU, Nisar W (2012) PEGA: A performance effective genetic
algorithm for task scheduling in heterogeneous systems. IEEE 14th International
Conference on High Performance Computing and Communications 1082-1087.

9. Agarwal A, Colak S (2014) The Task Scheduling Problem: A NeuroGenetic
Approach. Journal of Business and Economics Research - Fourth Quarter 12.

10. Parvan H, Nejad EB, Alavi SE (2014) New hybrid algorithms for task scheduling
in computational grids to decrease makespan. International journal of Computer
Science and Network Solutions 2.

11. Mehrabi A, Mehrabi S, Mehrabi AD (2009) An adaptive genetic algorithm for
multiprocessor task assignment problem with limited memory. Proceedings of
the World Congress on Engineering and Computer Science 2.

12. Devi MR, Anju A (2014) Multiprocessor scheduling of dependent tasks to
minimize makespan and reliability cost using NSGA-II. International Journal of
Computer Science and Telecommunications 4.

13. Diana S, Ganapathy L, Pundir AK (2013) An improved genetic algorithm for
resource constrained project scheduling problem. International Journal of
Computer Applications 0975-8887 78.

14. Awadall M, Ahmad A, Al-Busaidi S (2013) Min–min GA Based Task Scheduling
In Multiprocessor Systems International Journal of Engineering and Advanced
Technology (IJEAT) ISSN 3: 2249-8958.

15. Dhingra S, Gupta SB, Biswas R (2014) Genetic algorithm parameters
optimization for bi-criteria multiprocessor task scheduling using design of
experiments. World Academy of Science, Engineering and Technology
International Journal of Computer, Information, Systems and Control
Engineering 8.

16. Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer
Publishing Company, Incorporated.

17. Mitchell M (1998) An Introduction to Genetic algorithms. The MIT Press.

Figure 2: Speedup vs. Number of generations.

Figure 3: Schedule Time vs. Number of generations.

Figure 4: Speedup vs. Number of tasks.

Figure 5: Efficiency vs. Number of tasks.

http://dl.acm.org/citation.cfm?id=174596
http://dl.acm.org/citation.cfm?id=174596
http://dl.acm.org/citation.cfm?id=344618
http://dl.acm.org/citation.cfm?id=344618
http://www.sciencedirect.com/science/article/pii/S0743731599915782
http://www.sciencedirect.com/science/article/pii/S0743731599915782
http://dl.acm.org/citation.cfm?id=146646
http://dl.acm.org/citation.cfm?id=146646
http://www.sciencedirect.com/science/article/pii/S0743731500917143
http://www.sciencedirect.com/science/article/pii/S0743731500917143
http://www.sciencedirect.com/science/article/pii/S0743731500917143
http://www.sciencedirect.com/science/article/pii/S0743731500917143
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=810160&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6588%2F17585%2F00810160
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=810160&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6588%2F17585%2F00810160
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=810160&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6588%2F17585%2F00810160
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6332294&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6332294
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6332294&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6332294
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6332294&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6332294
http://www.ijcsns.com/April.2014-Volume.2-No.4/Article03.pdf
http://www.ijcsns.com/April.2014-Volume.2-No.4/Article03.pdf
http://www.ijcsns.com/April.2014-Volume.2-No.4/Article03.pdf
http://mat.uab.cat/~Alseda/MasterOpt/WCECS2009_pp1018-1023.pdf
http://mat.uab.cat/~Alseda/MasterOpt/WCECS2009_pp1018-1023.pdf
http://mat.uab.cat/~Alseda/MasterOpt/WCECS2009_pp1018-1023.pdf
http://arxiv.org/ftp/arxiv/papers/1404/1404.2739.pdf
http://arxiv.org/ftp/arxiv/papers/1404/1404.2739.pdf
http://arxiv.org/ftp/arxiv/papers/1404/1404.2739.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.5824&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.5824&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.5824&rep=rep1&type=pdf
http://www.ijeat.org/attachments/File/v3i2/B2337123213.pdf
http://www.ijeat.org/attachments/File/v3i2/B2337123213.pdf
http://www.ijeat.org/attachments/File/v3i2/B2337123213.pdf
http://waset.org/publications/9998710/genetic-algorithm-parameters-optimization-for-bi-criteria-multiprocessor-task-scheduling-using-design-of-experiments
http://waset.org/publications/9998710/genetic-algorithm-parameters-optimization-for-bi-criteria-multiprocessor-task-scheduling-using-design-of-experiments
http://waset.org/publications/9998710/genetic-algorithm-parameters-optimization-for-bi-criteria-multiprocessor-task-scheduling-using-design-of-experiments
http://waset.org/publications/9998710/genetic-algorithm-parameters-optimization-for-bi-criteria-multiprocessor-task-scheduling-using-design-of-experiments
http://waset.org/publications/9998710/genetic-algorithm-parameters-optimization-for-bi-criteria-multiprocessor-task-scheduling-using-design-of-experiments
https://books.google.co.in/books?hl=en&lr=&id=0eznlz0TF-IC&oi=fnd&pg=PP9&dq=An+Introduction+to+Genetic+algorithms&ots=sglF431aLf&sig=oja14im6tyMNJeCIqSosVtCy_zM#v=onepage&q=An Introduction to Genetic algorithms&f=false

Volume 5 • Issue 2 • 1000151J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Sharma A, Kaur M (2015) An Efficient Task Scheduling of Multiprocessor Using Genetic Algorithm Based on Task Height. J Inform Tech
Softw Eng 5: 151. doi:10.4172/2165-7866.1000151

Page 5 of 5

18. Bonyadi MR, Moghaddam ME (2009) A bipartite genetic algorithm for multi-
processor task scheduling. International Journal of Parallel Programming 37:
462-487.

19. Chitra P, Venkatesh P, Rajaram R (2011) Comparison of evolutionary
computation algorithms for solving bi-objective task scheduling problem on
heterogeneous distributed computing systems. Sadhana 36: 167-180.

20. Hartmann S (1997) A competitive genetic algorithm for resource-constrained
project scheduling. Naval Research Logistics 45: 733-750.

http://link.springer.com/article/10.1007%2Fs10766-009-0107-8#page-1
http://link.springer.com/article/10.1007%2Fs10766-009-0107-8#page-1
http://link.springer.com/article/10.1007%2Fs10766-009-0107-8#page-1
http://link.springer.com/article/10.1007%2Fs12046-011-0014-8#page-1
http://link.springer.com/article/10.1007%2Fs12046-011-0014-8#page-1
http://link.springer.com/article/10.1007%2Fs12046-011-0014-8#page-1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.359
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.359

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	References
	Review of Genetic Algorithm Literature for Multiprocessors Task Scheduling
	Proposed Algorithm
	Find height for each task in DAG
	Encoding chromosomes
	Generation of population
	Adjust height
	Fitness function
	Reproduction

	Scheduling Algorithm
	Implementation and Experimental Results of Proposed Algorithm
	Implementation environment
	Results and comparison

	Conclusion
	Table 1
	Table 2
	Table 3
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

