
Volume 6 • Issue 2 • 1000176J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Mohsin et al., J Inform Tech Softw Eng 2016, 6:2
DOI: 10.4173/2165-7866.1000176

Research Article Open Access

An Automated Approach for Web Services Architectural Style Selection
Mohsin A*, Fatima S, Khan AU and Nawaz F
Department of Computer Science and Engineering, Air University Multan, Pakistan

*Corresponding author: Mohsin A, Department of Computer Science and
Engineering, Air University Multan, Pakistan, Tel: 92 300 0760708; E-mail:
ahmad@aumc.edu.pk

Received March 12, 2016; Accepted April 24, 2016; Published April 30, 2016

Citation: Mohsin A, Fatima S, Khan AU, Nawaz F (2016) An Automated Approach
for Web Services Architectural Style Selection. J Inform Tech Softw Eng 6: 176.
doi:10.4173/2165-7866.1000176

Copyright: © 2016 Mohsin A, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Web services; Architectural styles; Rule based; DSS;
Multi-criteria requirements; Quality attributes; Automated decisions

Introduction
Software architecture controls how system elements are recognised

and assigned, how the elements interrelate to form a system, the
amount of communication needed for interaction. Therefore, selection
of the suitable architectural style(s) for use in construction of software
is of importance. A good Architecture can create a difference between
success and failure of web and mobile applications in SOC (Service
Oriented Computing) domain.

Service Oriented computing has emerged as top choice for
software developers, utilizing the integration of cloud computing and
IOTs (Internet of Things). The basic components of SOC are services
over distributed networks allowing various devices and software to
exchange information. SOC, initially emerged from Service Oriented
Architecture(s) an architectural style, it has now become a larger
knowledge area consisting of other architectural styles. Because of
operational constraints in different environments Quality factors are
largely dependent on particular architectural style in use.

A typical Web service is an interface that defines a collection of
operations that are network accessible through standardized XML
messaging. A Web service is described using a standard, format XML
or JSON notion, called its service description [1]. At present we have
various architectural styles to choose from to develop a web service
each with its own pros and cons.

Software architecture has been a key component in software
development in past two decades. Therefore, choosing the correct
architecture is a basic task in software engineering phases, concerning
quality attributes of a web service. Software Architecture provides
abstractions and defines relationships among those abstractions while
Architectural Styles impact largely on performance, security, reliability
and many others. When we talk about Service oriented computing
applications, they are more complex and heterogeneous in nature with
respect to different architectural styles. A few traits have been recorded
for each style in distinctive writings, however we can’t comprehend the
degree to what benefits and drawbacks of quality and quality attributes
of each architecture are considered [1]; thusly, contrasting capabilities,

attributes and benefits of software architecture is a by one means or
another difficult task. Apart from Quality requirements other set of
requirements make it a tough decision for architects for selection of a
particular style to develop a web service.

Figure 1 shows N- tier architectural framework of Web Services.
In this figure basic components of a typical web service application are
depicted by keeping in mind FRs and NFRs required to support any
architectural style, typical web service architecture has been mapped
into three layers.

At present when we are conducing this research there are multiple
architectural styles available for developing a particular web service
like SOAP, RESTFU etc. Each one of these style(s) allows system
architects to develop web service to complete a specific functionality
with similar and conflicting quality attributes. The general concern of
users is performance, security, reliability and related quality attributes.
Other most important factor is self-characteristics of architecture
to be selected. So, software architect(s) have to consider the self-
characteristics as well as domain requirements in addition to NFRs in
order to select appropriate architecture according to need of the app
being developed. This decision becomes critical to meet different and
varying requirements.

At the moment there are various web services styles suitable for
different types of web services to design. But there is a lack of work to
make distinction which web service style is better for a particular set of
requirements. Requirements are of various types i.e. Functional, Non
Functional and Domain specific. There is not a single Architectural

Abstract
Selection of an appropriate architectural style is vital to the success a web service. The nature of architecture

design and selection for service oriented computing applications is quite complex as compared to traditional software
architecture. Web Services have complex and rigorous architectural styles with their own underlying architectural
characteristics. Due to this, selection for accurate architectural style for web services development has become more
complex decision to be made by architects. Architectural style selection is a multi-criteria decision and demands lots of
experience in service oriented computing. There is a huge gap for automated selection of web services architectural
styles. Decision support systems are good solution to simplify the selection process of a particular architectural style.
Our research suggests an automated approach using DSS for selection of architectural styles while developing a
web service to cater FRs & NFRs (Functional & Non Functional Requirements). Our proposed mechanism helps
architects to select right web service architectural pattern according to domain, and non-functional requirements
without compromising quality. In this paper a rule base DSS has been developed using CLIPS (C Language Integrated
Production System) to support decision process in multi-criteria requirements. To select suitable web service, system
takes architectural characteristics, domain requirements and software architect preferences for NFRs as input by
applying rule base approach. Next Weighted Sum Model has been applied to prioritize quality attributes and domain
requirements. Scores are calculated using multiple criterions to choose the final architecture style.

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 6 • Issue 2 • 1000176J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mohsin A, Fatima S, Khan AU, Nawaz F (2016) An Automated Approach for Web Services Architectural Style Selection. J Inform Tech Softw
Eng 6: 176. doi:10.4173/2165-7866.1000176

Page 2 of 8

for web service architectural selection; Section IV will show Selecting
architecture using proposed DSS. In Section V we will see impact on
decision making process, Section VI discusses the advantages and
Section VII & VIII will cover future work and conclusions respectively.

Literature Review
In this section we shall review service oriented computing, web

service, web service architectural styles, approaches used for selection
of architecture in past.

SOC architectural styles

Service-oriented computing is an emerging cross-disciplinary
paradigm for distributed computing, which is changing the way
software applications are designed, delivered and consumed. At
the heart of service-oriented computing are services that provide
autonomous, platform-independent, computational elements that can
be described, published, discovered, orchestrated and programmed
using standard protocols to build networks of collaborating applications
distributed within and across organizational boundaries. Web services
provide a standard means of interoperating between different software
applications, running on a variety of platforms and/or frameworks. The
general description of commonly used architectural styles is as follows:

MOA (Message-Oriented Architecture): MOM (Message-
Oriented Middleware) or MOA is an alternative to the RPC (Remote
Procedure Call) distribution mechanism. This mechanism called
Message-Oriented Middleware or MOM provides a clean method of
communication between disparate software entities. MOM is one of
the foundation stone that distributed enterprise systems are built upon.
MOM can be defined as any middleware infrastructure that provides
messaging capabilities. A client of a MOM system can send messages
to, and receive messages from, other clients of the messaging system.
Each client connects to one or more servers that act as an intermediary
in the sending and receiving of messages. MOM uses a model with a
peer-to-peer relationship between individual clients; in this model,
each peer can send and receive messages to and from other client
peers. MOM platforms allow flexible cohesive systems to be created;
a cohesive system is one that allows changes in one part of a system
to occur without the need for changes in other parts of the system [2].

SOA (Service-Oriented Architecture): The service-oriented
Architecture (SOA) uses services to support the development of
rapid, low-cost, interoperable, evolvable, and massively distributed
applications. Services are autonomous, platform-independent entities
that can be described, published, discovered, and loosely coupled in
novel ways. They perform functions that range from answering simple
requests to executing sophisticated business processesrequiring peer-
to-peer relationships among multiple layers of service consumers and
providers. Any piece of code and any application component deployed
on a system can be reused and transformed into a network-available
service. Services reflect a “service-oriented” approach to programming
that is based on the idea of composing applications by discovering
and invoking network-available services to accomplish some task.
This approach is independent of specific programming languages or
operating systems. It lets organizations expose their core competencies
programmatically over the Internet or various networks.

ROA (Resource-oriented Architecture): Resource Oriented
Architecture (ROA) or REST Oriented Architecture are used
interchangeably and ROA (REST Oriented Architecture) is just a
fancy name for a SOA (Service Based Architecture) using REST
services. REST was proposed by Roy Fielding. REST is architecture for
developing Web services. REST attempts to mimic architectures that

style for a web service which can full fill are the criterion for a given
problem set. Some Style are good in terms of Performance but lacks
security and vice versa. Architects usually choose a web service style
based on its performance in pervious projects, word of mouth or its
ease in development. There is no proper framework or any automated
system which can recommend for usage of a particular web service
style.

Service oriented computing has transformed modern web and
cloud computing paradigms. Though there are different architectural
styles for developing a web service but here we have considered three
different types of web-service architectures which are widely used
in industry today. Service Oriented Architecture (SOA), Resource
Oriented Architecture (ROA) and Message Oriented Architecture
(MOA). These will be explored in later section in detail.

After research we have considered three types of requirements
these are Domain Requirements, NFRs and self-characteristics of a
particular architectural style(s) in whole decision making process.

For developers and architects there are many architectural choices
to choose for a web service. At the moment various architectual
patterns exist carrying their own pros and cons for a specific type of
a web service development in a particular domain. Architectural style
selection is based on various aspects of the system under investigation.
There are number of reasons of poor quality but we have considered
two that are negligence of NFR (Non-functional requirements) and
nature of applications being developed. Architectures have a number
of characteristics that must be considered but manual decision and
prioir expertise are not enough to make a correct choice.

In this paper, a Rule based Decision Support System (DSS) has
been developed which attempts to help the decision making process by
keeping in mind different related criteria for web service architecture
including quality attributes weightage according to web and mobile
app being developed, domain requirements and architectural style
characteristics. And base on these criteria suggesting suitable solutions.

Section II presents Literature Review of the related work and
Research Challenges. In Section III we shall present proposed DSS

Figure 1: Web Service N- tier Architecture style.

Volume 6 • Issue 2 • 1000176J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mohsin A, Fatima S, Khan AU, Nawaz F (2016) An Automated Approach for Web Services Architectural Style Selection. J Inform Tech Softw
Eng 6: 176. doi:10.4173/2165-7866.1000176

Page 3 of 8

use HTTP or similar protocols, by constraining the interface to a set of
well-known standard operations (i.e., GET, PUT, POST, and DELETE
for HTTP). Here, the focus is on interacting with statefull resources,
rather than messages or operations. “REST architecture is designed
to show how existing HTTP is enough to build a Web service and to
show its scalability”. It avoids the complexity and processing overhead
of the Web services protocols by using bare http. One important REST
concept is a resource, which is a piece of information that has a unique
identifier (e.g., a uniform resource identifier (URI)). REST web services
architectural style reduces the complexity of transforming data from
XML or JSON between sender and receiver.

SOAP vs. RESTfulvs. MOA: Though there is a division among the
advocates of two prominent styles in web services but recently a trend
has been seen which shows architects and developers favouring RESTful
as it is much easy to implement. In a research case study for developing
multimedia conference applications both styles were used and results
show that RESTful proved itself much better in performance [3]. In
another work where performance analysis was done for both styles on
different platforms in cloud, RESTful outclassed SOAP style [4]. The
new versions of SOAP make it easy to use. One advantage of SOAP
is that it uses generic transport protocols while RESTful only uses
http/https. REST is best suited in less complex scenario while SOAP
is more suitable for complex systems [5]. Message oriented Model has
some commonalties with SOAP but differs in architecture and internal
complexities.

Architecture selection approaches: The use of Computational
intelligence for decision support system in order to solve different
problems is much better as opposed manual decisions [6]. A decision
support system automates the process for decision making in any
domain. There are various approaches for its usage, here we mention
few related to our work.

Wang and Yang proposed a selection method for people who
lack expertise and experience to select appropriate architecture style
for their software systems [7]. The authors collected and categorized
a number of common architecture styles, and used Quality Attributes
as a criterion to evaluate all those architecture styles. Moreover, they
provided a systematic selection process powered by AnalyticHierarchy
Process (AHP). It is a widely used theory andprovides a measurement
through pair wise comparisons and relies on the judgments of experts to
derive priority scales. This method just considers the quality attributes
but does not cater the domain and architectural requirements.

Babu et al. [8] presented a method called SSAS (Selection of
Software Architecture Styles). It uses analyticnetwork process (ANP)
to determine the degree ofinterdependence relationship among
the alternatives (architecture styles) and criteria (Requirements).
It provides a way of collecting expert group opinion along with
stakeholders interests (e.g. reliability, performance) [8]. It should be
noted that, the traditional AHP is applied to the problem without
considering interdependence property among the criteria.

Moaven et al. [9] explained “A Decision Support System for
Software Architecture-Style Selection” presented DSS which makes
use of fuzzy logic to represent concepts of quality attributes more
precisely and efficiently while considering interaction among them.
They constructed a DSS based on knowledge-base which has the
ability of updating its knowledge and provides the system architect
with suitable choices to select among them. With respect to knowledge
base and exploiting expertise of people that work in this domain (e.g.
expert architect) some rules have been extracted that can help to
surfing the style repository and offering a style or combination of some

styles [10]. This DSS considered NFRs but this DSS not considered
the characteristics of architecture to be asked by architect as input for
making decision.

Theoretical framework for using a decision maker for cloud based
web services architecture selection via rule based engine was presented
by Falak et al. [2]. This work only presented framework for choosing
an appropriate style among ROA and SOAP. Moreover practical
implication of this framework was not provided so impact on the
selection process could not be predicted [2].

Architecture selection techniques

Further we can categorize Architecture selection techniques based
on manual selection and automated selection. Both techniques help
Architects for selecting appropriate architecture. Being a web service
a complex entity to be built with diverse requirements, it becomes
difficult for system architects to select the one which is most suitable
for needs. On the other hand automated selection facilitates software
architect to select closely related as per requirements with very short
time investment. One can say that manual process for architecture
selection is economical but it depends how much domain experience
the decision maker has.

The research challenge

Research Challenge: Web Service Architecture Selection in
Multicriteria Requirements.

The single most difficult challenge in software development in
modern era is the selection of appropriate architectural style and this
decision becomes even complex and difficult when it comes to select
web services styles. Multiple factors come into play in selection of
architecture style for Service Oriented applications. So core Research
challenges are:

•	 Selection of correct architecture style for web services
without compromising quality attributes.

•	 Existence of multiple web services architectural styles.

•	 Multi-criteria Requirements

•	 Complex Decision making process

•	 Diverse Characteristics of different styles

Proposed DSS for Web Service Architectural Selection
Our proposed solution tries to automate the web service

architecture selection process by focusing on quality attributes and
functional requirements. There are some common features among web
service styles but target applications always do require varying quality
attributes. So as a solution we have developed a rule based decision
support system in CLIPS (C language Integrated Production Shell) to
automate the. For this purpose three architecture styles SOA, ROA
and MOA are selected and NFRS security, reliability and performance
are considered. NFR preferences are taken first along with general
characteristics for architectures under question. Weighted sum model
is applied with selected characteristics prioritization. This process ends
with suitable web service style suggestion based on requirements. The
complete process of proposed DSS is depicted in Figure 2.

DSS and its types

Due to the extremely high attention to the computer-based
information systems, making use of Decision Support Systems to
support and improve decision making has become of importance.

Volume 6 • Issue 2 • 1000176J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mohsin A, Fatima S, Khan AU, Nawaz F (2016) An Automated Approach for Web Services Architectural Style Selection. J Inform Tech Softw
Eng 6: 176. doi:10.4173/2165-7866.1000176

Page 4 of 8

Decision making problem is the process of finding the best option
from all of the feasible alternatives. DSS is a computer-based system
which supports a decision, in any way. DSS will essentially solve or
give options for solving a given problem. A DSS provides support for
all phases of the (semi-structured and unstructured) decision making
process and a variety of decision making processes. It should be easy to
use meanwhile providing support for users at all levels to make decision
[11]. Decision support systems can be classified in several ways. One
well-known classification is to put them into six frameworks [11]:

1) text-oriented which emphasizes on creating, revising and
reviewing documents; 2) database-oriented in which the database
organization is of importance and the emphasize is most on query
capabilities and generating strong reports; 3) spread sheet-oriented
which allows the user to develop models to execute DSS analysis; 4)
solver oriented DSS which use solver for solving a particular type of
problem; 5) rule-oriented DSS in which the knowledge component,
which often is an expert system, includes procedural and inferential
rules; 6) compound DSS which is a combination of two or more of
classifications mentioned above.

Working of proposed DSS

In order to select an architectural style from given choices of
architecture styles correctly and precisely, all existing information
related to the application should be considered. The proposed DSS
will use characteristics of web service architectural styles, domain
characteristics of application being developed and NFR (Non-
functional requirements) weight age as input for inference and provides
appropriate decision complete design of proposed DSS is depicted in
Figure 2 in detail [12].

The proposed DSS has five essential components that help in
decision making process that are:

•	 Repositories

•	 Tool

•	 Rule-based

•	 Decision making (CLIPS)

•	 User interface

Obligations and concerns of every part alongside what they
accommodate the DSS is explained as follows.

Repository: We have three types of repositories which are DC
(Domain Characteristics), NFRC (Non-Functional

Requirements Characteristics) and ASC(Architectural Style
Characteristics) [13]. In DC we have characteristics regarding
requirements for different domains like e-commerce, banking,
health care apps and others. NFRC contains characteristics provided
by different quality attributes and also information regarding no. of
sub-attributes of quality attribute provided by specific web service
architectural style [14]. ASC have information of all the characteristics
of web service architectural styles SOA, ROA and MOA respectively.
The characteristics considered in repository in proposed DSS are
summarized in Tables 1, 2 and 3.

Table 1 shows the characteristics that MOA, SOA and ROA possess
in order to fulfill the requirements of app being developed whose nature
is SO (Service-Oriented). Now comparison w.r.t NFR characteristics
are given in Table 2. Three NFRs are under considerations mainly
security, reliability and performance.

Table 2 showing which characteristics of NFR each architectural
style possess with assigned weights to be considered as inputs for
system.Now comparison w.r.t domain characteristics is summarized
in Table 3.

Tools: Domain characteristic and Architectural stylescharacteristics
would be prioritized on basis of no. of characteristics selected. After
getting all the required information and priorities of quality attributes,
the weighted sum model for NFR’s would be applied to DSS and no.
of characteristics required of specific web service architectural style
and domain characteristics would already be counted while gathering
information according to the need of app being developed as shown in
Figure 3.

Figure 2: proposed DSS work flow.

Architectural
Characteristics

MOA SOA ROA

Heterogeneity Yes Yes Yes
Protocol layering No Yes Yes
Loose coupling Yes Yes yes
Integration style Yes Yes Yes
Resource No No yes
identification
URI design No No Yes
Resource No No yes
interaction semantic
Resource No No Yes
relationship
Contract design No Yes Yes
Data representation Yes Yes Yes
Message exchange Yes Yes Yes
pattern
Traffic monitoring Yes No No
Traffic Yes No No
determination
Traffic Yes No No
transformation
Service description Yes Yes Yes
Service Yes Yes Yes
identification
Service discovery Yes Yes Yes
Service Yes Yes Yes
composition

Table 1: Architectural characteristics comparison.

Volume 6 • Issue 2 • 1000176J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mohsin A, Fatima S, Khan AU, Nawaz F (2016) An Automated Approach for Web Services Architectural Style Selection. J Inform Tech Softw
Eng 6: 176. doi:10.4173/2165-7866.1000176

Page 5 of 8

Where weighted sum model (WSM) is the best known and simplest
multi-criteria decision analysis (MCDA) method for evaluating a
number of alternatives in terms of a number of decision criteria [2].

In general, suppose that a given MCDA problem is defined on m
alternatives and n decision criteria. Furthermore, let us assume that all
the criteria are benefit criteria, that is, thehigher the values are, the better
it is. Next suppose that wj denotes the relative weight of importance of
the criterion Cj and aij is the performance value of alternative Ai when
it is evaluated in terms of criterion Cj. Then, the total (i.e., when all the

criteria are considered simultaneously) importance of alternative Ai,
denoted as AiWSM-score, is defined as follows:

åWSM-S core
i j ijj=1

A = w a , for i = 1, 2, 3, . . , m. (1)

In our case architectures SOA, ROA and MOA are alternatives
as (Ai) and quality attributes security, reliability and performance are
criteria’s as (Cj).

General characteristics of architectures are rules in DSS and priority
will be given to the highest number of characteristics selected of specific
architecture. For example if we have selected 20 characteristics of SOA,
17 of ROA and 10 of MOA then DSS will recommend SOA [15-18].

The rules, which were extracted from architecture styles
characteristics, NFRS, domain characteristics, and the priorities, and
incorporated by DSS user i.e. system architect, are used as inputs of the
tool as in Figure 4.

Rule Base: For extracting decision, there is need of some rules
on the basis of our repositories DC, NFRC and ASC. Simply we can
say, rules decide which domain characteristics are required, which
characteristics of architecture are required, what is the importance
level of each quality attribute. These rules would be stored in rule-based
engine and then would be obtained with help of repositories. Rule is
generally defined as:

P –> Q or if P then Q (2)

Where P would be characteristics of architecture, domain
characteristics or any NFR and Q would be preferred architecture
prioritization according to P.

Total 108 rules are implemented in DSS based on characteristics
explained earlier

Decision maker (CLIPS): CLIPS has been used fordevelopment of
rule based Decision Support System as CLIPS is one of the generally
utilized AI (Artificial Intelligence) apparatus utilized for Rule-based
DSS. CLIPS gives a firm tool to taking care of a wide mixture of
information. Rule-based programming permits heuristics, otherwise
“thumb rule,” that tag a group of activities executed in specified
circumstance [7].

CLIPS help in dealing with the obligation of this part, indeed,
accepting as well as sending data to and from every segments belong
to DSS. Interface is a “data communicator” possesses an obligation to
get needs that the DSS user gave to system through client interface as
well as give it to tool as an information that is part of DSS for utilization
of it. The priorities entered by software architect become inputs for

NFR Characteristics MOA SOA ROA
Security Encryption Yes, 2 Yes ,2 Yes, 1
 Integrity Yes, 1 Yes, 2 Yes, 1
 Authentication Yes, 1 Yes, 2 Yes, 1
 Authorization Yes, 1 Yes, 2 Yes, 1
 Non-repudiation Yes, 1 Yes, 2 Yes, 1
 Confidentiality Yes, 1 Yes, 2 Yes, 1
Sum of weight (S) 7 12 6
Reliability Point-to-Point Yes, 1 Yes, 1 Yes, 1
 Ordered delivery of No, 0 Yes, 2 Yes, 1
 msg
 Delivery status Yes, 1 Yes, 1 Yes, 1
 Elimination of Yes, 1 Yes, 1 Yes, 1
 duplicate message
 Resending

message
Yes, 1 Yes, 1 No, 0

 Reliable delivery of Yes, 1 Yes, 2 Yes, 1
 msg
Sum of weight (R) 5 8 5
Performance Caching Yes, 1 No, 0 Yes, 1
 Clustering Yes, 1 No, 0 Yes, 1
 Load balancing Yes, 1 No, 0 Yes, 1
 Throughput Yes, 1 Yes, 2 Yes, 3
 Response time Yes, 1 Yes, 2 Yes, 3
 Latency Yes, 2 Yes, 1 Yes, 3
 Execution time Yes, 2 Yes, 1 Yes, 3
Sum of weight (P) 9 6 15

Table 2: NFR characteristics comparison.

Domain
characteristics

MOA SOA ROA

Functionality Yes Yes Yes
App type Yes Yes Yes
Run offline Yes No No

Table 3: Domain characteristics comparison.

Figure 3: Architecture for proposed DSS.

Figure 4: Tool internal Process.

Volume 6 • Issue 2 • 1000176J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mohsin A, Fatima S, Khan AU, Nawaz F (2016) An Automated Approach for Web Services Architectural Style Selection. J Inform Tech Softw
Eng 6: 176. doi:10.4173/2165-7866.1000176

Page 6 of 8

weighted sum model tool that is used for NFRs. Subsequently attaining
results after applying WSM, and oblige utilizing different attributes
data that are given via software architect, CLIPS inference engine will
do surmising on premise of guidelines chain of command. At that
point architectural style or may be combination of architectural styles
would be suggested for the app under development. The results would
be sent to client interface for displaying. Accordingly, DSS dictate
recommendations towards the software architect so as to pick most
appropriate architecture by utilizing expertise [19,20].

User interface: The user interface is in charge of accepting the data
from client in regards to domain qualities needed, which attributes of
architectural style are obliged, what is the essentialness level of every
quality characteristics as per the way of application being produced;
the received data is entered to the decision making tool. In addition,
speaking toessential data required by user got via decision making
or retrieved via repositories is also the obligation of client interface.
The proposed architectural style is spoken to software architect as a
recommendation according to need via client interface. The software
architect or other vital stake holders could choose the suitable
architectural style or styles between proposed one’s regarding his
insight around the issue.

Actors for interface

The actors for system are as follows:

•	 Software architect

•	 Developer

•	 Technical client

All these actors interact with system by giving desired input i.e.
preferred weightage for NFRs security, performance and reliability,
then select required characteristics of architecture and domain.
Then actors would have recommendations from DSS and can select
architecture with highest weightage. The abstract level interface that
may appear for actors is depicted in Figure 4. The interface showing
the initial inputs.

Automated Architecture Selection
To get a better understanding of our approach we have conducted

a hypothetical case study. For this purpose we have identified use case
for which architects have to develop web services. In this whole process
we consider following Requirements for architectural style selection:

•	 Business Requirements

•	 Functional Requirements

•	 Non Functional Requirements

Along with these requirements we also cater for specific
architectural style characteristics and prioritization inputs.

USE CASE: Online Book Order Service

Business requirements: Consider requirements for ordering
abook online. Different clients should be able to place online orders for
books using this web service in various online stores.

FR01: A client logs onto the book retailer’s site and rings a rundown
of the obliged articles.

FR02: A request is intended to the “check accessibility”
administration which supplies data to the web entrance as to the
amount at present in stock.

FR03: The client submits the request for the obliged articles/ books.
Order web Service then issues a quotation. The “quotation issue” service
demonstrates the cost of the products requested by the individual client
making due note of the client status (e.g. rebates, conditions, and so
on.).

FR04: In the event that the online payment is done, the payment
is acknowledged, and the merchandise are assigned for dispatch. The
“send” service exchanges all the essential data to the dispatch system,
including the client’s conveyance and charging location.

Key Non functional Requirements are:

•	 NFR01- Security

•	 NFR02 – Performance

•	 NFR03 – Reliability

We have considered multicriterian requirements to take input for
rule based DSS including general characteristics. A decision problem
described over three alternatives A1, A2, A3 namely SOA, ROA and
MOA which defined via four criteria C1, C2, and C3 namely Security,
Performance plus Reliability. DSS will take weightage of NFR’s from
architect on basis of the preferences for given case study. The interaction
between system and architect is depicted in Figure 5.

The architect would enter weightage for NFR on scale of 1 to 5
where 5 means highly preferred and 1 means less preferred. There are
three styles for this use case: Service-Oriented Architecture, Resource-
Oriented Architecture also called RESTful, and Message-Oriented
Architecture. The satisfaction level of every NFR via different web
service architectural styles is summarized in Table 4.

The weightage for each factor is entered as input into system as
follows:

Figure 5: DSS CLIPS interface.

 Criteria’s Security Performance Reliability
Alternative -- -- --
SOA 6 6 8
ROA 12 15 5
MOA 7 9 5

Table 4: Satisfaction level.

Volume 6 • Issue 2 • 1000176J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mohsin A, Fatima S, Khan AU, Nawaz F (2016) An Automated Approach for Web Services Architectural Style Selection. J Inform Tech Softw
Eng 6: 176. doi:10.4173/2165-7866.1000176

Page 7 of 8

(C1)Security=5, (C2) Performance= 4, (C3) Reliability= 5

Now subsisting these values in equation (1) derived earlier we get:

(SOA): A1 = w1*a11 + w2*a12 + w3*a13

W(A1) = 5*6 + 4*6 + 5*8 = 94

(ROA): A2 = w1*a21 + w2*a22 + w3*a23

W(A2) = 5*12 + 4*15+ 5*5 = 155

(MOA): A3 = w1*a31 + w2*a32 + w3*a33

W(A3) = 5*7 + 4*9+ 5*5 = 96

Here we have calculated NFR weightage for each architectural style
under consideration.

By taking these requirements as input shown in Table 5 the
following results are generated by DSS. As represented in Table 6.

At least 21 input for architectural characteristics were taken along
with weightage for NFRs. After applying weighted sum model to NFR
the final weightage for SOA is at 94, ROA is at 155 and MOA is 96.
Similarly from architectural and domain characteristics the weightage
is 13 for ROA and SOA and 8 for MOA respectively.

Here we get highest value for ROA in relation to Quality attributes
and equal weightage for other characteristics. From these results it is
very easy for developers and architects to choose the right architecture
as for this use case ROA is more suitable architectural style to choose to
develop online Book order web service.

Impact on Decision Making Process
By incorporating different elements involved in manual decision

making process into an automated DSS we have streamlined the
process for architecture selection for a web service. Decision for
selection of a particular architecture for software itself is a complex way
and it becomes even more difficult when we are selecting a particular
architectural style for web service domain. Here we only considered 03
different types Non-functional requirements for 03 said architectural
styles. Here our DSS makes sure to incorporate these NFRs to any
selected architectural style by using weighted sum model. Trade-offs
analysis may also be done between different NFRs at time of selection
of a particular architectural style.

108 different rules were constructed as tree to support various
requirements. Now if this process would have been manual or left to
system architect without any automation, architecture selection could
be subjective depending upon expertise leading to high costs and low
quality.

Here we discuss some advantages and contribution to the domain
with respect to related work.

Advantages

The proposed technique has various advantages which lead
towards high quality web services development with reduced, cost and
overhead for software development teams. Some of them are:

•	 Simplified Decision making process

•	 Un biased decision leading to high quality

•	 Multi-criterion requirements incorporated

•	 Automated decision making for architecture selection

•	 Reduced Risk

Contribution to domain

Though the architecture selection is considered totally a manual
process and depends on the knowledge and personal experience of the
decision makers. Web services architecture selection is trivial as there
are multiple architectural patterns and rate of change in these styles is
quite rapid. We believe that there is a criteria as well as a process within
architects’ mind when they deal with architecture style selection but it
is totally based on the judgment of the selector. Our core contribution
to this domain is that we present a novel way for architecture selection
by incorporating multicriteria requirements. The plus point about
our work is that we have considered modern styles which are in use
in todays cloud and web development environment. Some researchers
have worked in traditional software architecture selection [9] using
multicriteria approach but this work lacks the indepth validation
of fuzzy path analysis. Booth et al. [11] did work on architectural
style selection focusing only on quality attributes by applying AHP
technique, though it is a good direction in this domain but they did
not consider self characteristics of the styles under question. Our
research is quite unique in a sense that we have tried to bring all the
aspects in decision making process for web services for example NFRs,
domain requirements and above all the self characteristics of these
styles. Wieghted Sum Model is a proven approach used in our work
for calculating the quality attributes weightage. In a similar work titled
“ANP-GP Approach for Selection of Software Architecture Styles” [8]
focus on quality attributes and balance among architectural style where
goals and objectives are considered in the decision making process.
Again this work does not target specific style but applies this method
in a general way. In contrast to this work we have targeted modern
web services styles and gathered all their characteristics using rule base
approach for a better decision making.

Future Work
Web services are everywhere in cloud, big data and IOTs so demand

for development and consumption in near future shall increase. In
future more architectural styles may be explored and incorporated
into this DSS. We have focused key Quality attributes; it can be further
enhanced to input other NFRs into system. In future a DSS should be
extended to not only suggest architectural style but should be capable
to generate suggested architecture style skeleton.

Conclusions
Characteristics of architectural styles are different with each

other and, therefore, each one has its own strengths and weaknesses
in a problem space. Our research has created new dimensions for
architectural selection support. Consequently identifying the Non-

NFR weightage Architectural + domain characteristics
(SOA): A1 Minimum 21 question asked on the

basis of architectural and domain repositories(ROA): A2
(MOA): A3

Table 5: Input by architect.

Architectural
Style

Weightage w.r.t
NFR

Weightage w.r.t
architectural

characteristics
SOA 94 13
ROA 155 13
MOA 96 8

Table 6: Results.

Volume 6 • Issue 2 • 1000176J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mohsin A, Fatima S, Khan AU, Nawaz F (2016) An Automated Approach for Web Services Architectural Style Selection. J Inform Tech Softw
Eng 6: 176. doi:10.4173/2165-7866.1000176

Page 8 of 8

functional requirements, architectural characteristics and domain
requirements.

In this paper a DSS for web service architectural selection has
been developed which considers core requirements. It uses weighted
sum model for NFRs and architectural and domain requirements are
prioritized on basis of selected characteristics using rule based model
as knowledge engine. The results obtained from this DSS would help
software architects, teams and developers in making precise and
efficient decisions. Subsequently it will help improve the overall quality
of web service development process.

References

1. Svahnberg M, Karlskrona K (2003) Supporting Software Architecture Evolution.
Blekinge Institute of Technology Dissertation Series.

2. Nawaz F, Mohsin A (2015) Rule-Based Multi-criteria Framework for SaaS
Application Architecture Selection. Artificial Intelligence in Theory and Practice
IV 465: 129-138.

3. Triantaphyllou E (2013) Multi-criteria decision making methods: a comparative
study. Springer Science & Business Media.

4. Riley G (2015) What is CLIPS?.

5. Mumbaikar S, Padiya P (2013) Web Services Based On SOAP and REST
Principles. International Journal of Scientific and Research Publications 3: 1-4.

6. Chen Z (1999) Computational intelligence for decision support. CRC Press.

7. Wang Q, Yang Z (2012) A method of selecting appropriate software architecture
styles: Quality Attributes and Analytic Hierarchy Process. Bachelor of Science
Thesis, University of Gothenburg.

8. Babu KD, Govindarajulu P, Ramamohana Reddy A, Aruna Kumari A (2011)
ANP-GP approach for selection of software architecture styles. Int J Softw Eng
1: 91-104.

9. Moaven S, Habibi J, Ahmadi H, Kamandi A (2008) A decision support system
for software architecture-style selection. Software Engineering Research,
Management and Applications, 2008. SERA’08, Sixth International Conference,
Prague.

10. Belqasmi F, Singh J, Melhem SYB, Glitho RH (2012) SOAP-based vs. RESTful
web services: A case study for multimedia conferencing. IEEE Internet
Computing 54-63.

11. Booth D, Hass H, McCab F (2004) Web Services Architecture, W3C Working
Group Note.

12. Fielding RT, Taylor RN (2002) Principled design of the modern Web
architecture. ACM Transactions on Internet Technology (TOIT) 2: 115-150.

13. Pautasso C, Zimmermann O, Leymann F (2008) Restful web services vs.
big’web services: making the right architectural decision. Proceedings of the
17th international conference on World Wide Web.

14. Wagh K, Thool R (2012) A comparative study of soap vs rest web services
provisioning techniques for mobile host. Journal of Information Engineering and
Applications 2: 12-16.

15. Muehlen MZ, Nickerson JV, Swenson KD (2005) Developing web services
choreography standards—the case of REST vs. SOAP. Decision Support
Systems 40: 9-29.

16. Dudhe A, Sherekar SS (2014) Performance Analysis of SOAP and RESTful
Mobile Web Services in Cloud Environment. IJCA Special Issue on Recent
Trends in Information Security RTINFOSEC: 1-4.

17. Lofthouse H, Yates MJ, Stretch R (2004) Parlay X Web Services. BT Tech J
22: 81-86.

18. Turban E, Liang TP, Aronson JE (2006) Decision Support Systems and
Intelligent Systems. Seventh Edition.

19. Curry E (2004) Message-Oriented Middleware. Middleware of Communications,
John Wiley and sons, Chichester, England.

20. Fielding RT (2000) Architecture Styles and Design of Network based Software
Architectures. University of California Irvine.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.4041
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.4041
http://link.springer.com/chapter/10.1007%2F978-3-319-25261-2_12
http://link.springer.com/chapter/10.1007%2F978-3-319-25261-2_12
http://link.springer.com/chapter/10.1007%2F978-3-319-25261-2_12
https://books.google.co.in/books?hl=en&lr=&id=IPPiBwAAQBAJ&oi=fnd&pg=PR15&dq=Multi-criteria+decision+making+methods:+a+comparative+study&ots=Nd_7Bk_arO&sig=ngEEt1zagBNj_6gx656BtJS9_eY#v=onepage&q=Multi-criteria decision making methods%3A a compar
https://books.google.co.in/books?hl=en&lr=&id=IPPiBwAAQBAJ&oi=fnd&pg=PR15&dq=Multi-criteria+decision+making+methods:+a+comparative+study&ots=Nd_7Bk_arO&sig=ngEEt1zagBNj_6gx656BtJS9_eY#v=onepage&q=Multi-criteria decision making methods%3A a compar
http://www.ijsrp.org/research-paper-0513/ijsrp-p17115.pdf
http://www.ijsrp.org/research-paper-0513/ijsrp-p17115.pdf
https://books.google.co.in/books?hl=en&lr=&id=d_Nw95OYquEC&oi=fnd&pg=PR11&dq=Computational+intelligence+for+decision+support:+CRC+Press&ots=k3KtWJKEbY&sig=SH5my9ivfFbS8iMLL02xECXkG1M#v=onepage&q=Computational intelligence for decision support%3A
https://gupea.ub.gu.se/bitstream/2077/30045/1/gupea_2077_30045_1.pdf
https://gupea.ub.gu.se/bitstream/2077/30045/1/gupea_2077_30045_1.pdf
https://gupea.ub.gu.se/bitstream/2077/30045/1/gupea_2077_30045_1.pdf
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJSE-29
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJSE-29
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJSE-29
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4609428&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4609428
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4609428&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4609428
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4609428&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4609428
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4609428&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4609428
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6197173
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6197173
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6197173
https://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
https://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
http://www8.cs.umu.se/kurser/5DV095/HT09/literature/restvsbig.pdf
http://www8.cs.umu.se/kurser/5DV095/HT09/literature/restvsbig.pdf
http://www8.cs.umu.se/kurser/5DV095/HT09/literature/restvsbig.pdf
http://www.iiste.org/Journals/index.php/JIEA/article/view/2063
http://www.iiste.org/Journals/index.php/JIEA/article/view/2063
http://www.iiste.org/Journals/index.php/JIEA/article/view/2063
http://www.sciencedirect.com/science/article/pii/S0167923604000612
http://www.sciencedirect.com/science/article/pii/S0167923604000612
http://www.sciencedirect.com/science/article/pii/S0167923604000612
http://www.ijcaonline.org/specialissues/rtinfosec/number1/15131-1401
http://www.ijcaonline.org/specialissues/rtinfosec/number1/15131-1401
http://www.ijcaonline.org/specialissues/rtinfosec/number1/15131-1401
http://link.springer.com/article/10.1023/B%3ABTTJ.0000015498.83303.f4#/page-1
http://link.springer.com/article/10.1023/B%3ABTTJ.0000015498.83303.f4#/page-1
http://sutlib2.sut.ac.th/sut_contents/H86360.pdf
http://sutlib2.sut.ac.th/sut_contents/H86360.pdf
https://books.google.co.in/books?hl=en&lr=&id=bh8_0FD3qgQC&oi=fnd&pg=PA1&dq=Message-Oriented++Middleware%E2%80%9D++in++Middleware++of++Communications&ots=icvuRqADO2&sig=W_DPTx_Hkd_Xin8aG90NPcGufng#v=onepage&q=Message-Oriented Middleware%E2%80%9D
https://books.google.co.in/books?hl=en&lr=&id=bh8_0FD3qgQC&oi=fnd&pg=PA1&dq=Message-Oriented++Middleware%E2%80%9D++in++Middleware++of++Communications&ots=icvuRqADO2&sig=W_DPTx_Hkd_Xin8aG90NPcGufng#v=onepage&q=Message-Oriented Middleware%E2%80%9D
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

	Title
	Corresponding author
	Keywords
	Introduction
	Literature Review
	SOC architectural styles
	Architecture selection techniques
	The research challenge

	Proposed DSS for Web Service Architectural Selection
	DSS and its types
	Working of proposed DSS
	Actors for interface

	Automated Architecture Selection
	Impact on Decision Making Process
	Advantages
	Contribution to domain

	Future Work
	Conclusions
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	References

