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Abstract
This paper reports the use of artificial neural networks (ANN) approach to predict nickel concentration in external 

phase during emulsion liquid membrane extraction process. Experimental data from laboratory batch analysis of nickel 
extraction have been used to train, validate and test the back-propagation ANN model. The input neurons correspond 
to, external phase pH, stripping phase concentration, stirring speed, carrier concentration, surfactant concentration, 
treatment ratio (volume ratio of emulsion to external phase), phase ratio (volume ratio of membrane to stripping 
phase), initial external phase nickel(II) concentration, and time. A tree -layer network with different hidden neurons 
and different learning algorithms such as LM, SCG, and BR were examined. The network with six hidden neurons 
and Bayesian regularization (BR) algorithm showed good performance. The predicted values of solute concentration 
in external phase are found to be in good agreement with the experimental results, with average absolute deviation 
(ADD%) of 0.2664% and correlation coefficient R2 of 0.977. The results of this study show that the ANN model trained 
on experimental measurements can be successfully applied to the rapid prediction of external phase concentration

Keywords: Artificial neural networks; Emulsion liquid membrane;
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Introduction
Many methods have used in waste water treatment generated by 

industrial processes such as solvent extraction, electro coagulation, 
activated carbon adsorption, ion exchange, emulsion liquid membrane 
(ELM), etc. Extraction processes using ELM, invented by Li [1] in 1968, 
have received significant attention for their potential as a technique for 
treatment of industrial liquid wastes due to it some attractive features for 
example, simultaneous performance of extraction and stripping in one 
stage, high efficiency, larger interfacial area [2]. Principally, emulsion 
liquid membrane involves a dispersion of emulsion water/oil (w/o) type 
containing of organic and aqueous stripping phase into the aqueous feed 
(external) phase containing solutes to form double emulsion water-in-
oil-in water (w/o/w) type. A thin film of oil is formed between the outer 
(feed aqueous) phase and inner (stripping aqueous) phase, through 
which the complex solute-extractant, formed at the interface of the 
emulsion globule and the feed phase, diffuse and then stripped into the 
encapsulated phase. The transportation of solute in the emulsion liquid 
membrane is chiefly motivated by the concentration gradient and pH [3].

A number of mathematical models have been developed over the 
years to describe the mechanism of solute transfer through emulsion 
liquid membranes. these models can be classified into the (1) the well-
mixxed internal phase or membrane film model (such as spherical 
shell model, plan film membrane) and (2) the rigid drop model or the 
distributed resistance model (such as advancing front and reversible 
model) [4]. The first model is based on the assumption that the entire 
resistance to mass transfer is assumed to be concentrated in a membrane 
film of constant thickness surrounding the emulsion globule. On the 
other hand, the second model is based on the assumption that the 
mass transfer resistance to be distributed throughout the emulsion 
drop [5-10].

Emulsion liquid membrane process depends on several parameters 
such as external phase pH, stripping phase concentration, stirring speed, 
extractant concentration, surfactant concentration, treatment ratio 
(volume ratio of emulsion to external phase), phase ratio (volume ratio of 
membrane to stripping phase) and initial external phase concentration. 

The development of mathematical models describing the process has 
proven to be difficult. The use of purely empirical models, which not 
require any postulates and assumptions appear to be new alternatives. 
One such method is the artificial neural network (ANN) approach. 
Extensive research has been performed with ANN approach in chemical 
engineering modeling [11-20]. In the present work an artificial neural 
network was developed to construct a predictive model to forecast 
the external phase concentration during emulsion liquid membrane 
extraction process. The details of the artificial neural networks are found 
elsewhere; however, a brief description is presented in Section 2.

Artificial Neural Networks
Artificial neural networks generally consist of a number of 

interconnected neurons or nodes that are organized in one or more 
layers. Rather than being programmed, neural networks can learn 
from exemplars, and have been shown to be effective in representing 
nonlinear relationship among variables [20]. Although different 
architectures have been reported, the uses of back propagation neural 
networks are particularly widespread in chemical engineering research, 
among others, owing to their simplicity, compact design and flexibility 
[11-18]. In back propagation neural nets (which have been used in 
this investigation), neurons are arranged in input, hidden, and output 
layers and linked to others with associated weights and baises, which 
will be adjusted to optimal values during the training. Collectively these 
connections, as well as the transfer functions of the processing units, 

Journal of 
Chemical Engineering & Process TechnologyJournal 

of
 C

he
m

ica
l E

ngineering & Process Technology

ISSN: 2157-7048



Page 2 of 5

Citation: Hachemaoui A, Belhamel K (2017) An Artificial Neural Network Approach for the Prediction of Extraction Performance of Emulsion Liquid 
Membrane. J Chem Eng Process Technol 8: 356. doi: 10.4172/2157-7048.1000356

Volume 8 • Issue 4 • 1000356
J Chem Eng Process Technol, an open access journal
ISSN: 2157-7048 

can form distributed representations of relationships between input and 
output data.

Back propagation neural net training, is accomplished by repeatedly 
presenting the network with sets of exemplars of the process being 
modelled. During this supervised training process, the weights of the 
network are adjusted continuously based on the error signal generated 
by the discrepancy between the output of the network and the actual 
output of the training exemplars. The training process is accomplished 
by means of learning algorithms designed to minimize the mean square 
output error between the desired and actual output of the net [19,20]. 
The network is said to have converged when its outputs correspond 
closely with the desired outputs of the training data based on some 
arbitrary error criterion. The only task of the neurons in the input layer 
is to distribute the input signal to neurons in the hidden layer. The 
neurons in the hidden layer perform two tasks: they sum the weighted 
inputs connected to them and pass the resulting summations through 
a non-linear activation function (such as a sigmoid, or a hyperbolic 
tangent function) to the output neuron or adjacent neurons of the 
corresponding hidden. The output of neurons in the output layer is 
computed in the same manner. Following this calculation, a learning 
algorithm is used to adjust the strengths of the connections in order to 
allow a network to achieve a desired overall behaviour. There are many 
types of learning algorithms in the literature (Table 1). However, it is 
very difficult to know which training algorithm will be more efficient for 
a given problem [21].

Results and Discussion
The back propagation network employed in this modelling problem 

(Figure 1) consisted of an input layer with nine nodes corresponding 
to the operating variables: external phase pH, stripping phase 
concentration (hydrochloric acid: [HCl]), stirring speed (ω), carrier 
concentration (bis-(2-ethylhexyl) phosphoric acid: [D2EHPA]), 
surfactant concentration (Sorbitane monooleate: [Span 80]), treatment 
ratio TR (volume ratio of emulsion to external phase), phase ratio φ 
(volume ratio of membrane to stripping phase), initial external phase 
nickel(II) concentration (Ce0), and time (t), one hidden layer and an 
output layer with one node corresponding to the external phase Ni(II) 
concentration (Ce). The ranges of change in variables involved in 
extraction process are summarized in Table 2.

The experimental data used in this study to develop the ANN 
model are adopted from our published work [22], in which, effects of 
these operating variables (Table 2) on the extraction rate of nickel from 
chloride solution using ELM containing di-2-ethylhexyl phosphoric 
acid (D2EHPA) as a carrier in kerosene were examined. Thus database 
of the 245 data sets, was partitioned manually into three segments for 
training, validation and testing: 60% (185 data sets) were used to train 
the ANN models in order to determine network parameters, 10% (30 
data sets) were used to cross-validate the relationships established 
during the training process (in order to monitor training progress so as 
to keep the network from overfitting) and the remaining 15% (30 data 
points) were used to test the ANN models to measure the performance 
of the predictive capability of the ANN after complete training. Before 
training, all input and target data were scaled to a similar magnitude in 
the range [-1,1] in order to convert them to a suitable form.

The Neural Network Toolbox available in MATLAB is implemented 
in this study to design and train the neural network. The back-
propagation network was trained according to Bayesian regularization 
(BR) algorithm. Sigmoid and linear functions are assigned the transfer 
functions in hidden and output layers, respectively. The configuration 
of trained neural network is accomplished in terms of weights and 
bias values of each layer after the training and validation of construct 
networks [23].

To check the accuracy of the models in this study, statistical 
parameters such as mean relative error (MRE), mean square error 
(MSE) and average absolute deviation (AAD) are used. MRE, MSE and 
AAD are defined as follow:

exp, ,

1 exp,

( )1 n
i p i

i i

e e
MRE

n e

C C
C=

−
= ∑  	 		                (1)

2
exp, ,

1

1 ( )
n

i pre i
i

MSE e e
n

C C
=

= −∑ 	 		                (2)

exp, ,

1 exp,

1% 100
n

i pre i

i i

e e
AAD

n Ce
C C

=

−
= ×∑  		  	                 (3)

Where, Ceexp and Cepre are the experimental and predicted value, 
respectively. n is the number of samples.

Under the ANN modelling approach, the determination of optimal 
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Figure 1: Structure of the back propagation network used in this study.

Algorithm Abbreviation Description

Powell–Beale 
conjugate gradient 

algorithm
CGB Generally, has a faster rate of 

convergence

Adaptive learning rate 
algorithm GDX Faster than basic gradient descent 

algorithm

Scaled conjugate 
gradient algorithm SCG The conjugate gradient algorithm 

requires no line search

BFGS quasi-Newton 
method BFG Usually converges in fewer iterations 

but requires estimating Hessian matrix

Levenberg–Marquardt 
algorithm LM One of the fastest training algorithms 

for networks of moderate size

Bayesian 
regularization BR

Modification of the Levenberg–
Marquardt algorithm to produce 
networks that generalize well

Table 1: The learning algorithms with brief descriptions used to train the ANN [22].
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Measures parameters Minimum Maximum
Inputs

External phase pH 2.98 4.02
Stripping phase concentration [HCl] (M) 0.5 2

Stirring speed ω (rpm) 200 700
Carrier concentration [D2EHPA] (%v/v) 2 10

Surfactant concentration [Span80] (%v/v) 2 10
Treatment ratio (TR) 0.1 0.2

Phase ratio (φ) 0.5 1.5
Initial nickel concentrationon Ce0 (ppm) 100 594

Elapsed time (t) (s) 0 30
Outputs

External phase concentration (Ce) (ppm) 0.875 249.6

Table 2: Range of experimental variables used for modelling.

Input weights pH [HCl] ω [D2EHPA] [Span80] TR φ Ce0 t Bias

No. of neurons           

1 -0.1985 0.056 -0.1522 -0.0328 -0.0656 0.1827 -0.2461 -0.48 2.5371 0.8132

2 0.1382 -0.0703 -0.0737 0.098 0.0412 0.0288 -0.0874 -0.5777 1.9789 1.3611

3 0.7173 -0.2277 0.2875 0.4728 0.143 -0.6638 0.7802 -1.5882 -1.1008 -0.8033

4 -0.2265 0.0166 0.2367 -0.3027 0.1751 0.4046 -0.4454 3.1904 -0.0987 0.9857

5 -0.8044 0.3226 -0.2952 -0.5878 0.2854 0.6144 -0.6457 3.9371 -0.215 0.5915

6 -0.6096 0.3608 0.2575 -0.2966 0.2166 -0.4213 0.4988 -1.9773 -0.1966 -0.506

Neurons 1 2 3 4 5 6 Bias

Layer weights 0.9257 -1.6312 0.9474 -1.7554 1.5809 -2.1903 0.0478

Table 3: Optimum weights and biases for the used ANN model.

Figure 2: The hidden layer node numbers vs. MRE error on the validation set.
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number of neurons in the hidden layer of the network is an important 
step. The number of neurons in the hidden layer has been optimized 
through minimizing the mean relative error (MRE) for the network 
trained with respect to the cross-validation data when the number 
of hidden neurons is varied (Figure 2). Based on this figure, it can be 
seen that six is the best number of hidden layer nodes with the least 
cross-validation MRE of 0.1153. Too many hidden neurons may cause 
the neural network to be over learned and on the other side, fewer 
hidden neurons will not provide sufficient freedom for the network to 
accurately learn the problem behaviour.

The configuration of trained neural network is accomplished 
in terms of optimum weights and bias values of each layer after the 
training and validation of construct networks. These optimum values 
have been presented in Table 3.

In order to train network, the training function which updates 
network weight and bias through various algorithms must be selected 
initially. To do so, performances of different training algorithms were 
studied. The mean square error (MSE) for various algorithm training, 
base on the six neurons in hidden layer, is listed in Table 4. As shown 
in Table 4 the Bayesian regularization (RB) algorithm provides the 
minimum error for training the network, so trainrb was selected as the 
proper trainning algorithm in this study.
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Figure 3: Evaluation of ANN performance; A scatter plot of typically measured experimental data against the ANN model for unseen data: (R2=0.978, AAD%=0.2664).

Algorithm MSE of network Training
Trainlm 2.3326e-006
Trainrb 1.2829e-005
trainscg 1.0617

Table 4: MSE Comparison between different algorithms for the training of ANN.

After training, the ANN, the models become ready for testing and 
evaluation of it performance. Performance efficiency of the network was 
evaluated using the measured and ANN estimated value. A scatter plot of 
typically measured experimental data against the ANN model predictions 
was shown in Figure 3. As shown in Figure 3, the predicted external phase 
concentrations of the testing set were in acceptable good agreement with 
those of the experimental data. Almost all data lay on the diagonal line, 
which confirms the accuracy of the ANN model with average absolute 
deviation AAD% of 0.266 and correlation coefficient R2 of 0.978.

Conclusions
In this paper, the ability of the neural net work model for predicting 

external phase concentration was examined. Several learning algorithms 
such as LM, SCG, and BR with different hidden neurons were tested. 
The results show that a model with BR algorithm and 6 hidden neurons 
has the minimum mean relative error percent. The results of this study 
show that the ANN model trained on experimental measurements 
can be successfully applied to the rapid prediction of external phase 
concentration.
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