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ABSTRACT
Based on the linear free energy relationships (LFERs) theory and thermodynamics formulas, an alternative method

predicting the critical pressure (Pc) of pure fluids is proposed for the first time. According to the regression result of

15 homologues, 516 substances, correlation equations between Pc and molecular descriptors were obtained. The

mean relative deviations (MD) of the 15 equations are from 1.68% to 3.76%. In addition, the squared correlation

coefficients (R2) of the most of equations are larger than 0.91. The results reveal that the equations exhibit better

effects with a simple form of the equation, high prediction accuracy, definition theory meaning, and wide

applicability. This study successfully combines the macroscopic physical properties with the characteristics of

molecules and breaks through the experimental or theoretical application scope, while perfecting the calculation of

Pc for pure fluids.
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INTRODUCTION

Critical temperature, pressure, volume, density, compressibility
factor are the most important physical parameters. As the basic
physical properties of substances, they are necessary variables not
only in calculating or estimating physical and chemical
properties but also in many chemical engineering and process
designs. However, the quantity of experimental data is very finite
until now because of extensive difficulty in measuring the critical
state. Therefore, the existing critical parameters do not meet the
current requirements for chemical production, process design,
and scientific research. This predicament causes some methods
for evaluating the critical parameters of unknown compounds by
combining known data with modern prediction method to
emerge as times require.

Group contribution method is the most widely used and studied
[1-15]. Although the early group contribution methods bare the
advantages of a simple form and convenient calculation, they
could not distinguish isomers and ignored interactions between
bonds. There was a significant improvement in accuracy when
these defects were resolved [2-4]. In addition Valderrama et al.

[10], Skander et al. [11] and Lymperiadis et al. [12] successively
proposed some new methods based on the group contribution
method. It should be emphasized that Wang et al. and Ma et al.
[13-15] have successfully applied a position group contribution
method in calculating critical properties, which solves the
difficult problem of failing to distinguish isomers. For the
prediction of the critical properties of isomers, the topology
method [16,17] was also a good option, due to its excellent
capability of distinguishing isomers.

The association equation method [18-20] was also commonly
used. In this method, the characteristic groups were first divided
into various types and then the basic physical properties of
molecular weight M, boiling temperature Tb, and number of
carbon atoms were selected and related with the critical
parameters. For example, Klincewicz et al. [18] predicted 199
compounds by dint of Tb and M. Ma et al. [19] calculated the Pc
of 221 compounds by using Tb, d20 4 and M. Lu et al. [20] and
Vejahati et al. [21] also put forward a set of similar equations
using simple physical properties as variables to predict critical
parameters. These equations are simple, understandable and
accurate.
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The artificial neural network method is very applicable in the
physical prediction field. Kuang et al. [22] and Gharagheizi et al.
[23,24] predicted the critical properties of pure substances by
combining an artificial neural network with the group
contribution method and obtained a result with high accuracy.
In addition, critical properties could also be predicted on the
basis of the liquid state equation and semi-empirical model for
describing other physical properties [25]. Quantitative structure
property relationship (QSPR) methods [26,27] and the cubic
equation of state [28-30] have been used to predict the critical
parameters of pure substances. In summary, great progress has
been made in predicting critical parameters, but not every
method is suitable for all substances. Some methods are aimed
at specific points and have their limitations. Therefore, scientific
researchers should select simple, accurate methods according to
an actual need. In this paper, we proposed a new method
primarily based on the linear free energy relationships (LFERs)
theory [31,32] to predict the Pc of pure fluids. The LFERs
theory posits that the molecular basic property can be expressed
by five molecular descriptors as described in Equation (1).

SP=c+eE+sS+aA+bB+vV (1)

Where, the dependent variable SP is some property of a series of
solutes in a fixed phase. The independent variables or
descriptors are solute properties as follows: E is an excess molar
refraction, denoting the solute excess molar refraction that
reflects the solute ’ s ability to interact with the surrounding
solvent molecules through π- and lone electron pairs; S is the
dipolarity/polarizability; A is the overall hydrogen bond acidity;
B is the overall hydrogen bond basicity and V is the
characteristic McGowan volume. The molecular descriptors may
be of either experimental origin or calculated based solely on
molecular structure considerations. The set of coefficients, i.e.,
c, e, s, a, b and v can be obtained by using a multiple linear
regression analysis. According to the LFERs model, many
properties for substances can be researched with the known
molecular descriptors and the set of molecular descriptors has
the advantage of distinct significance, wide substance range,
simple calculation, and high precision, as stated in the research
[31-82].

By the enlightenment of the LFERs model, we hold that the
characteristics of the molecular descriptors factually reflect the
intermolecular interaction and the macroscopic property are
decidedby the substance structure and reciprocity of the
molecules. This indicates that the set of molecular descriptors
should be widely applicable in estimating the physicochemical
properties of substances.Therefore we suggest that the Pc can be
denoted as an equation using five molecular descriptors of the
LFERs theory. This paper aims at obtaining correlation
equations between the Pc of various compounds and the five
molecular descriptors. To our best knowledge, although the
LFERs theory has been widely used, the research of Pc using the
LFERs theory has never been published. The detailed process
will be introduced in the latter paragraphs.

MATERIALS AND METHODS

There are intermolecular interactions, mutual attraction and
mutual repellence in a molecular system. When the mutual

repellence is larger than the mutual attraction the substance is
in a gaseous state. When the mutual attraction is larger than or
at least equal to the mutual repellence, the gas will likely be
transformed into liquid. The intermolecular mutual attraction
can be considered independent of the temperature.
Contrastingly, the mutual repellence resulting from an
intermolecular collision depends intensively on temperature.
Therefore, only the gas temperature that has decreased to some
extent can have a mutual attraction being greater than or equal
to the mutual repellence. Furthermore, the gas could be
converted into liquid. The allowable maximum temperature
when the mutual attraction is equal to the mutual repellence is
the critical temperature. When the temperature is greater than
the critical temperature, the gas cannot be liquefied no matter
how much pressure is applied. The minimum pressure required
at the critical temperature is the Pc. Therefore, it can be
considered that when the critical temperature remains constant,
the mutual repellence that resulted from molecular collision is
also determinate. To force gas into a liquid state, the
intermolecular attraction must be equal to the intermolecular
repellence, and the applied pressure is definite. Therefore, the
Pc can be expressed by the intermolecular force.

In this paper, using five molecular descriptors, the Pc is
expressed as:

Pc=F (E, S, A, B, V) (2)

Furthermore, the Pc could be denoted as the following formula
according to the LFERs model.

Pc=c+eE+sS+aA+bB+vV (3)

The c, e, s, a, b and v are the undetermined coefficients of the
equation, which are determined by multiple linear regression
analyses of the experimental Pc data for a series of organic
compounds considered in this paper. E, S, A, B, and V are the
molecular descriptors of the substance. The molecular
descriptors for all of the compounds considered in the present
study are taken from thepublished literature [31-76].

The five molecular descriptors were directly used in the
regression for most of the compounds. However, for some
compounds, if the five molecular descriptors were used directly
to regress, such as alkene, alcohol, aldehyde, acid, and amine,
then the errors were large.

Therefore, we corrected the equations for these compounds as
follows:

Pc=2 (E,S,A,B,V) (4)

The reason for this correction was that the correlation between
the Pc and the normal boiling point was apparent in many
estimating methods. 3, 83-85 Therefore, the equation of Pc can
be transformed into

Pc=Tb (E, S, A, B, V) (5)

On the process of regressing, no data on boiling point were used
since the boiling point was closely related to the five molecular
descriptors, which can be revealed by our ongoing research.
Therefore, the boiling point can be expressed by the molecular
descriptors as
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Tb=F (E, S, A, B, V) (6)

Therefore, the Pc can be formulated as Equation (4).

In other words, there are two equations, Equation (2) and (4),
for researching the Pc. Not all homologues adopt the same
mode. There is no obvious difference between the two equations
for these types of compounds except alkene, alcohol, aldehyde,
acid, and amine. Therefore, for the sake of simplicity, we adopt
the original method expressed as in Equation (2) and (3).

The data of Pc for the pure substances were collected from the
Lange’s Handbook of Chemistry (the 15th edition), Handbook
of Chemistry and Physics printed by the CRC, Chemical

Properties Handbook published by World Publishing
Corporation and McGraw-
Hill Book, Co., and Physical Properties Data book of Chemical
and Chemical Industry published by Chemical Industry Press of
China. The 516 collected compounds are first classified into 15
genera and then the 15 homologues are regressed by a step wise
regression analysis. Fifteen equations are established and
evaluated using the squared correlation coefficient (R2), the F
test and the mean relative deviation (MD). All the Pc and
molecular descriptors used for model validation are presented in
the supplementary material.

Table 1: Regression equations for Pc.

S.no
Compound
types

Number Regression equations R2 F MD%

1
Halogenated
benzene

16 pc=(71.70 ± 8.70)+(18.20 ± 5.28)E+(-47.00 ± 11.69)V 0.86 38.92 3.47

2 Alkane 145 pc=(45.16 ± 1.25)+(21.11 ± 3.35)E+(-14.00 ± 0.90)V 0.92 852.32 3.65

3 Alkene 55 pc=(58.46 ± 2.29)+(13.22 ± 2.85)E+(-37.09 ± 3.42)V+(7.49 ± 1.10)VV 0.98 792.11 3.25

4 Alkyne 17 pc=(76.80 ± 3.90)+(-46.80 ± 5.50)V 0.96 329.01 2.78

5 Arenes 37 pc=(51.48 ± 3.00)+(16.08 ± 3.16)E+(-46.83 ± 20.10)B+(-19.14 ± 2.37)V 0.91 112.53 3.57

6 Phenol 15
pc=(86.89 ± 22.44)+(-27.75 ± 25.77)S+(37.74 ± 10.53)A+(55.03 ± 31.66)B+(-53.91 ±
13.12)V

0.98 105.01 3.39

7 Alcohol 39
pc=(37.03 ± 11.44)+(193.62 ± 38.25)S+(-40.07 ± 14.98)V+(13.37 ± 2.31)V2+(32.30 ±
23.07)BV+(-84.94 ± 21.82)SV+(-65.42 ± 33.84)SB

0.98 276.6 3.89

8 ether 28 pc=(54.35 ± 2.11)+(11.64 ± 2.31)S+(-25.64 ± 2.31)V 0.95 260.46 3.52

9 Aldehyde 25
pc=(89.80 ± 4.43)+(-95.61 ± 15.31)B+(48.54 ± 15.79)E 2+(31.97 ± 12.21)ES+(-55.17 ±
9.33)EV+(75.18 ± 20.51)SB+(-75.09 ± 6.89)SV+(14.80 ± 2.18)V 2

0.99 708.95 1.84

10 Ketone 15 pc=(50.90 ± 3.28)+(14.24 ± 3.96)S+(-27.53 ± 2.55)V 0.98 280.28 1.82

11 Acid 22
pc=(36.73 ± 16.32)+(81.58 ± 30.13)E+(63.90 ± 22.51)A+(-50.19 ± 8.68)V+(10.45 ±
2.90)V2+(-178.01 ± 63.61)EB

0.99 317.23 3.18

12 Ester 48 pc=(50.76 ± 2.19)+(10.71 ± 5.00)E+(3.36 ± 2.74)S+(-21.12 ± 1.56)V 0.95 269.89 3.35

13 Amine 26

pc=(131.71 ± 25.09)+(-103.35 ± 18.32)V+(-96.43 ± 29.91)EV+(473.51 ± 233.13)SA+
(-517.72 ± 194.44)SB+(204.34 ± 71.60)SV+(-1367.72 ± 775.90)A2 +(603.41 ±
195.19)AB+(-272.64 ± 78.25)AV+ (32.17±5.25)V2+(143.36 ± 76.67)ES+(106.29 ±
25.26)EB

0.99 121.1 2.11

14 Nitrile 16 pc=(58.43 ± 3.08)+(63.26 ± 34.40)A+(-22.86 ± 7.23)B+(-18.08 ± 3.71)V 0.97 145.04 1.68

15 Nitro 22 pc=(70.98 ± 3.38)+(12.04 ± 2.43)E+(-42.21 ± 4.94)V 0.96 205.71 2.07

RESULTS AND DISCUSSION

In the researching of the Pc, a regression analysis of 516
substance from 15 categories was carried out (including
saturated, unsaturated, chain, branched chain, cyclic, benzene

ring, carbonyl compounds, hydroxyl compounds, and
compounds containing N, O and halogen). The fitting
equations of the Pc are listed in Table 1. The mean relative
deviations (MD) of the obtained equations are from 1.68% to
3.76%. It is undeniable that when compared with other
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published methods [3,4,18,25,26,83-91]. Our equations have no
remarkable increase in precision and even decrease a little as
listed in Table 2. However, considering the difficulty of the
measurement and estimation of Pc, the accuracy was reasonably
high. In addition, our method has the advantages of simple
form and easy calculation. The molecular descriptors are
available for several thousand compounds in the published
research [31-76] or can be estimated based on the existing
methods [32,35,69]. Additionally, we can obtain the molecular
descriptors using ADME software [92].

Table 2: Number of compounds and mean relative deviations (MD%)
of some studies.

S.no Reference
Number of
compounds

Mean relative
deviation (%)

1 1 275 2.72

2 2 269 2.89

3 3 286 2.98

4 4 445 5.3

5 18 199 5.1

6 22 1230 1.5

7 86 501 2.09

8 87 112 2.61

9 88 201 2.33

10 89 501 2.15

11 90 1696 1.1

12 91 408 2.47

13 This work 516 1.68~3.76(total 2.88)

For the halo hydrocarbon, only halogenated benzene was fitted.
This was because the fitting effects of other similar compounds
were very poor. For nitrogen compounds, we did not select the
amides and aniline for the study because of the lack of data for
them.

We adopted the following five figures to represent the predictive
effect of estimating the Pc (Figures 1-5).

Figure 1: Comparison of experimental and calculated pc values for 22
nitryl compounds, MD = 2.07% (by uncorrected equation).

Figure 2: Comparison of experimental and calculated pc values for 145
alkanes, MD = 3.65% (by uncorrected equation).

Figure 3: Comparison of experimental and calculated pc values for 25
aldehydes, MD = 1.84% (by corrected equation).
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Figure 4: Comparison of experimental and calculated pc values for 26
amines, MD=2.11% (by corrected equation).

Figure 5: Comparison of experimental and calculated Pc values for 39
alcohols, MD=3.89% (by corrected equation).

To confirm the service ability of our equations for Pc, the other
9 categories of 51 compounds beyond the regression were
selected to predict the Pc. The calculated values and the
corresponding experimental data are listed in Table 3. As seen
from Table 3, most of the calculated results correlate with that
of the experiment. However, there is serious departure for some
compounds. This situation can be explained by the following
reasons. First, the intermolecular interaction was very
complicated. The five arguments of the equations cannot
integrally describe the interaction and molecular structure. The
second reason is the defection of the molecular descriptors, for
instance, the isomers have identical V values, which is always
unconformable with the real case. In addition, there is not
hydrogen bond for some systems. Therefore, some factors
related with molecular structure and interaction affecting Pc
may be absent from the obtained equations, resulting in large
error. These aspects may be the main deficiencies of our
method. Considering the difficulty of measuring Pc, the
prediction effect is favorable.

Table 3: Comparison of experimental and calculated Pc values (in bar).

S.no
Formula
e

Name
Pc(exp
)

Pc(cal)
Error/
%

1 C7H8O
3-Methylphenol(m-
Cresol)

45.6 53.31

2 C8H10O 3,5-dimethylphenol 36.48 47.93

3
C10H14
O2

p-tert-butyl catechol 37.7 48.86

4 C6H6 benzene 48.98 41.02 16.25

5 C8H6 phenyl ethyne 44.03 33.7 23.45

6 C16H26 n-decyl benzene 17.7 13.09 26.03

7 CH4O methanol 80.96 67.16

8
C12H26
O

1-dodecanol 19.3 16.84

9
C13H28
O

1-tridecanol 18.1 15.62

10
C14H30
O

1-tetradecanol 17 14.93

11 C5H10O 3-pentanone 37.39 37.48

12 C5H8O Cyclo pentanone 58.5 43.32 25.94

13 C9H18O di-isobutyl ketone 24.8 20.55 17.13

14 CH4 methane 46.04 41.44 10

15 C2H6 ethane 48.8 39.34 19.4

16 C3H6 Cyclo propane 55.75 47.47 14.86

17 C3H8 propane 42.49 37.23 12.37

18 C5H10 Cyclo pentane 45.02 40.2 10.7

19 C7H16 2,2-dimethylpentane 37.73 28.82 23.61

20 C8H16
cis-1,2-
dimethylcyclohexane

29.38 34.28

21 C8H16
trans-1,4-
dimethylcyclohexane

29.38 32.38

22 C8H17 Ethyl cyclohexane 30.4 33.89

23 C10H20 1-cyclopentylpentane 25.05 28.78

24 C10H22 2,7-dimethyloctane 20.97 22.51

25 C10H22
3-ethyl-2,3,4-
trimethylpentane

25.43 22.51 11.48

26 C10H22
2,2,3,3,4-
pentamethylpentane

25.84 22.51 12.88
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27 C10H22
3,3,4,4-
tetramethylhexane

25.74 22.51 12.54

28 C10H22
3,3-diethyl-2-
methylpentane

25.33 22.51 11.13

29 C10H22
3-ethyl-2,2,3-
trimethylpentane

25.74 22.51 12.54

30 C14H30 n-tetradecane 16.21 14.11 12.95

31 C15H32 n-pentadecane 15.2 12.01 21

32 C16H34 n-hexadecane 14.19 9.9 30.2

33 C2H6O dimethyl ether 53.7 45.98 14.38

34
C10H22
O

di-n-pentyl ether 20.9 17.31 17.18

35 C3H4 propadiene 54.7 47.79 12.63

36 C5H6 Cyclo pentadiene 51.5 43.9 14.76

37 C5H8 Cyclo pentene 47.9 41.66 13.03

38 C6H10 cyclohexene 43.5 38.74 10.93

39 C6H8 cyclohexa-1,3-diene 47.3 41.43 12.41

40 C8H16 2-ethyl-1-hexene 30.7 26.71 13

41 C20H40 1-eicosene 12.2 15.11 -23.85

42 C2H4O2 methyl formate 59.98 45.28 24.5

43 C3H4O2 vinyl formate 50.2 44.29 11.78

44 C3H6O2 ethyl formate 47.42 41.74 11.97

45 C3H6O2 methyl acetate 46.9 41.63 11.23

46
C7H12O
2

n-butyl acrylate 26.3 30.96

47
C10H12
O4

diallyl maleate 23.3 28.69

48
C10H20
O2

Iso-pentyl isovalerate 22 18.98 13.7

49
C12H14
O4

diethyl phthalate 23.3 27.14

50
CH3NO
2

Nitro methane 63.13 56.86 9.93

51
C3H5N3
O9

nitroglycerine 30 26.1 12.98

CONCLUSION

Based on the thermodynamics theory and the LFERs model, a
novel method of calculating the Pc of pure fluids was proposed
for the first time. This method not only correctly describes and
predicts Pc quantitatively but also expands the range of available
applications for the LFERs theory. This method breaks through
the application scope of the empirical equation or theoretical
equation. Furthermore, the proposed method consummates the
computation of the critical properties of pure fluids in the
engineering design, which exhibits better prediction accuracy
and wide applicability.

It should be admitted that our method has some drawbacks.
The five molecular descriptors of the equations cannot integrally
describe the interaction and molecular structure, and therefore,
some factors affecting Pc may be absent from the obtained
equations. For the molecular descriptors, the isomers have
identical V values, which is always unconformable with the real
case. In addition, there is not hydrogen bond for some systems.
These deficiencies resulted in large error for some compounds.
However, considering the difficulty of measuring Pc, the
prediction effect is favorable.
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