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Editorial
Cytochrome P450 (CYP) 3A4 enzyme alterations during diseases.

Transcriptional or post-transcriptional down-regulation of hepatic
CYP enzymes is a characteristic feature of many diseases including
infections; cancer, cardiovascular diseases and liver disorders [1-5].
This disrupts CYP-mediated drug metabolism and clearance in these
patients. The major drug metabolizing enzyme (DME) in human liver
is CYP3A4, which metabolizes ~60% of drugs [6,7]. Recent studies in
pediatric patients show that critical illness is the primary determinant
of the clearance of the CYP3A4 substrate, midazolam [8].
Furthermore, diabetic kidney transplant patients had low metabolism
of the immunosuppressant, cyclosporine A, likely due to reduced
CYP3A4 expression [9]. These clinical observations warrant further
studies to understand the molecular mechanism by which human CYP
enzymes are down-regulated during diseases.

Role of CYP3A4 enzyme in herb-drug interactions. Furthermore,
changes in CYP3A4 expression/activity has been shown to be
associated with herb-drug interactions. According to recent
epidemiological reports, ~40% of Americans use CAM “natural
products” including herbal medicines, botanicals, and other dietary
supplements during their lifetime [10-14]. These supplements are often
self-administered primarily to manage side effects of drugs and/or to
improve overall physical and mental health along with therapeutic
drugs. Moreover, patients diagnosed with HIV or cancer exhibit a
higher CAM use; concomitant use of CAM and prescription
medications have been reported in 70%-90% HIV and cancer patients
[15-17]. Natural products/herbs are complex mixtures of many
molecular entities. Both the putative active ingredient(s) and other
constituents present in that mixture have the potential to interact with
various classes of drugs, which may lead to dangerous clinical
consequences.

A majority of these interactions has been attributed to CYP3A4
enzyme. For example, the herbal compound St. John’s wort induced
CYP3A4, which decreased the oral bioavailability of a number of
therapeutic drugs, including anti-depressants, anti-HIV agents, anti-
cancer drugs, leading to failure of therapy [18-20]. Studies in animal
models, humans or cell culture have shown that herbal compounds
such as licorice, ginkgo, echinacea, quercetin, etc. significantly induced
CYP3A expression/activity, leading to altered therapeutic potency of
co-administered medications [16-20].

Regulation of CYP3A4 gene expression. Changes in CYP3A4
enzymes cause accumulation of the parent compound or the
metabolite, which increases the risk of drug-drug interactions and
adverse drug reactions (ADRs) in individual patients. A meta-analysis
of 39 prospective studies revealed that ~2 million cases of

hospitalization and ≥ 100,000 deaths/year can be attributed to ADRs in
U.S.21 ADRs cause ~3%-6% of all hospital admissions and ~15% of
hospitalized patients experience a serious adverse reaction to drugs
[21-23]. Liver injury is one of the major adverse effects associated with
drugs and accounts for ~50% of the cases of acute liver failure in this
country [24].

Altered drug metabolism in diseases is associated with the
induction of inflammatory responses. For example, CYP-mediated
drug metabolism is disrupted and inflammatory markers are induced
in patients undergoing treatment for several diseases including
rheumatoid arthritis, cancer, organ transplantation, liver disorders
[1-5]. Thus, treatment of rodents or liver cells with inflammatory
mediators such as cytokines or lipopolysaccharide (LPS) has been
widely used to investigate down-regulation of CYP enzymes in the
liver [25-27].

CYP3A4 gene expression is regulated by basal transcription factors,
and can be induced by diverse chemicals which bind to and activate
nuclear receptors (NRs) [28,29]. The mouse xenobiotic NR, pregnane
X receptor (PXR) is activated by the ligand, pregnenolone-16α-
carbonitrile, PCN. Activated PXR binds to conserved sequences in the
proximal promoter and the distal xenobiotic-responsive enhancer
module (XREM) in the CYP3A4 gene [28,29]. The XREM is located
-7.2 kb and -7.8 kb upstream of the transcription initiation site of
CYP3A4. It contains PXR-responsive elements (PXREs) and works
cooperatively with a PXRE located within the proximal promoter
[28,29]. Basal and inducible expression of CYP3A4 gene is also
regulated by the orphan NR, hepatocyte nuclear factor (HNF4)α [30].
NRs activate their target genes by recruiting or exchanging
coactivators with the corepressor complex to the chromatins [31-32].
Chromatin remodeling enzymes catalyze histone modification to allow
the binding of transcription factors.

CYP3A4 regulation is also modulated by a broad variety of kinases
which phosphorylate the regulatory NRs or their associated proteins.
For example, casein kinase (CK) 2-dependent phosphorylation of the
heat shock protein 90β (Hsp90β; which binds to and retains PXR in the
cytoplasm) was required for induction of a PXR target gene, multi-
drug resistance (MDR)1 by the prototypical human PXR (hPXR)
ligand, Rifampicin (RIF) [33-35]. Furthermore, the mitogen-activated
protein kinase (MAPK), c-JUN N-terminal kinase (JNK) was required
for CYP3A4 induction by the vitamin D receptor (VDR) ligand, 1,25-
Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) [36].

Interestingly, phosphorylation was shown to interfere with PXR’s
subcellular localization, dimerization, DNA binding, and co-regulator
interactions, leading to inhibition of its transcriptional activity [33-35].
Kinases such as cyclic-AMP dependent protein kinase A (PKA), PKC,
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cyclin dependent kinases, p70 S6K (70-kDa form of S6 kinase), Ca2+/
calmodulin-dependent protein kinase II (CaMKII), serine/threonine
kinase DYRK2 can phosphorylate PXR, leading to CYP3A4 inhibition
[33-35]. PXR also undergoes additional post-translational
modification (PTM)s including ubiquitination, acetylation and
SUMOylation, which can impact gene induction by PXR [33-35].
Crosstalk between these PTMs has been reported to affect function of
the transcriptional regulators, NF-κB and p53, and it was shown that
phosphorylation at Ser 350 affected PXR acetylation [33-35]. Thus,
protein phosphorylation may impact multiple PTMs in one or more
proteins, and this complex regulatory mechanism may be responsible
for CYP3A4 induction by PXR.

Regulation of CYP3A4 enzyme by microRNAs (miRNAs). Post-
transcriptional or transcriptional changes in CYP3A4 may be mediated
by miRNAs directly targeting the 3’-untranslated region (3’UTR) of
CYP3A4 mRNA and indirectly targeting the 3’UTR of NR mRNAs,
respectively [37-39]. The involvement of miRNAs in the regulation of
CYP enzymes and NRs indicates potential role of miRNAs in the
integrated response of cells to drugs and toxins. miRNAs are 19 to 25-
nucleotide RNAs that bind to complementary sequences in the 3′-UTR
of mRNAs. This recruits a RNA-induced silencing complex to mRNAs
to repress protein translation, cleave targeted messages, and degrade
mRNAs [37-39]. The broadly conserved miR-27b has been shown to
target the 3′UTR of CYP3A4 in vitro [38].

Thus, induction or down-regulation of CYP3A4 enzyme can alter
the metabolism and clearance of one or more medications in
individual patients. These patients will be at a higher risk of
undesirable effects of medications. Thus, alteration of CYP3A4-
mediated drug metabolism should be a major consideration in
developing/implementing treatment regimens for individual patients.
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