
Volume 8 • Issue 4 • 1000193Int J Adv Technol, an open access journal
ISSN: 0976-4860

Subhash and Thooyamani, Int J Adv Technol 2017, 8:4
DOI: 10.4172/0976-4860.1000193

Research Article

Int
er

na
tio

na
l J

ou
rna

l of Advancements in Technology

ISSN: 0976-4860

International Journal of Advancements
in Technology

Research ArticleReview Article Open Access

*Corresponding author: Ligade Sunil Subhash, Ph.D. Scholar, Department
of Computer Science and Engineering, Bharath Institute of Higher Education
and Research, Selaiyur, Chennai 600073, India, Tel: 044 2229 0742; E-mail:
sunilligade@gmail.com

Received: September 06, 2017; Accepted: September 25, 2017; Published:
October 02, 2017

Citation: Subhash LS, Thooyamani KP (2017) Allocation of Resource Dynamically
in Cloud Computing Environment Using Virtual Machines. Int J Adv Technol 8: 193.
doi:10.4172/0976-4860.1000193

Copyright: © 2017 Subhash LS, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Keywords: Dynamic allocation; Skewness; Resource multiplexing;
Virtual machines; Load balancing; Cloud computing; Resource balance;
Green computing

Introduction
The elasticity and the lack of upfront capital investment offered

by cloud computing is appealing to many businesses. There is a lot of
discussion on the benefits and costs of the cloud model and on how
to move legacy applications onto the cloud platform. Here we study
a different problem: how can a cloud service provider best multiplex
its virtual resources onto the physical hardware? This is important
because much of the touted gains in the cloud model come from such
multiplexing. Studies have found that servers in many existing data
centres are often severely under-utilized due to over-provisioning for
the peak demand. The cloud model is expected to make such practice
unnecessary by offering automatic scale up and down in response to
load variation. Besides reducing the hardware cost, it also saves on
electricity which contributes to a significant portion of the operational
expenses in large data centres [1-9].

System Overview
The architecture of the system is presented in the Figure 1. Each PM

runs the Xen hypervisor (VMM) which supports a privileged domain
0 and one or more domain U. Each VM in domain U encapsulates one
or more applications such as Web server, remote desktop, DNS, Mail,
Map/Reduce, etc.

We assume all PMs share a backend storage. The multiplexing of
VMs to PMs is managed using the Usher framework. The main logic
of our system is implemented as a set of plug-ins to Usher. Each node
runs an Usher local node manager (LNM) on domain 0 which collects
the usage statistics of resources for each VM on that node. The CPU
and network usage can be calculated by monitoring the scheduling
events in Xen. The memory usage within a VM, however, is not visible
to the hypervisor. One approach is to infer memory shortage of a VM
by observing its swap activities. Unfortunately, the guest OS is required
to install a separate swap partition. Furthermore, it may be too late to
adjust the memory allocation by the time swapping occurs. Instead we
implemented a working set prober (WS Prober) on each hypervisor to
estimate the working set sizes of VMs running on it. We use the random
page sampling technique as in the VMware ESX Server. The statistics
collected at each PM are forwarded to the Usher central controller
(Usher CTRL) where our VM scheduler runs. The VM Scheduler is
invoked periodically and receives from the LNM the resource demand

Allocation of Resource Dynamically in Cloud Computing Environment
Using Virtual Machines
Ligade Sunil Subhash1* and Dr. K.P. Thooyamani2

1Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research, Chennai, India
2School of Computer Science, Bharath Institute of Higher Education and Research, Chennai, India

Abstract
Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of

the touted gains in the cloud model come from resource multiplexing through virtualization technology. In this research
paper, we present a system that uses virtualization technology to allocate data centre resources dynamically based
on application demands and support green computing by optimizing the number of servers in use. We introduce
the concept of “skewness” to measure the unevenness in the multidimensional resource utilization of a server. By
minimizing skewness, we can combine different types of workloads nicely and improve the overall utilization of server
resources. We develop a set of heuristics that prevent overload in the system effectively while saving energy used.
Trace driven simulation and experiment results demonstrate that our algorithm achieves good performance.

history of VMs, the capacity and the load history of PMs, and the
current layout of VMs on PMs. The scheduler has several components.
The predictor predicts the future resource demands of VMs and the
future load of PMs based on past statistics. We compute the load of
a PM by aggregating the resource usage of its VMs. The details of the
load prediction algorithm will be described in the next section. The
LNM at each node first attempts to satisfy the new demands locally
by adjusting the resource allocation of VMs sharing the same VMM.
Xen can change the CPU allocation among the VMs by adjusting their
weights in its CPU scheduler. The MM Allotter on domain 0 of each

Figure 1: Architecture of the system.

Volume 8 • Issue 4 • 1000193Int J Adv Technol, an open access journal
ISSN: 0976-4860

Citation: Subhash LS, Thooyamani KP (2017) Allocation of Resource Dynamically in Cloud Computing Environment Using Virtual Machines. Int
J Adv Technol 8: 193. doi:10.4172/0976-4860.1000193

Page 2 of 3

applications are created by allocating memory on demand. Again we
start with a small scale experiment consisting of two PMs and four VMs
so that we can present the results for all servers in following Resource
balance for mixed workloads (Figure 2).

The two rows represent the two PMs. The two columns represent
the CPU and network dimensions, respectively. The memory
consumption is kept low for this experiment. Initially, the two VMs
on PM1 are CPU intensive while the two VMs on PM2 are network
intensive. We increase the load of their bottleneck resources gradually.
Around 500 seconds, VM4 is migrated from PM2 to PM1 due to the
network overload in PM2. Then around 600 seconds, VM1 is migrated
from PM1 to PM2 due to the CPU overload in PM1. Now the system
reaches a stable state with a balanced resource utilization for both PMs
– each with a CPU intensive VM and a network intensive VM. Later we
decrease the load of all VMs gradually so that both PMs become cold
spots. We can see that the two VMs on PM1 are consolidated to PM2 by
green computing. Next we extend the scale of the experiment to a group
of 72 VMs running over 8 PMs. Half of the VMs are CPU intensive,
while the other half are memory intensive. Initially, we keep the load of
all VMs low and deploy all CPU intensive VMs on PM4 and PM5 while
all memory intensive VMs on PM6 and PM7. Then we increase the load
on all VMs gradually to make the underlying PMs hot spots.

Following Figure 3 for VM distribution over time shows how the
algorithm spreads the VMs to other PMs over time. As we can see from
the figure, the algorithm balances the two types of VMs appropriately.
The figure also shows that the load across the set of PMs becomes well
balanced as we increase the load.

Related Work
Resource allocation at the application level

Automatic scaling of Web applications was previously studied in
for data centre environments. In MUSE, each server has replicas of all
web applications running in the system. The dispatch algorithm in a
front end L7-switch makes sure requests are reasonably served while
minimizing the number of under-utilized servers. Work uses network
flow algorithms to allocate the load of an application among its running
instances. For connection oriented Internet services like Windows Live
Messenger, work presents an integrated approach for load dispatching
and server provisioning. All works above do not use virtual machines
and require the applications be structured in a multi-tier architecture
with load balancing provided through a front-end dispatcher. In
contrast, our work targets Amazon EC2-style environment where it
places no restriction on what and how applications are constructed
inside the VMs. A VM is treated like a blackbox. Resource management
is done only at the granularity of whole VMs. MapReduce is another
type of popular Cloud service where data locality is the key to its
performance. The “Delay Scheduling” algorithm trades execution time
for data locality . Work assign dynamic priorities to jobs and users to
facilitate resource allocation.

node is responsible for adjusting the local memory allocation. The hot
spot solver in our VM Scheduler detects if the resource utilization of
any PM is above the hot threshold (i.e., a hot spot). If so, some VMs
running on them will be migrated away to reduce their load. The
cold spot solver checks if the average utilization of actively used PMs
(APMs) is below the green computing threshold. If so, some of those
PMs could potentially be turned off to save energy. It identifies the set
of PMs whose utilization is below the cold threshold (i.e., cold spots)
and then attempts to migrate away all their VMs. It then compiles a
migration list of VMs and passes it to the Usher CTRL for execution.

Existing System
Virtual machine monitors (VMMs) like Xen provide a mechanism

for mapping virtual machines (VMs) to physical resources. This
mapping is largely hidden from the cloud users. Users with the Amazon
EC2 service, for example, do not know where their VM instances run.
It is up to the cloud provider to make sure the underlying physical
machines (PMs) have sufficient resources to meet their needs. VM live
migration technology makes it possible to change the mapping between
VMs and PMs While applications are running. The capacity of PMs can
also be heterogeneous because multiple generations of hardware coexist
in a data centre.

Proposed Work
In this paper, we present the design and implementation of an

automated resource management system that achieves a good balance
between the two goals. We make the following contributions:

1.	 We develop a resource allocation system that can avoid
overload in the system effectively while minimizing the number of
servers used.

2.	 We introduce the concept of “skewness” to measure the
uneven utilization of a server. By minimizing skewness, we can improve
the overall utilization of servers in the face of multidimensional
resource constraints.

3.	 We design a load prediction algorithm that can capture the
future resource usages of applications accurately without looking inside
the VMs. The algorithm can capture the rising trend of resource usage
patterns and help reduce the placement churn significantly.

The Skewness Algorithm
We introduce the concept of skewness to quantify the unevenness in

the utilization of multiple resources on a server. Let n be the number of
resources we consider and ri be the utilization of the i-th resource. We
define the resource skewness of a server p as:

Skewness (p) =

Where, r is the average utilization of all resources for server p. In
practice, not all types of resources are performance critical and hence we
only need to consider bottleneck resources in the above calculation. By
minimizing the skewness, we can combine different types of workloads
nicely and improve the overall utilization of server resources.

Resource Balance
Recall that the goal of the skewness algorithm is to mix workloads

with different resource requirements together so that the overall
utilization of server capacity is improved. In this experiment we see how
our algorithm handles a mix of CPU, memory, and network intensive
workloads. We vary the CPU load as before. We inject the network load
by sending the VMs a series of network packets. The memory intensive Figure 2: Resource balance for mixed workloads.

Volume 8 • Issue 4 • 1000193Int J Adv Technol, an open access journal
ISSN: 0976-4860

Citation: Subhash LS, Thooyamani KP (2017) Allocation of Resource Dynamically in Cloud Computing Environment Using Virtual Machines. Int
J Adv Technol 8: 193. doi:10.4172/0976-4860.1000193

Page 3 of 3

Figure 3: Algorithm spreading the VMs to other PMs over time.

Resource allocation by live VM migration

VM live migration is a widely used technique for dynamic resource
allocation in a virtualized environment. Our work also belongs to this
category. Sandpiper combines multi-dimensional load information into
a single Volume metric. It sorts the list of PMs based on their volumes
and the VMs in each PM in their volume-to-size ratio (VSR). This
unfortunately abstracts away critical information needed when making
the migration decision. It then considers the PMs and the VMs in
the pre-sorted order. We give a concrete example in Section 1 of the
supplementary file where their algorithm selects the wrong VM to
migrate away during overload and fails to mitigate the hot spot. We also
compare our algorithm and theirs in real experiment. The results are
analysed in Section 5 of the supplementary file to show how they behave
differently. In addition, their work has no support for green computing
and differs from ours in many other aspects such as load prediction. The
HARMONY system applies virtualization technology across multiple
resource layers. It uses VM and data migration to mitigate hot spots not
just on the servers, but also on network devices and the storage nodes
as well. It introduces the Extended Vector Product (EVP) as an indicator
of imbalance in resource utilization. Their load balancing algorithm is a
variant of the Toyoda method for multi-dimensional knapsack problem.
Unlike our system, their system does not support green computing and
load prediction is left as future work. In Section 6 of the supplementary
file, we analyse the phenomenon that VectorDot behaves differently
compared with our work and point out the reason why our algorithm
can utilize residual resources better. They model it as a bin packing
problem and use the well-known first- fit approximation algorithm to
calculate the VM to PM layout periodically. That algorithm, however,
is designed mostly for off-line use. It is likely to incur a large number
of migrations when applied in on-line environment where the resource
needs of VMs change dynamically.

Green computing

Many efforts have been made to curtail energy consumption in data
centres. Hardware based approaches include novel thermal design for

lower cooling power, or adopting power-proportional and low-power
hardware. Work uses Dynamic Voltage and Frequency Scaling (DVFS)
to adjust CPU power according to its load. We do not use DVFS for
green computing, as explained in the above Section. PowerNap resorts
to new hardware technologies such as Solid State Disk(SSD) and Self-
Refresh DRAM to implement rapid transition(less than 1ms) between
full operation and low power state, so that it can “take a nap” in short
idle intervals. When a server goes to sleep, Somniloquy notifies an
embedded system residing on a special designed NIC to delegate the
main operating system. It gives the illusion that the server is always
active. Our work belongs to the category of pure-software low-cost
solutions. Similar to Somniloquy, SleepServer initiates virtual machines
on a dedicated server as delegate, instead of depending on a special
NIC. LiteGreen does not use a delegate. Instead it migrates the desktop
OS away so that the desktop can sleep. It requires that the desktop is
virtualized with shared storage. Jettison invents “partial VM migration”,
a variance of live VM migration, which only migrates away necessary
working set while leaving infrequently used data behind.

Conclusion
We have presented the design, implementation, and evaluation

of a resource management system for cloud computing services. Our
system multiplexes virtual to physical resources adaptively based on the
changing demand. We use the skewness metric to combine VMs with
different resource characteristics appropriately so that the capacities
of servers are well utilized. Our algorithm achieves both overload
avoidance and green computing for systems with multi-resource
constraints.

References

1. Chen G, Wenbo H, Liu J, Nath S, Rigas L, et al. (2008) Energy-aware server
provisioning and load dispatching for connection-intensive internet services.
NSDI'08 Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, pp: 337-350.

2. Padala P, Hou KY, Shin KG, Zhu X, Uysal M, et al. (2009) Automated control
of multiple virtualized resources. EuroSys '09 Proceedings of the 4th ACM
European conference on Computer systems, pp: 13-26.

3. Bobroff N, Kochut A, Beaty K (2007) Dynamic placement of virtual machines
for managing SLA violations. Proceedings of the IFIP/IEEE International
Symposium on Integrated Network Management (IM’07).

4. http://www.tpc.org/tpcw/

5. Chase JS, Anderson DC, Thakar PN, Vahdat AM, Doyle RP (2001) Managing
energy and server resources in hosting centers. SOSP '01 Proceedings of the
Eighteenth ACM symposium on Operating systems principles 35: 103-116.

6. Tang C, Steinder M, Spreitzer M, Pacifici G (2007) A scalable application
placement controller for enterprise data centers. Proceedings of the 16th
International Conference on World Wide Web, WWW, pp: 331-340.

7. Zaharia M, Konwinski A, Joseph AD, Katz RH, Stoica I (2008) Improving
MapReduce performance in heterogeneous environments. OSDI'08
Proceedings of the 8th USENIX conference on Operating systems design and
implementation.

8. Agarwal Y, Hodges S, Chandra R, Scott J, Bahl P, et al. (2009) Somniloquy:
Augmenting network interfaces to reduce pc energy usage NSDI'09
Proceedings of the 6th USENIX symposium on Networked systems design and
implementation, pp: 365-380.

9. Bila N, Lara Ed, Joshi K, Lagar-Cavilla HA, Hiltunen M, et al. (2012) Jettison:
Efficient idle desktop consolidation with partial VM migration. EuroSys '12
Proceedings of the 7th ACM European conference on Computer Systems, pp:
211-224

http://dl.acm.org/citation.cfm?id=1387613
http://dl.acm.org/citation.cfm?id=1387613
http://dl.acm.org/citation.cfm?id=1387613
http://dl.acm.org/citation.cfm?id=1387613
https://dx.doi.org/10.1145/1519065.1519068
https://dx.doi.org/10.1145/1519065.1519068
https://dx.doi.org/10.1145/1519065.1519068
https://dx.doi.org/10.1109/INM.2007.374776
https://dx.doi.org/10.1109/INM.2007.374776
https://dx.doi.org/10.1109/INM.2007.374776
http://www.tpc.org/tpcw/
https://dx.doi.org/10.1145/502034.502045
https://dx.doi.org/10.1145/502034.502045
https://dx.doi.org/10.1145/502034.502045
https://dx.doi.org/10.1145/1242572.1242618
https://dx.doi.org/10.1145/1242572.1242618
https://dx.doi.org/10.1145/1242572.1242618
http://dl.acm.org/citation.cfm?id=1855744
http://dl.acm.org/citation.cfm?id=1855744
http://dl.acm.org/citation.cfm?id=1855744
http://dl.acm.org/citation.cfm?id=1855744
http://dl.acm.org/citation.cfm?id=1559002
http://dl.acm.org/citation.cfm?id=1559002
http://dl.acm.org/citation.cfm?id=1559002
http://dl.acm.org/citation.cfm?id=1559002
https://dx.doi.org/10.1145/2168836.2168858
https://dx.doi.org/10.1145/2168836.2168858
https://dx.doi.org/10.1145/2168836.2168858
https://dx.doi.org/10.1145/2168836.2168858

	Corresponding Author
	Abstract
	Keywords
	Introduction
	System Overview
	Existing System
	Proposed Work
	The Skewness Algorithm
	Resource Balance
	Related Work
	Resource allocation at the application level
	Resource allocation by live VM migration
	Green computing

	Conclusion
	Figure 1
	Figure 2
	Figure 3
	References

