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Abstract

Alcohol cardiomyopathy (ACM) is a chronic dilated heart disease with decreased left ventricular ejection fraction
that may be detected in one-fourth of high-dose alcohol consumers. It causes progressive diastolic and systolic
dysfunction, supra and ventricular arrhythmias leading to heart failure and increased mortality. The main etiological
factor for ACM is ethanol consumption that affects the myocardium in a dose-dependent manner. The mechanisms
of ACM are diverse, synchronic and synergistic. Alcohol alters the channel and receptor structure of the cell
membrane, decreases intracellular calcium transients, increases oxidative and inflammatory damage, decreases
structural protein synthesis and interferes with excitation-contraction coupling mechanisms. Subjects with excessive
alcohol consumption may have a subclinical cardiomyopathy with atrial and LV diastolic dysfunction measured by
echocardiography or cardiac MR. Subclinical LV dysfunction may progress and later appear clinical features of heart
failure. Cardiac myocytes adapt to ethanol aggression by cell and nuclear hypertrophy and dilatation of heart
chambers. Progressive myocyte structure disarray and apoptosis produce myocyte loss, hypertrophy of the
remaining cells, subendocardial and interstitial fibrosis and low-degree myocyte regeneration. In addition, ethanol
also interferes with cardiac repair and adaptation mechanisms. Thus, local cardiomyokines (FGF-21) and growth
factors (myostatin, IGF-1, leptin) are modified by ethanol, limiting cardiac remodeling and myocyte regeneration, and
leading to abnormal hypertrophy and eccentric ventricle dilatation. This imbalance between aggression and
protection mechanisms induces progressive myocyte loss and heart dysfunction. Alcohol abstention is the main goal
in ACM, although control drinking (<-60 g/day) may allow recovery of LV function. Monitoring of systemic mediated
alcohol-damage, and correction of vitamin and ion deficiencies is needed. Heart failure in ACM should be treated
similar to other dilated cardiomyopathies. Heart transplantation is limited to subjects without other organ damage
who are able to abstain from alcohol. New preventive and therapeutic strategies are under development to decrease
alcohol-mediated myocyte damage and increase heart protective and repair mechanisms.
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Introduction
Alcoholic beverages are consumed in different forms and doses by

almost all human cultures and populations. Throughout history, many
different effects of alcohol have been described in the human body,
some related to injuries and others to protection. One one hand, there
is a pleasant tonic and healthy cardiovascular effect when consumed at
occasional low doses in a social context, decreasing, for instance,
cardiovascular morbidity and mortality [1]. On the other hand, alcohol
is a toxic able to induce a variety of noxious cardiac and vascular
effects when consumed in binges or at a high-cumulated lifetime
consumption, increasing cardiovascular morbidity and mortality [2,3].

The first recognition of alcohol-related cardiac damage was
performed by Hippocrates in the old Greece, IV centuries B.C.
Hippocrates already recognized a congestive heart failure in those
subjects who consumed large amounts of alcohol beverages and,
therefore, recommended to avoid alcohol consumption on this setting.
However, no major scientific advances were made after that until the
end of the XIXth century when alcohol-induced heart disease was
described in German beer drinkers. At that time, the disease was not
directly attributed to alcohol itself but rather to some additives or
contaminants used in the processing of alcoholic beverages such as

arsenic [4] or cobalt contamination when used as beer antifoam [5].
Others attributed alcohol-induced heart damage to malnutrition
and/or thiamine deficiency (Western beriberi) [6] or selenium [7]
(Keshan disease in China) magnesium and phosphate deficiencies [8].
Finally, the identification of alcohol (ethanol) as the major factor for
heart damage arose from the results of controlled clinical studies that
observed the development of alcohol-induced heart damage in the
absence of vitamin deficiencies, ionic derangement or malnutrition [9].
A clear dose-dependent effect was established between alcohol
consumption and heart damage. In fact, the total lifetime dose of
alcohol consumed by a subject was the most relevant parameter related
to the development of LV dysfunction (low ejection fraction) and
alcoholic cardiomyopathy (ACM). Chronic ACM is developed over a
long period of time of usually more than 10 years and thus, usually
starts between the third to fifth decades of [3,9]. Binge drinking is also
an additional negative factor that may increase chronic alcohol-
mediated heart damage and/or induce acute exacerbations of
ventricular dysfunction, malignant arrhythmias and potential cardiac
arrest [2,3].

Natural History of ACM
Alcohol-mediated heart damage depends on the quantity and

pattern of alcohol consumption as well as the presence of genetic and
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susceptibility factors or other additional noxious factors such as
tobacco and cocaine use [10,11].

Acute high-dose binge drinking
Acute high-dose binge drinking (consumption of 5 or more drinks

per occasion) [12] may induce a transitory depression of LV function
and even may cause acute heart failure in subjects with previous heart
disease.

Chronic high ethanol intake
The usual pattern of ethanol consumption to inflict cardiac damage

is continued moderate to high misuse of alcoholic beverages for more
than 10 years. The Total Lifetime Dose of Ethanol (TLDE) consumed
by one individual expressed as kg of ethanol consumed divided by kg
of body weight (kg/kg) is inversely correlated with the LV Ejection
Fraction (LVEF) [9]. A threshold of 5 kg/kg has been defined to induce
diastolic ventricular dysfunction, a situation detectable in one third of
chronic alcohol consumers [13]. This is the first manifestation of ACM,
usually being subclinical and only detectable by cardiac
echocardiography, Magnetic Resonance Imaging (MRI) or
radionuclide angiography [3,14]. Subclinical systolic dysfunction was
described in the Framingham Heart Study in males consuming >15
drinks per week or in females consuming >8 drinks per week [15]. We
also found LV dysfunction with a decrease in the LVEF <50% and the
LV shortening fraction as well as an increase in LV diameters and mass
in 13% of male chronic alcohol consumers with a TLDE >20 kg/kg
[3,16].

Subclinical left-atrial dysfunction
Subclinical left-atrial dysfunction has also been detected in

alcoholics with a TLDE >15 kg/kg using 2D speckle-tracking
echocardiography, showing a significant reduction of left-atrial pump
and reservoir function [17].

The development of heart failure (HF)
The development of heart failure (HF) in ACM is similar to that of

other causes of dilated cardiomyopathy with decreased left ventricular
ejection fraction that lead to exercise dyspnea, orthopnea and
peripheral edema or anasarca [9-11]. The relationship between ethanol
consumption and HF follows a “U-shaped” curve, with the lowest
prevalence of HF at a dose of 10-20 g/day and rising at higher doses. In
a 5-year longitudinal study that included high-dose ethanol
consumers, ACM with HF appeared in 26% of men consuming >100
g/day and 20% of women consuming >80 g/day) [18]. In our
experience, the development of ACM requires chronic consumption
with a TLDE of more than 7 kg/kg in men and 5 kg/kg in women over
a period of at least 10 years. This means a minimum daily dose of 100
g/day in men and 80 g/day in women [3,14]. In advanced cases,
mortality is related to progression of HF and ventricular arrhythmias
causing cardiac arrest and death. The annual mortality rate of
advanced cases of ACM is 15% [10].

Genetic susceptibility
Genetic susceptibility may also influence the damaging effect of

ethanol on the heart. Some alcohol dehydrogenase (ADH) and
acetaldehyde to acetate by aldehyde dehydrogenase (ALDH)
polymorphisms increase the noxious effect of acetaldehyde on the

heart and impair heart function [19], We also observed that the
presence of the DD homozygous deletion genotype polymorphism of
the angiotensin-converting- enzyme (ACE) gene increases the
susceptibility to LV dysfunction in chronic alcohol consumers [20].

Gender
Women are more sensitive than men to develop alcohol-induced

heart damage. One studied showed that the prevalence of subclinical
LV dysfunction was similar in women and men, although women
reported a significantly lower TLDE (14.2 vs. 23.1 kg/kg) [21]. In
addition, compared to men, women show a significantly steeper dose-
related inverse relationship between LVEF and TLDE [18]. This means
that at a given dose of ethanol consumption, contractile LV function in
women will be significantly lower than in men [2,3].

Reversibility
ACM may partially reverse with abstinence from alcohol, which is

the preferred goal [22]. However, in end-stage ACM with a LVEF <15%
LV function reversibility is not usually observed [3]. We observed a
significant improvement in LVEF in alcoholics who were able to reduce
ethanol consumption to doses <50 g/day in a control drinking scenario
[23]. In fact, any reduction of previous high-dose ethanol consumption
improves LV function.

Pathogenic Factors
Cardiac myocytes are excitable cells with complex mechanisms of

signaling, energy production and contractility [24,25]. Ethanol induces
persistent, progressive heart damage that involves almost all the
structures of the cardiac cell, altering the two main physiological
processes of the cardiac myocyte which are excitation-contraction
coupling and cell energy availability [26,27]. Ethanol is a very active
biological molecule that easily diffuses through all the biological
membranes and targets intracellular organelles. It changes membrane
composition, fluidity and permeability, the activity of membrane ion
(VOCC) channels and pumps, and alters intracellular calcium-
transients. The ryanodine L-type Ca2+-release VOC channel in the
sarcoplasmic reticulum is also impaired by alcohol, decreasing
sarcomeric [Calcium]2+- release that induces sarcomere excitation-
contraction coupling [28]. Ethanol interferes and decreases the rates of
protein heart synthesis and increases protein breakdown at different
levels (protein synthesis rate, transcription, RNA content and
translational processes) [29], causing a loss of miofibrillary contractile
(myosin, actin, titin and troponin) as well as non-structural regulatory
and heat-shock proteins. It also interferes with the mitochondrial
energy supply, decreasing respiratory complex activities and changing
the mitochondrial structure. Ethanol alters the total cardiac oxidant
status, specifically superoxide dismutase (SOD) and alpha-tocopherol
content [30] which induces ROS, malondialdehyde (MAD) and
ethanol-acetaldehyde adducts generation, with additional potential
inflammatory damage. Ethanol is also able to induce mitochondrial-
dependent apoptosis through caspase activation and gene
dysregulation [31] and also alters the cell 3D structure affecting
desmosomes, connection channels and extracellular matrix structure
[32].

In addition to these multiple damaging effects, ethanol also
decreases the cardiac cell capacity to modulate this damage. This is
mediated by interference with myokines (FGF-21) and local hormones
and growth-factors such as myostatin [33], IGF-1 [34], ghrelin [35]
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and leptin [36]. Thus, ethanol decreases the myocyte proliferation rate
probably by myostatin up-regulation [33] and modifies the
mechanisms of cardiac plasticity [37]. The final balance of alcohol-
induced heart effects is a clear increase in the damaging factors and a
decrease in protective heart mechanisms leading to progressive cardiac
myocyte damage and loss by apoptosis and necrosis and the
substitution of these cells by non-functional fibrosis [38,39].

At a structural level, the first steps of ACM are characterized by cell
and nuclear hypertrophy, with an increase in myocyte size and
sacomere disarray [40]. This abnormal hypertrophy is associated with
cardiac dysfunction and also increased morbidity and mortality.
Progressive myocyte necrosis develops, being substituted by
subendocardial and interstitial fibrosis with great hypertrophy of the
remaining myocytes [3,24]. According to the Frank-Starling law, at a
functional level, the LV develops eccentric enlargement and LV
function progressively decreases, with low-output dilated
cardiomyopathy (CMP). Patches of subendocardial fibrosis may be
macroscopically seen in end-stage cases [21,38].

Management of ACM

Pharmacologic treatment
Pharmacologic treatment of acute heart failure in ACM is similar to

that of other dilated CMP reducing preload with diuretics and after
load with vasodilators acting on the renin-angiotensin-aldosterone
system, with angiotensin-converting enzyme (ACE) inhibitors or
angiotensin receptor-II antagonists (ARA-II), and or β or α1 adrenergic
blockers [1-3]. Digoxin is indicated when high-rate atrial fibrillation
coexists. Anticoagulant therapy to avoid thromboembolism should be
balanced with the risk of bleeding, mainly in patients with liver
cirrhosis. Anti-arrhythmic treatment should be considered as in other
CMP during short-term periods. Dietary salt restriction, rest and
oxygen administration may also be needed.

Abstinence
As previously reported, the most important factor related to

improvement of ACM is the degree of reduction or total abstention
from previous alcohol consumption [41]. The main efforts should
address this goal with specific cognitive-behavioral support [42]. In
subjects not able to abstain, we observed that a significant reduction of
ethanol intake to 50-60 g/day in a control-drinking situation is enough
to significantly improve LV function. In other words, any reduction of
previous high-alcohol consumption is useful [23].

Improving systemic alcohol-mediated damage
Similar to what happens in other alcohol-dependent organ damage

[1], ACM should be considered as a part of the systemic damage
inflicted by alcohol in a specific patient. Correction of protein and
caloric malnutrition, a body mass index <18 kg/cm2, ionic
derangements (deficiencies in Na+, K+, Ca++, P3+/5+, and Mg++ or Fe+
+/+++ and Cu+/++ excess), vitamin (pyridoxine, thiamine, cobalamin) or
cofactor (folic acid) deficiencies help to stabilize ACM [43]. Control of
other systemic hepatic (encephalopathy, anasarca), renal (kidney
failure) or neurological (withdrawal, seizures, Wernicke) diseases, as
well as ongoing infections, sepsis and coexistent trauma is necessary to
achieve ACM stability [44,45]. The use of antioxidant supplementation
is currently under evaluation [46].

Other toxic abuse
Because of the frequent coexistence of a multi-toxic consumption

pattern in ACM [47,48] other cardiotoxic drug use, such as tobacco
and/or cocaine, should be monitored and avoided. A specialized multi-
disciplinary strategy with personalized cognitive-behavioral
psychotherapy and use of pharmacological support should be
established in these patients to control alcohol and drug-addiction
[41].

Heart transplantation
Heart transplantation in ACM is a restricted treatment considered

only in subjects able to maintain alcohol abstinence up to 1 year, in the
absence of other relevant systemic damage by alcohol (dementia, liver
cirrhosis or cancer). In the usual care, this is a limited procedure
applied to less of 15 % of end-stage ACM subjects [10,49].

Personalized approach
Treatment of HF should be involve a personalized clinical approach

considering all factors including medical, social and psychological
aspects in a multi-disciplinary approach that is usually performed in
specialized alcohol units [43].

Future Perspectives
ACM is a relevant disease with a high social and public health

impact [2-4]. In addition to the usual treatment of HF and support to
maintain or achieve abstinence, new research in this field will allow
specific treatments to be addressed to avoid disease progression [10].
Specific targets of research are aimed at reducing unhealthy myocyte
hypertrophy [50], non-functional fibrosis [51] and myocyte apoptosis
[39] as well as at improving local cardiac defensive mechanisms [2].
Table 1 summarizes the new treatment strategies and research
approaches aimed at managing ACM.

AVOID ALCOHOL-INDUCED HEART DAMAGE

-Control drinking

- Avoid binge drinking

-Suppress tobacco and/or cocaine use

-Cognitive-behavioral therapy

CONTROL OF SYSTEMIC NOXIOUS EFFECTS OF ETHANOL

-Abstinence / Dependence

-Withdrawal, Wernicke, Seizures

-Uncompensated liver disease

-Kidney failure

-Concurrent systemic inflammation / sepsis/ infection

-Caloric/protein malnutrition

-Ionic and vitamin derangement

AVOID UNHEALTHY MYOCYTE HYPERTROPHY

-ACE inhibitors or ARA-II, β or α1 adrenergic blockers

-Myostatin

Citation: Fernández-Solà J, Estruch R (2017) Alcoholic Cardiomyopathy: Old and New Insights. J Alcohol Drug Depend 5: 293. doi:
10.4172/2329-6488.1000293

Page 3 of 6

J Alcohol Drug Depend, an open access journal
ISSN: 2329-6488

Volume 5 • Issue 6 • 1000293



- RhoA/ROCK inhibitors (Azaindole-1, SLx-2119, Fasudil)

-Sirtuins

-SIKE

-PPAR agonists

-Micro RNA

-Antioxidant supply

AVOID NON-FUNCTIONAL FIBROSIS

Inhibition of myofibroblast activation

-Relaxin

-TGF-beta antagonists

-Micro-RNA

Antioxidant supply

-Resveratrol

-Pioglitazone

AVOID MYOCYTE LOSS

- Decrease apoptosis

-Caspase, Myostatin and Sirtuins inhibitors

-PI3K/Akt pathway: Catechins and polyphenols

-ROCK1 modulation

-MicroRNA

-Catechins

-Ghrelin

INCREASE LOCAL CARDIAC REPAIR MECHANISMS and HEART
PLASTICITY

- Relaxin

- IGF-1

- Myostatin

- Leptin inhibitors

- Ghrelin

-Cardiomyokines (FGF21)

STEM CELL THERAPY

-Bone marrow mononuclear cells

- Mesenchymal stem cells

-Cardiac-derived cells

OPTIMIZE HEART TRANSPLANTATION STRATEGIES

Table 1: New treatment strategies and research approaches to manage
alcoholic cardiomyopathy.

Some growth factors (relaxin, IGF-1, myostatin, leptin, ghrelin), and
cardiomyokines (FGF21) have recently been proposed as therapeutic

candidates to regulate cardiac plasticity at a local level and to decrease
the intensity of heart damage, improving cardiac repair mechanisms
[37].

To avoid unhealthy cardiac hypertrophy, the use of RhoA/ROCK
inhibitors Azaindole-1 and SLx-2119 may be promising [52]. Fasudil is
the only ROCK inhibitor approved for human use at present, although
its specific effect has not been evaluated at a cardiac level [53].
Resveratrol and pioglitazone have relevant antioxidant cardiac
properties and have also been suggested to inhibit cardiac hypertrophy
[54,55].

Inhibition of the myofibroblast activation process through different
mechanisms (relaxin, TGF-beta antagonists, and micro-RNA) may be
useful to prevent cardiac fibrosis either in systemic or localized
delivery [56,57].

Alcohol-mediated induction of apoptosis may be regulated in early
stages by myostatin, sirtuins or caspase inhibitors [58]. Catechins and
polyphenols have some antiapoptotic activity through the PI3K/Akt
signaling pathway and should be considered as complementary
treatments [59]. Cardiac stem cell therapy either stimulating cardiac
progenitors or by local or systemic infusion of autologous or
heterologous stem cells is a promising therapy [60,61].

Although these diverse potential treatment targets have been
proposed for use in ACM, most have limitations and no clear results
have yet been described. To include all the possible therapeutic
strategies, a multidisciplinary approach for ACM combining the usual
treatments and new specific targets will be required in the future.
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