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Abstract
Previous studies showed that chronic administration of the monoamine depleting agent reserpine in low doses 

promotes progressive cognitive and motor impairments in rats, and this protocol has been used as a pharmacological 
progressive model of Parkinson's disease. These behavioral alterations are accompanied by increased brain oxidative 
stress. We aimed to verify the effects of the concomitant treatment with the antioxidant agent alpha-tocopherol on the 
motor and cognitive deficits induced by chronic reserpine in rats. Rats were repeatedly treated with 0.1 mg/kg reserpine 
with or without a concomitant treatment with 40 mg/kg alpha-tocopherol. Across the treatment, motor and cognitive 
performances were evaluated by the catalepsy and novel object recognition tests, respectively. As expected, reserpine-
treated rats showed progressively increased duration of catalepsy together with short-term memory deficits in the object 
recognition test. Importantly, these detrimental outcomes due to reserpine treatment were prevented by concomitant 
daily administration of the antioxidant agent alpha-tocopherol. The results show a preventive role of alpha-tocopherol 
on behavioral alterations induced by repeated reserpine treatment. This is relevant to the investigation of possible 
neuroprotective interventions in Parkinson’s disease.
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Introduction
Reserpine precludes the storage of monoamines through the 

blockage of the synaptic vesicles transporters [1]. Consequently, 
synaptic vesicles are still available but there is a reduction in the 
amount of dopamine in the synaptic cleft. Because an important loss of 
dopaminergic neurons is the core feature of Parkinson´s disease (PD) 
[2], reserpine administration to rodents is a valid approach to study 
this disease in animal models [3-5]. The acute administration of a high 
dose of reserpine (above 1.0 mg/kg) leads to severe motor impairment 
[4]. In addition, acute injection of reserpine in lower doses causes 
memory deficits in the absence of motor damage [6,7]. However, 
although both cognitive and motor impairments are symptoms of PD, 
their emergence shortly after an acute injection is not compatible with 
the gradual progression of symptoms found in the clinical situation. 
More recently, studies have shown that the chronic administration of 
reserpine in low doses can promote progressive cognitive and motor 
impairments, along with decreased tyrosine hydroxylase levels in the 
nigrostriatal pathway [8]. This protocol is suggested as a progressive 
pharmacological model of PD [8,9].

Besides its classical mechanism of action (i.e. blockage of the 
vesicular transport of monoamines), there is clear evidence that 
reserpine also causes an increase in cellular oxidative stress, possibly 
potentiated by the rise in the levels of dopamine in the cytoplasm, 
which undergoes oxidative metabolism [10]. In this respect, the 
central nervous system is quite vulnerable to reactive oxygen species 
(ROS), which play a very important function in the pathogenesis of 
neurodegenerative disorders, including PD [11]. For example, there is 
evidence that the inclusion of antioxidant agents in the pharmacological 

treatment of PD has advantages over the treatment based only in 
dopamine replacement [11-13]. In addition, the repeated treatment 
with reserpine that induces progressive features compatible with PD 
also leads to increased brain oxidative stress [9]. However, it is unclear 
if a possible oxidative damage is responsible for the behavioral deficits 
presented by animals repeatedly treated with reserpine.

Antioxidant agents mainly act as a reinforcement of endogenous 
antioxidant defenses. An important antioxidant agent is vitamin E 
(alpha-tocopherol; TOC), which plays an essential role in protecting 
the body against the damaging effects of ROS. Specifically, TOC blocks 
the propagation step of lipid peroxidation of polyunsaturated fatty 
acids in membranes and lipoproteins [14], mainly by neutralizing the 
effects of peroxides and oxygen free radicals [15].

The aim of this study was to evaluate the effects of the antioxidant 
agent TOC on motor, cognitive and neuronal parameters in animals 
submitted to a progressive pharmacological animal model of PD, i.e., 
the repeated treatment with a low dose of reserpine.

Material and Methods
Animals

We used 75 five-month-old male Wistar rats (300-500 g). The 
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animals were obtained from the Physiology Department at the Federal 
University of Rio Grande do Norte, and were housed in groups of four, 
in plastic cages, under controlled conditions of ventilation, temperature 
(23 ± 1ºC), and light/dark cycle (12h/12h, lights on 6:30 a.m.), with 
free access to water and food. The rats were handled according to the 
Brazilian law for the use of animals in scientific research (Law Number 
11.794) and all the procedures described were approved by the local 
ethical committee (CEUA/UFRN nº 051/2011).

Drugs

Reserpine (RES; Sigma Chemical Co., St. Louis, MO) was dissolved 
in acetic acid and further diluted in distilled water at the concentration 
of 0.1 mg/mL, pH ≈ 6.5. We used this vehicle (glacial acetic acid diluted 
in water) as a control for reserpine treatment (VR). RES and VR were 
given s.c. on alternate days. The antioxidant alpha-tocopherol (TOC; 
Sigma Chemical Co., St. Louis, MO) was diluted in distilled water with 
Tween-80 at the concentration of 40 mg/mL. We used the vehicle used 
to dilute TOC (VT) as a control for TOC treatment.  These solutions 
were injected i.p. daily. The volume of injection was 1 mL/kg of body 
weight in all cases. We prepared all solutions every 48 hours and kept 
them at 4ºC between administrations.  

Experimental design

The rats were randomly assigned to the following groups: VR + VT 
(n=18), RES + VT (n=19), RES + TOC (n=19) and VR + TOC (n=19). 
Drug treatment lasted 30 days. Animals received 15 s.c. injections of 
RES (0.1 mg/kg) or VR every 48 hours, concomitantly to daily i.p. 
administration of TOC (40 mg/kg) or VT.

Before the beginning of the experiments, all animals were 
submitted to a daily 5-minute handling session for five consecutive 
days. Throughout the treatment, all the animals were subjected to 
catalepsy tests (performed daily) and part of the animals (n=35, 7-11 
per group) went through the novel object recognition (NOR) tasks 
(days 2, 12 and 18 of treatment). The experimental design is shown 
in Figure 1. Both behavioral tests were performed as described in our 
previous study [8] and were conducted before the injections of that 
day. Thus, all behavioral evaluations were performed 48h after the last 
injection of reserpine in order to avoid acute effects of the drug. NOR 
sessions were recorded with a digital camera fixed above the arena and 
the behavior was analyzed through video-tracking software (Anymaze, 
Stoelting Co, Wood Dale, Illinois, and USA). Before each experimental 
procedure, the apparatuses were cleaned with a 5% alcohol solution, 
and the experimental groups were alternated across testing.

Statistical analysis

We analyzed the performances in catalepsy test (total time spent in 
immobility until the animal removed both forepaws of the bar) by the 
two-way ANOVA with repeated measures followed by Tukey’s multiple 
comparison post hoc test. In the NOR task we conducted one-way 
ANOVA followed by Bonferroni’s multiple comparison post hoc test 
in order to compare old versus familiar object exploration. Analyses for 
the exploration ratio throughout test sessions and among experimental 
groups were conducted through two-way ANOVA followed by Tukey’s 
Post Hoc test.

Results
Catalepsy

Figure 2 shows that from day 15 onwards there was an increase 
in catalepsy behavior of the group RES + VT compared to all other 
groups (RM two-way ANOVA; days of treatment [F (29,2130) = 16.72, P < 
0.0001], treatment [F (3,2130) = 211.0, P < 0.0001] and days of treatment  
× treatment interaction effects [F (87,2130) = 4.876, P < 0.0001]). This 
increase was not detected for the group RES+TOC. 

Novel object recognition

We found that all animals spent more time exploring the new 
object in the second day of protocol (first test; Figure 3A; one-way 
ANOVA [F (7,62) = 11.23; P < 0.0001]). Reserpine treatment impaired 
short-term memory after the 12th day of protocol (second and third 
tests). Conversely, treatment with α-tocopherol was able to prevent the 
short-term memory impairment (Figure 3B; one-way ANOVA [F (7,74) = 
6.864; P < 0.0001] and Figure 3C; one-way ANOVA [F (7,68) = 10.00; P < 
0.0001]). We also performed statistical analyses in order to evaluate the 
effect of drug administration in objects exploration ratio throughout 
test sessions and among experimental groups. We found that in the 
third test session animals’ receiving RES differs on exploration rate 
of new (Table 1; two-way ANOVA [F (6,89) = 2.843; P < 0.05]) and old 
objects (Table 1; two-way ANOVA [F (6,89) = 2.843; P < 0.05]) when 
comparing to both VR + VT and RES + TOC. Yet, we found that only 
RES + VT group presented alterations in object discrimination across 
tests. More accurately, exploration of old and new objects increased 
and decreased, respectively, comparing first and second tests (Table 1; 
two-way ANOVA [F (3,89) = 2.760; P < 0.05]) and first and third tests 
(Table 1; two-way ANOVA [F (3,89) = 2.649; P < 0.05]).

Discussion
In this study, we investigated the effects of concomitant treatment 

with TOC on catalepsy behavior and NOR task in rats submitted to a 

Figure 1: Schematic illustration of the experimental design.
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Figure 2: Repeated administration of reserpine increases catalepsy duration and this effect is prevented by α-tocopherol. Animals were placed daily in a 
catalepsy bar and the latency to step-down was registered. Arrows indicate reserpine (RES; 0.1 mg/kg) or vehicle (VR) s.c. injections, while α-tocopherol (TOC; 
40 mg/kg) or its vehicle (VT) were administered through daily i.p. injections. Data are expressed as mean + SEM; (*) P < 0.05 for RES + VT vs. RES+TOC; (#) P 
< 0.01 for RES + VT vs. VR+VT; (***) P < 0.001 and (****) P < 0.0001 for RES + VT vs. all experimental groups in Tukey’s multiple comparison post hoc test after 
RM two-way ANOVA.

   

chronic treatment with a low dosage of reserpine. We observed that the 
motor and cognitive impairments induced by chronic treatment with 
reserpine were prevented by treatment with TOC. These results can be 
seen in the evaluation of catalepsy behavior performed 48 h after each 
reserpine injection (Figure 2) as well as in the analysis of exploration 
time in the novel object recognition task (Figure 3 and Table 1). 

As previously observed in studies by our group [8,9], repeated 
treatment with a low dose (0.1 mg/kg) of reserpine in rats induced 
the progressive appearance of motor impairment. This impairment 
is marked by a gradual increase in the duration of catalepsy behavior. 
Indeed, as one can see in Figure 2, reserpine-treated (RES + VT) animals 
start differing from control subjects after 7 reserpine s.c. injections. It 
is well documented that catalepsy in rodents indicates akinesia and 
rigidity that are important symptoms of PD [16-18]. Importantly, we 
did not observe this impairment in the group that was concomitantly 
treated with TOC. Indeed, the group RES + TOC (Figure 2) presented 
catalepsy duration similar to control across the treatment. 

Besides motor assessment, the protocol used in the present study 
includes the cognitive evaluation. Cognitive deficits have been reported 
as symptoms of PD, and can even appear before the motor deficits. 
In a previous study, we have shown that the protocol of reserpine 
treatment used here induces short-term memory deficits before the 
appearance of increased catalepsy behavior and other motor signs [8]. 
The present study corroborates those findings. We used the NOR task, 
which involves recognition memory and executive functions, both 
functions that can be impaired in PD [19,20]. Our results corroborated 
the previous study showing that animals treated with reserpine failed to 
discriminate the objects in the test session (in the second and third tests, 
Figure 3). Further, similarly to that described for motor evaluations, 
the deficit was prevented by TOC administration. Indeed, animals 
treated with both reserpine and TOC presented increased novel object 
exploration in all tests, similarly to control subjects. In addition, 
comparisons among experimental groups showed that animals treated 
with RES had worse object discrimination compared to both control 
and RES + TOC groups in the third test. Finally, when performances 
across the three tests were analyzed, only the group treated with 
reserpine alone presented discrimination deficits in the second and 
third tests compared to the first test (Table 1). These additional analyses 
reinforce the prevention of the reserpine-induced object recognition 
impairment by co-treatment with TOC.

As mentioned, reserpine is a non-selective inhibitor of the vesicular 
monoamine transporter [1]. Thus, one could raise the possibility that 
the behavioral alterations induced by reserpine treatment are related 
exclusively to the dopamine depletion caused by this blockage. In other 
words, the alterations could be a consequence of an additive effect on 
dopaminergic function. However, there is evidence that favors the 
hypothesis that the progressive effect of the repeated treatment with 
reserpine is due to oxidative damage. First, a previous study has shown 
that the classical acute treatment (with a dose 10 times higher than the 
one we used) did not cause a reduction in tyrosine hydroxylase staining 
(an indicative of dopaminergic neuronal function), although causing 
an important motor impairment [21]. Conversely, the protocol used 
here (repeated treatment with a low dose) reduced tyrosine hydroxylase 
staining in the substantia nigra and striatum, and part of the alterations 
induced by the treatment were not recovered after 30 days of treatment 
withdrawal [8]. Second, it has been shown that reserpine treatment 
increases brain oxidative stress and this alteration is accompanied by 
behavioral deficits [10,22,23]. In addition, in a previous study [9] the 
repeated treatment with a low dose of reserpine induced an increase 
in striatal level of lipid peroxidation, which occurred concomitantly 
to the motor impairment. These results lead us to question if co-
treatment with TOC would prevent the progressive motor and 
cognitive alterations induced by the repeated treatment with a low 
dose of reserpine. As discussed above, treatment with TOC was able 
to prevent these deficits. This preventive effect might be explained by a 
neuroprotection mechanism, probably by a reduction the in neurotoxic 
dopamine oxidation bioproducts [24].

Despite the well-known antioxidant properties of vitamin E, it is 
important to mention that tocopherol and other antioxidant agents 
can have pro-oxidant effects as well. Indeed, the ability of these 
compounds to accept and donate electrons enables them to cause 
oxidative damage under certain conditions [25]. However, this pro-
oxidant action is mainly found in vitro, and under high concentrations 
[26,27]. Some in vivo studies have also shown pro-oxidant effects of 
classical antioxidants, but they are variable depending on substance, 
concentration, age of the subject and target molecules [25,28-30]. 
Further, it seems that their preferential action is antioxidant when an 
oxidant insult from another source is present [31]. In the case of the 
present results, there was no evidence of a pro-oxidant action regarding 
possible behavioral alterations. 
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  Groups

Tests Objects VR + VT RES + VT RES + TOC TOC

First Test

Post 1st injection

Old 36.94 ± 6.61 26.06 ± 5.01 34.11 ± 5.84 40.6 ± 4.91

New 63.06 ± 6.61 73.94 ± 5.01 65.89 ± 5.84 59.4 ± 4.91

Second Test

Post 6th injection

Old 34.69 ± 5.92 43.97 ± 5.31¥ 26.85 ± 5.87 39.17 ± 6.32

New 65.31 ± 5.92 56.03 ± 5.31¥ 73.15 ± 5.87 60.83 ± 6.32

Third Test

Post 9th injection

Old 27.71 ± 4.97 59.99 ± 6.95€ # 31.99 ± 6.43* 37.07 ± 3.25

New 72.28 ± 4.97 40.01 ± 6.95€ # 68.01 ± 6.43* 62.93 ± 3.25

Table 1: Exploration rate in the NOR task throughout the test sessions. Data are 
expressed as mean ± SEM. (*) P < 0.05 and (€) P < 0.01 when comparing RES + 
VT vs. RES + TOC and VR + VT vs. RES + VT respectively. (¥) P < 0.05 and (#) P 
< 0.001 when comparing the first vs. second test and first vs. third test respectively. 
All statistical analyses were conducted through two-way ANOVA followed by 
Tukey’s Post Hoc test.

Figure 3: Animals were treated with reserpine (RES; 1.0 mg/kg) or vehicle (VR) through s.c. injections, and α-tocopherol (TOC; 40 mg/kg) or its vehicle (VT) with 
daily i.p. injections. Animals were tested on the following days of experiment: (A) 2nd, (B) 12th and (C) 18th. In each day, training (with two identical objects, data not 
shown) and test (with one familiar and one novel object) were performed with a one-hour interval in an open field arena. Data are expressed as mean  ±  SEM. (*) 
P < 0.05; (**) P < 0.01; (***) P < 0.001 and (****) P < 0.0001 when comparing old vs. new object exploration ratio in one-way ANOVA followed by Bonferroni’s multiple 
comparison post hoc test.

   

Nevertheless, an antioxidant role of vitamin E in ameliorating 
neurodegeneration in PD has been consistently proposed by in 
vitro and animal studies [32-37]. On the other hand, despite strong 
evidence favoring an antioxidant effect, the exact mechanism of action 
of vitamin E in Parkinson´s disease is still under investigation [32]. 
There is evidence that vitamin E, particularly alpha-tocopherol, can 
act through other mechanisms not related to modulation of oxidative 
stress.  For example, studies showed that alpha-tocopherol regulates 
the expression of several genes [38,39] and inhibits protein kinase C 
(PKC) activity [40,41]. The later could be related to the neuroprotective 
action of this compound, because PKC activation has been implicated 
in cell death signaling pathways related to PD [42]. This relationship 
was found in studies with animal models of PD induced by the 

toxins 1-methyl-4-phenylpyridinium [43] and paraquat [44]. If PKC 
activation is also relevant for reserpine-induced Parkinsonism it is still 
unknown. 

Regardless of the specific mechanism related to the prevention of 
behavioral alterations found in the present study, there is evidence 
that increased oxidative stress underlies the physiopathology of 
neurodegenerative diseases such as PD [45-48]. Further, clinical 
data suggest that neuroprotective treatments based on increasing 
antioxidant defenses are able to delay the progression of the pathology 
[49-56]. Thus, a neuroprotective intervention could be a relevant line 
of investigation in animal models of this disease. However, the usual 
acute pharmacological models include severe motor impairment 
upon a single injection of reserpine or specific neurotoxins [4,57-
60]. This approach is not suitable for the investigation for testing 
neuroprotective interventions because they usually present a preventive 
and/or a neurodegeneration delaying profile. Further, most of the 
previous studies investigating the effects of vitamin E treatments on 
PD models did not investigate progressive behavioral deficits related to 
the clinical symptoms of the disease [33,35-37]. In this sense, the need 
for animal models of PD more compatible with clinical outcomes when 
investigating neuroprotective therapies has been pointed out. Thus, 
the present findings reinforce the idea that the protocol of progressive 
Parkinsonism induction with reserpine is suitable for investigating 
possible neuroprotective interventions in animal models of PD. 

In conclusion, concomitant treatment with alpha-tocopherol 
prevents behavioral alterations induced by repeated reserpine. 
Although the antioxidant action of vitamin E is probably related, 
the exact mechanism underlying this preventive effect remains to be 
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investigated. Finally, the progressive behavioral motor and cognitive 
alterations induced by repeated reserpine treatment seems an adequate 
protocol to investigate possible neuroprotective interventions for PD.
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