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INTRODUCTION

The aerodynamic shape optimization, even for only a wing design, 
more than ten years ago has been a very difficult task. A typical 
aerodynamic optimization process requires a robust mesh warping 
method, grid parameterization, CFD solver and optimization 
algorithm The tremendous improvements in each of these fields 
in the last few years, and the fact that researches made them 
available as an open source tools, allow aerodynamicists in academy 
as well as in industry actually perform an aerodynamic shape 
optimization, and robustly exploring a design space that perfectly 
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ABSTRACT
The following study presents single and multipoint aerodynamic shape optimizations of two benchmark problems 
defined by the Aerodynamic Design Discussion Group (ADODG).  Mesh warping and geometry parameterization is 
accomplished by fitting the multi-block structured grid to a B-spline volumes and performing the mesh movements 
by using surface control points embedded with free-form deformation (FFD) volumes. The aerodynamic model 
solves the RANS equations with Spallart-Almaras turbulence model. A gradient based optimization algorithm is 
used with an adjoint method in order to compute the objectives and constraints derivatives with respect to the 
design variables. The objective in this work is to minimize the drag of airfoil and wings for transonic regimes taking 
into account volume and thickness constraint, including aerodynamic coefficients constraint.

The first problem solved is RAE2822 airfoil in viscous transonic flow, with a lift constraint. The shock in the upper 
surface is eliminated and the drag coefficient is reduced by 50%. Also in this problem we started the optimization 
solution from a circle in order to check the robustness of both the flow solver and the mesh warping algorithm, 
while reaching a “close” solution as obtained by starting from RAE2822 airfoil. The second problem is single and 
multi-point lift and pitch moment constrained drag minimization of the Common Research Model (CRM) wing 
in transonic, viscous flow. The CRM design is very challenging due to the tight coupling between aerodynamic 
performance, trim and stability. Other design challenges include the number of design variables and its effect on 
the optimized configuration. The single-point optimization reduced the drag coefficient by 7.7% using 192 design 
variables. The single-point designs are relatively robust to the flight conditions. Further robustness is achieved 
through a multi-point optimization with nearly 5% drag reduction.

Keywords: Aerodynamics; Design; robustness

Nomenclature: M: Mach Number; α: Angle of Attack, deg; ρ: Density, kg/m3; u, v, w: Velocity components, m/s; 
p: Static Pressure, Pa; Order of Convergence; E: Energy, J; R: Residual; Rey: Reynolds number; FFD: Free Form 
Deformation; y+: y plus; Cl: Lift Coefficient; Cd: Drag Coefficient; Cmz: Pitch Moment Coefficient; t: Thickness, 
m; V: Volume, m3; c: Chord length, m; GCI: Grid Convergence Index; N: Mesh Size; LE:  Leading Edge; TE: 
Trailing Edge; CRM: Common Research Model; S: Area, m2; L: Grid Level

Subscripts: Baseline: Initial Configuration; Ref: Reference Value

fits the engineering requirements. These useful tools allow not 
only for improving existing designs, but also reach unconventional 
configurations with much improved performances.

Numerical optimization approaches are usually categorized to 
gradient-based method and gradient-free methods.  The adjoint 
method for computing the gradients along with an optimizer that 
is the gradient-based is proven to be the most efficient method 
for large scale problems with hundreds of design variables [1-
3]. Pironneau [4] first introduced the adjoint method for drag 
minimization problems, and then Jameson [5] extended to the 



2

Shitrit S OPEN ACCESS Freely available online

J Aeronaut Aerospace Eng, Vol. 9 Iss. 3 No: 229

aerodynamic optimization of the Euler flow in the late 1980’s. 
Since then various researchers have applied this method within 
complex implementations for aerodynamic problems [6-11].

One of the popular sensitivity analysis methods is finite differencing, 
but disadvantages are its high computational cost and low accuracy. 
Mader CA [12] presented an automatic differentiation tool and 
applied it selectively to produce code that computes the flux 
Jacobian matrix and the other partial derivatives that are necessary 
for the adjoint method.

The AIAA Aerodynamic Design Optimization Discussion Group 
(ADODG) proposed a series of benchmark cases, a great initiative 
that allow researchers around the world to run, compare and make 
a special thorough analysis of getting the best optimal shapes. 
The meshes and configurations of the benchmarks are publicly 
available, and this allows direct comparisons with other solvers.

Since the ADODG useful initiative many publications regarding 
benchmarks problems are available and among the research 
studies, the multidisciplinary design optimization (MDO) tools are 
the most remarkable. Martines, et al. are involved in a variety of 
applications, including the optimization of a supercritical airfoil 
and starting from a circle, aircraft aerodynamic and aero structural 
optimization, and aero propulsive optimization [13-15]. Recently 
Lyu Zhoujie [16] solved a series of aerodynamic shape optimization 
problem based on the CRM wing. The model solves RANS 
equations with Spallart-Allamaras turbulence model. A gradient 
based optimization algorithm is used in conjunction with an 
adjoint method. The drag coefficient is minimized by 8.5% with 
respect to lift and pitch moment constrains while using 720 shape 
variables. Another issue such as multi-point, no thickness reduction 
and starting from random geometry are presented and discussed.

Aerodynamic design optimization process is very sensitive to the 
starting design sometimes and requires trial and error to get a 
converged optimal design. Xialong, et al. addresses this need by 
developing ways to overcome robustness issues arising from mesh 
warping, shape parametrization and CFD solver. They demonstrated 
the NACA0012 and RAE-2822 airfoil benchmarks to show the 
dominant factors influence the convergence efficiency. In addition 
they solved a challenging aerodynamic shape optimization case 
that starts from a circle in order to test the framework robustness. 
Another experience with this challenge is demonstrated in the 
present paper, inspired by He Xialong, et al. [13].

A thorough analysis regarding the ADODG benchmark cases is 
demonstrated by Christopher L [17] while using the Jetstream 
optimization code algorithm. For the NACA 0012 optimization 
the drag coefficient is reduced by 42 counts and the shock is 
weakened. For RAE-2822, successful optimizations eliminate the 
shock, reducing drag coefficient to 119 counts in the best case. In 
the CRM wing cases, significant shape changes and performance 
improvements are reported.

Lyu Zouhlo [16] presented a series of RANS-based aerodynamic 
shape optimization of a blended wing body configuration to 
understand the tradeoffs between the trim, stability and bending 
moment and the aerodynamic performance. Single-point designs 
as well as robust multi-point optimization are demonstrated.

The 4th Drag Prediction Workshop (DPW-4) CRM wing-body-tail 
configuration was chosen by Song, et al. [14] as the baseline model. 
Series of wing-body-tail optimizations minimized the drag coefficient 
subject to lift, pitching moment and geometric constraints. The 

single-point trim constrained optimization achieved a reduction 
of 4.1% of the total drag of the trimmed baseline. They found 
that considering the trim during optimization is a better approach 
than using a fixed wing moment constraint, and simultaneous 
optimization of wing and tail rotation is the best way to obtain an 
improved performance.

The present paper demonstrates a modest experience and first 
steps done towards the construction of an aerodynamic shape 
optimization capability while applying the Adflow algorithm 
which is part of the MDO lab framework that made available as 
an open-source in the last year (2019-2020). In this paper a large 
set of results are presented for the computational complicated and 
intensive NASA Common Research model (CRM) wing. This is 
a lift constrained drag minimization problem. Besides the single-
point optimization problem, two additional problems for the same 
CRM wing that are not part of ADODG benchmark are solved: a 
case with no thickness constraints and multi-point optimization.

The tools that are used for this study are a subset of the 
multidisciplinary design optimization (MDO) framework of 
aerodynamic configurations (MACH) [18]. With this software 
one can perform aero-structural optimization, but in the present 
study only the MACH’s components relevant for aerodynamic 
shape optimization are used: CFD solver, mesh warping, geometric 
parameterization and optimization algorithm.  The availability of 
these open-source tools and benchmarks enabled further studies in 
CFD-based aerodynamic design optimization.

This paper is organized as follows. The introduction of the 
optimization tools are briefly described in Section 2. Sections 3 
and 4 describe the optimization results of the RAE-2822 and CRM 
wing.  

RESEARCH METHODOLOGY

The drag minimization of the problems presented in this work is 
obtained by using a CFD solver coupled with and adjoint solver 
to compute the objectives and constraints sensitivities, a robust 
mesh warping routine and a gradient based optimizer. These tools 
are part of the MACH framework proven to be a useful tool for 
aerodynamic structural optimization. The pyGeo routine used for 
geometric manipulation, iDWarp for mesh deformation, Adflow 
as the flow solver and SLSQP as the numerical optimization 
algorithm.  

CFD solver

The CFD solver used in this research is three dimensional multi-
block structured finite volume solvers (SUmb). The parallel implicit 
solver is capable of solving the Euler and Reynolds averaged 
Navier-Stokes (RANS) equations (steady and unsteady) [19]. The 
discretization of the governing equations is done by a finite volume 
approach with a central formulation over structured meshes. The 
convective terms are computed by the Jameson A [20] scheme using 
flux splitting upwind scheme with Van-Albeda limiter. Viscous 
fluxes are computed to second order accuracy using a central 
difference approach. The residual smoothing is made by employing 
an explicit 5th order Runge-Kutta algorithm employing well known 
steady-state acceleration techniques including local time stepping, 
implicit residual smoothing and geometric multigrid. For RANS 
analysis the turbulent equations are solved in coupled fashion 
using diagonally-dominant alternating direction implicit (DD-
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ADI) scheme. In order to improve convergence, the solver is also 
equipped with a diagonallized ADI method for the mean flow 
equations and Newton-Krylov (NK) solver. The computational 
coordinates is x, y and z axes, while x in the stream-wise direction, 
y vertical, and z span-wise. The origin is located at the airfoil (or 
wing) leading edge.

The steady state mean flow equations discretized using a finite volume 
cell centered formulation, yielding a set of ordinary differential 
equations that can be written as follows: R(Wi,j,k)=0, where  is  a 

vector of the mean flow varibales: { }, , , Tw Eρ ρµ ρυ ρ= , and 

  is the residual obtained by evaluating the sum of integral fluxes 

of the governing equations, to the second order of accuracy. 

Free form deformation (FFD) and mesh warping

The geometry parameterization is done by the FFD approach [21]. 
In this approach the geometry is located inside a B-Spline control 
volume while the coordinates are mapped to the external surface 
of the volume by Newton search algorithm. All the geometric 
modifications are made on the external surfaces of the FFD volume. 
Any modification of the FFD boundaries indirectly modifies the 
internal geometry. The main assumption of this approach is a 
constant topology throughout the optimization process.  

After the FFD volumes modify the geometry during the 
optimization process, the mesh must be warped in order to solve 
the flow field for the modified geometry. In this work the algebraic 
mesh perturbation scheme is used, which is developed by Kenway [21].

Optimization algorithm

In this research work the SLSQP (sequential least square 
programming) optimization algorithm is applied. It is part of the 
pyOpt framework Perez et al. [22] which is open source software. 
The algorithm SLSQP [23] is evolved from the least squares solver 
[8]. It uses a quasi-Newton Hessian approximation and an L1-test 
function in the line search algorithm.   

RAE-2822 AIRFOIL IN VISCOUS TRANSONIC 
FLOW

Problem formulation

The first optimization problem presented here is the drag coefficient 
minimization of the ADODG RAE-2822 airfoil viscous transonic 
flow. Mesh convergence study was performed with three families 
of meshes. The Mach number M=0.734 calculated at Reynolds 
number Rey=6.5 M. The aerodynamic optimization problem 
formulation is summarized in Table 1, where C

l 
 and Cm are the 

lift and moment coefficient. The lift coefficient is constrained 
to c

l
=0.824 and the pitch moment coefficient about the quarter 

chord must be higher than c
mz

=-0.092. The airfoil area must be 
no less than the initial area. The design space includes 25 control 
points in chord wise direction, as vertical movement of the FFD 
control points in y direction. Relative thickness (t/c) constraints 
are enforced at 25 positions along the chord to ensure that the 
airfoil thickness is larger or equal to that of the baseline.

A 3-D airfoil geometry is constructed with a span of 0.1 m in  
direction, with two symmetry planes.  The O-grid topology includes 
31360 (level L1) cells with 246 cells in chord wise direction and 

129 cells perpendicular to the airfoil surface. The minimum cell 
size close to the boundary is 3*10-6 m, reaching y+≈0.4 in zero angle 
of attack. Grid convergence study was conducted while refining 
the grid in chordwise and normal direction, keeping y+~1. The 
aerodynamic coefficients results of four different grid refinement 
levels are collected in Table 2 computed in M=0.734 and α=2.47°.

Grid convergence study

Grid convergence study has been made based on the Grid 
Convergence Index (GCI) method, for examining the spatial 
convergence of CFD simulations presented in the book by Roache 
et al. [24]. Roache suggests a GCI to provide a consistent manner in 
reporting the results of grid convergence studies and also an error 
band on the grid convergence of the solution. This approach is also 
based upon a grid refinement estimator derived from the theory of 
Richardson Extrapolation [7]. The GCI on the fine grid is defined 
as: GCI

fine
=Fs/rp-1 where   is a factor of safety (recommended to 

be F
s
=1.25 for comparisons over three or more grids). The GCI for 

coarser grid is defined as: GCI
fine

=Fs/rp-1, while each grid level yield 
solutions that are in the asymptotic range of convergence for the 
computed solution. The parameter p is the order of convergence 
(here a second order accuracy is involved, so theoretically the 
maximum value is p=2), and r is the effective grid ratio: r=(N

1
/

N
2
)1/d where N is the total number of grid points in executive grid 

levels, and d is the flow dimension. Since the grid was adapted only 
in two directions (chordwise and normal directions) and in spite of 
the fact that we actually solve 3D problem, a d=2 is defined. The 
asymptotic range of convergence can be checked by observing the 
two GCI values as computed over three grids, GCl

22
=rpGCL

12
 while 

values approximately unity indicates that the solutions are within 
the asymptotic range of convergence.

For this purpose three levels of grid refinement have been checked 
to assess the effect on the numerical accuracy, while the total 
grid cells number: L

0
=(490 × 257) 126162 cells, L

1
=(245 × 129) 

31360 cells and L2=(123 × 65) 7872 cells. The grids generated 
with clustering cells near the walls which results in a maximum of 
y+≈0.4 in all the computed angles of attack.

A polar graph of the drag coefficient is presented in Figure 1. 
The GCI values including the asymptotic range of convergence 
and an estimation of the aerodynamic coefficient values at zero 
grid spacing are detailed in Table 3, computed at α=0° Based 

Table 1: ADODG RAE-2822 case problem statement.

Objective Name Quantity Lower value, m Upper value, m

Design 
variables

Minimum 
Cd

1 - -

y 40 -0.05 0.05

Constraints

α 1 1 5

Cm 1 -0.092 -

Cl 1 0.824 0.824

t/c 400 10-4 -

Table 2: Mesh convergence checks for RAE-2822 airfoil at M=0.734, α=3°.

Grid level Cd Cl Cmz Y+ α[deg]

L0,  490X257-126162 cells 0.0223 0.7739 0.0921 0.4 3

L1, 245X129-31360 cells 0.027 0.8963 0.1114 0.4 3

L2, 123X65-7872 cells 0.026 0.8642 0.1048 0.4 3
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on this study we can say, for example, that C
d
 is estimated to be 

C
d
=0.0097742 with an error band of 9.2455%. The grid resolution 

studies confirmed that the computed aerodynamic coefficients 
values are grid converged.

In order to evaluate the grid convergence and accuracy, the 
numerical results of the pressure coefficient value around the airfoil 
is compared to experimental results for the RAE-2822 [25]. The 
flow conditions were changed according to the experiment setup 
to M=0.73 and corrected wind tunnel angle of attack α=2.79°. The 
analysis with the finest grid level gives a lift coefficient C

1
=0.8746, 

drag coefficient Cd=0.02196 and pitch moment coefficient 
C

mz
=0.10806. The experimental results are: C

1
=0.803, C

d
=0.0168 

and C
mz

=0.099. In Figures 2 and 3, the pressure coefficient values 
distribution are compared.

OPTIMIZATION RESULTS

The drag, lift and pitch moment coefficients are plotted against 
the optimization iterations number (Figure 4). The drag coefficient 
reduction of 971 Counts (1 drag count=10-4 Cd) (49.2%) was 
obtained. The optimized results were obtained after 100 design 
iterations and the lift, drag and pitch moment coefficients are 
compared in Table 4. Figure 5 shows the pressure coefficient 
distribution (left figure) and the baseline and optimized airfoil 
shape. It is clearly seen that the shock wave appeared in the baseline 
configuration is eliminated in the optimized shape. The airfoil’s 
thickness is reduced by nearly 15% compared to the initial value.

The flow converges to a density residual of 10-12 and the adjoint 
equation convergence was set also to   10-12. The optimality 
convergence tolerance of SLSQP optimization algorithm was set to 
10-6. In this case different number of design variables was checked, 
but increasing the number of control points higher than 40 (20 
chord wise stations and 2 symmetry planes) has a negligible effect 
on the optimal shape and pressure distribution.

In Table 4 the optimized results are compared with those reported 
by other published results.  A possible source to the difference 
in the results is that the mesh topology and flow solvers used by 
each paper are different. Another reason that should contribute to 
different results is the mesh warping and parameterization method.

Optimization starting from a circle

Now a new challenging aerodynamic optimization process is 
created by starting from a circle, while the previous case started 

from an airfoil RAE-2822. This is a much bigger challenge that 
examines effectiveness of the FFD parameterization process as well 
as the ability of the flow solver to reach convergence. However, 
besides all these robustness demonstrations, this starting condition 
has no industrial benefit what so ever. This is no surprise since 
no one would start from a circle in order to reach an optimized 
airfoil. The same flow conditions and constraints are used as for 
the previous case of RAE-2822 case.

For this purpose a structured O-mesh is constructed for the circle 
geometry by using pyHyp procedure, while the mesh includes Figure 1: Drag coefficient vs. angle of attack in grid convergence study.

Figure 2: a) Fine grid of RAE-2822 used for optimization. b) The FFD grid 
includes 40 control points.

Table 3: Aerodynamic coefficient results of the grid convergence study at 
α=0°.

 Grid level
Grid 

ratio, r
GCI [%]

Richardson 
extrapolation

Asymptotic 
convergence range

Cd

L0 1 - 0.009774 1.02576

L1 2 9.2455 - -

L2 4 12.153 - -

Cl

L0 1 - 0.3444 0.9984

L1 2 0.0187

L2 4 0.2151

Cm

L0 1 - 0.0973 1.0057

L1 2 3.3818

L2 4 4.0707

Figure 3: Comparison of computational and experimental pressure 
coefficient values.
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Figure 4: Drag, lift and pitch moment coefficients against the number of iterations.

Table 4: Comparison of optimized results between the present works.

Change (Counts) Cd (Optimized) Cd (initial) Cl AoA [deg] Case

96.8 0.01002 0.0197 0.8237 2.47 Present work

88.5 0.010989 0.019841 0.824 2.817 Christopher et al. [17]

88.6 0.010975 0.019841 0.824 2.817 Xiaolong He et al. [13]

Figure 5: Baseline and optimized results; a) Pressure coefficient distribution b) A comparison of the airfoil shapes.

31605 cells (245 cells in the spatial direction and 129 in the normal 
direction). The farfield is located 100°C. 

First the transonic problem is solved by using a single unmodified 
FFD frame that includes total of 20 control points (10 points in 
chordwise direction in top and lower circle parts, separately, and 
total of 40 control points).  But, in this approach an anomalous 

shapes encountered during the optimization process, besides the 
difficulties to reach convergence since IDWarp fails due to negative 
volumes cells. One way to handle this problem (which finally 
did not accomplished) is to generate the mesh for the modified 
geometry by using pyHyp, but since all the optimization process 
already took more than 200 iterations, this approach is finally 
abandoned.
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The second approach includes a modified FFD parameterization. 
In this way the optimization problem is decomposed to three stages 
which differs one form the other in the FFD resolution. In the 
first stage the FFD frame includes 3 control points (total of 12) 
in chordwise direction. Three control points accomplish a large 
thickness reduction in four iterations only. The first stage includes 
a total of 16 iterations for reaching a nice smooth airfoil, while 
the optimized results including the final shape serve as starting 
conditions to the second optimization stage. In the second stage 
three control points are added to the FFD (total of 24 equally spaced 
control points) and after 70 more iteration reached convergence. 
The second stage manages to achieve a supercritical airfoil shape, 
which again serves as a starting condition to the third and final 
stage. In the third stage 4 control points are added to the FFD (total 
of 40 control points). The third stage refines the shape mainly 
where the shock occurs and after more 28 iterations reached final 
convergence (Figure 6). In Figure 7 the three adapted FFD frames 
are presented. The optimization histories are demonstrated in 

Figures 8-11. The drag coefficient of the optimized shapes starting 
from a circle with adaptive FFD is 0.501 counts higher than the 
optimized shape obtained while starting from RAE-2822. This 
optimization approach requires 114 iterations. Figure 12 presents a 
comparison of the final optimized shapes, which are similar to each 
other. Also presented is a comparison of the pressure coefficient 
distribution.

COMMON RESEARCH MODEL (CRM) WING IN 
TURBULENT TRANSONIC FLOW

Problem formulation

In this section the drag minimization of the CRM wing is presented. 
The CRM wing is extracted from the wing-body configuration and 
was developed for applied CFD validations studies [26-29]. The 
sectional shape and twist are optimized in order to minimize the 
drag coefficient at constant lift coefficient of Cl=0.5, pitch moment 

Figure 6: Mach number distribution of the baseline (a) and optimized (b) results.

Figure 7: Adaptive FFD approach for the optimization starting from a circle. a) First stage includes 4 control points b) Second stage includes 12 control 
points c) Third stage includes 20 control points.
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Figure 8: The four initial iterations in the first stage of the optimization starting from a circle.  

coefficient constraint C
mz ≥ 0.17

, and at Mach number of 0.85. The 
Reynolds number, based on the root chord diameter, is 5 × 106 
(altitude of 12500 m). 

Several FFD frames are generated and examined in different 
approaches and numbers of control points. The main insight from 
this investigation is that the FFD volume has a dominant importance 
because it directly relates to how the wing is parameterized. The 
FFD is fitted very close to the wing surface to allow for better 
control on the warping procedure. Based on my experience, for 
faster optimization convergence the control points must be spatially 
equally set up close to the surface. In Figure 13 the final FFD used 
for optimization process is presented.  The control points used are 
the y-coordinates normal movements of 192 control points on the 
FFD frame, 24 chordwise and 8 in the spanwise direction (Tables 5 
and 6). The angle of attack is also included in the design variables. 
The root trailing and leading edges control points are fixed in order 

to not permit any twist. The trailing edge control points are fixed 
in order to avoid mesh warping failure, since the tiny thickness in 
this area.  The thickness is controlled by 192 control points in the 
same order and is set to be 25% greater than the baseline thickness 
at each control point. The volume is constrained to be greater than 
or equal to the baseline volume.  A list of the control points and 
constraints are presented in Table 7. 

Initial geometry and grid convergence study

The CRM wing is extracted from the wing-body-tail configuration 
while replacing the body and tail with a symmetry plane, and the 
root of the remaining wing is moved to the symmetry plane. The 
wing geometry is scaled by 275.8 inch, the mean aerodynamic 
chord, and the origin is located at the root leading edge. Moment’s 
reference point is (1.2007, 0, 0.007669). The reference is for the 
aerodynamic force coefficients calculations is S

ref
=3.407 squared 
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Figure 9: The first stage optimization histories of the optimization starting from a circle.

Figure 10: The second stage optimization histories of the optimization starting from a circle.
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Figure 11: The third stage optimization histories of the optimization starting from a circle.

Figure 12: A comparison between the optimized airfoils;  a) Airfoil shapes b) Pressure coefficient distribution values.

reference units. The initial volume is V
ref

=0.2617 cubed reference 
units. The wing half span is L=3.7 reference units.

For the grid convergence study three structured hyperbolic volume 
O-meshes are generated by using pyHyp routine. The initial surface 
mesh is generated by using the commercial ICEMCFD software. 
The farfield is located 50L. The coarse grid (level L2) is refined in 
three directions by a factor of 1.5 and the aerodynamic coefficients 
and baseline grid size are listed in Table 8. The grids generated with 

clustering cells near the walls which results in a maximum of y+=20, 
for the coarsest mesh. Grid convergence study has been made 
based on the GCI method, for examining the spatial convergence 
of CFD simulations presented in the book by Roache et al. [24]. 
The GCI values including the asymptotic range of convergence 
and an estimation of the aerodynamic coefficient values at zero 
grid spacing are detailed in Table 8, computed at α=2.4°. Based 
on this study we can say that C

d
 is estimated to be C

d
=0.02060245 

with an error band of 0.00041%.  The grid resolution studies 
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Figure 13: The computational structured mesh (a) and the FFD mesh (b) of the CRM wing geometry.

Table 5: List of design variables used for the optimization of the CRM wing.

Design Variables Count Type

shape 192 Y -direction

twist 7 -10°, -10°, Around 30%  

Angle of attack 1 1°-10°

Total 200  

Table 6: Lower and upper bounds for the y-coordinates FFD control points.

 Variables Z≤1.773 1.773<Z≤2.72 2.72<Z≤3.7

Lower/Upper bounds 0.00375 0.01 0.0005

Table 7: List of constraints for the optimization of the CRM wing.

Type Count Constraints

≥0.25 × t-baseline 192 Thickness

≥ V-baseline 1 Volume

< 32 LE, TE control points

 = 1 Lift Coef., Cl

 1 Pitch moment Coef. Cmz

≥-0.092 226 Total

Table 8: Grid convergence study parameters for the CRM wing.

Grid level Grid ratio, r GCI [%] Cd Y+

Zero grid spacing  =  0.020602  

L0, 4470784 cells 1 - 0.020603 1

L1, 1549184 cells 1.25 0.000411 0.020605 0.5

L2, 1216512 cells 1.42 0.020344 0.020704 0.9

L3, 811008 cells 1.76 0.035433 0.020658 1

L4, 481280 cells 2.1 0.027674 0.020736 2.5

L5, 288768 cells 2.49 0.087445 0.020514 4

L6, 180096 cells 2.91 0.000527 0.020513 6

confirmed that the computed aerodynamic coefficients values are 
grid converged. 

It is clearly seen that fine mesh analysis shows that there is some 

benefit to make an optimization on a finer mesh. However, since 
all this aerodynamic optimization study is done for industrial 
applications, and in industry (compared to academy) there are an 
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inflexible time (and funding) limitations, the subsequent single-
point, multi-point and no thickness reduction problems are 
conducted using the coarse mesh (Level L5). In this mesh level we 
can say the error band in predicted Cd value is 0.0875%.

Single-point optimization results

For this CRM wing optimization the simulation is started with 
the DDADI until five order of magnitude reductions in the total 
residual norm is achieved. Then the solver is switched to ANK for 
better performance. The relatively selected lower convergence level 
(10-5) for the switch between the solvers improves the robustness 
of the nonlinear solver, although it comes at the cost of sub-
optimal performance for simpler cases. The optimality convergence 
condition in SLSQP is 10-6. 

This optimization problem is challenging to converge mainly 
because it is sensitive to the mesh warping procedure and the size 
of the control point’s movement values. At the first experience 
the lower and upper bounds of the y-coordinate control points 
are defined to move is ±0.5 reference units, respectively. This 
general and straightforward approach results in failures in the 
warping procedure after little iteration since the large thickness 
difference along the wing span. Therefore, in order to overcome 
this limitation, no unified lower and upper thickness bounds 
are defined, in a way that the wing is divided to eight span wise 
sections; with each section consisting of 22 chord wise points (the 
trailing edge control points are fixed). The lower and upper bounds 
for each section, from the wing root to the wing tip is detailed in 
Table 5. 

The objective function Cd, the lift and pitch moment coefficients 
histories are presented in Figure 14. The optimization process 

decreased the drag coefficient from 208.14 counts to 192.17 counts, 
namely 16 counts which is a reduction of 7.7%. Taking into account 
that this wing is designed and tested by experienced engineers, and 
compared to the impressive work presented by the MDO group 
[16] which demonstrated a reduction of 8.5% with mesh consists of 
28.8 million cells, this is a significant improvement. The pressure 
coefficient distribution on the upper surface for both the baseline 
and optimized wing is shown in Figure 15. One can see the 
appearance of shock waves generated on the baseline wing, while in 
the optimized wing these shocks are eliminated. This effect is also 
demonstrated by the equally spaced pressure contour lines which 
indicate a shock free solution. 

The thickness distribution obtained in the optimized wing is 
different than the baseline wing (Figure 16). The optimization 
algorithm allows thickness reduction of nearly 25%, the lower 
bound of the thickness constraint. The sectional pressure 
coefficient is presented in Figure 17 for four sectional regions scaled 
from the wing root. Finally, the lift distribution of the optimized 
wing appears to be more elliptical than that of the baseline wing, 
especially close to the root (Figure 18). 

Another grid convergence study is conducted in order to check if 
the correct design trends are captured. For this purpose the single 
point optimization process is repeated five times with different 
mesh resolutions and the results are summarized in Table 9. The 
difference between the Richardson’s extrapolation (zero grid 
spacing, presented in Table 8) and the drag coefficient for Level 
L00 is within 1 drag count. In addition, the difference between 
the baseline and optimized drag coefficients is approximately 14 
counts on average while reaching an asymptotic level of 16 counts. 
The desired drag resolution of 1 count is achieved between the 

Figure 14: Drag, lift and pitch moment coefficients convergence histories for the single-point optimization of the CRM wing.
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Figure 15: A comparison (mirror view) of the pressure coefficient distribution on the upper surface of the baseline (left) and optimized wing (right). The 
results obtained with mesh level L5.

Figure 16: Twist (a) and thickness (b) distribution along the CRM wing span. A comparison between the baseline and optimized geometry.

two finest levels, including the lift and pitch moment constraints. 
According to this grid convergence study and the fact the main 
focus of this analysis is to establish an aerodynamic optimization 
capability in a way that would fit the time and resources limitations 
exist in industrial applications, the remaining optimization cases 
are computed by using the coarser mesh L33.  

Single-point optimization without thickness reduction

As already mentioned, the CRM optimization case is challenging 

to converge mainly because of the varying thickness which becomes 
30% lower at the wing tip compared to the wing root thickness. 
This mesh warping method is strongly affected by this constraint 
and it results in very tight values that define the control point’s 
movements. It is clearly shown that the baseline wing has two 
shocks on upper surface, one at the middle and smaller one close 
to the wing tip. Since the main challenge of this problem is to 
minimize the wave drag generated by shock waves while satisfying 
the minimum thickness constraint, it results in a much lower 
thickness values at the tip, and not sure that the optimized wing 
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Figure 17: Sectional Cp distribution at four locations along the CRM wing span, while the numbers 2.35% (a), 26.7% (b), 55.7% (c) and 94.4% (d) 
represents normalized locations from the wing root.

Figure 18: Baseline, optimized and elliptical normalized lift distribution 
along the CRM wing span.

can withstand structural constraints, which are not taken into 
consideration in this optimization problem. 

Another point of view on this issue is that a wing with a low 
outboard thickness would probably weights much higher, since 
the wing structural strengthening is unavoidable. This is what 
motivates the following optimization, reducing the wave drag 

without reducing the wing thickness at all. All other constraints 
remain the same as is detailed in Table 7. The optimization histories 
are presented in Figure 19. The optimization procedure reduced 
the drag coefficient from 205 counts to 195 counts, nearly 3 counts 
higher than the optimized wing that allowed 25% of the baseline 
thickness. This optimization process is faster, and it takes nearly 
150 iterations compared to the optimization described in previous 
chapter (Figure 20). 

Five-point aerodynamic shape optimization

This section follows the multi-point optimization conditions 
studied [10] (Figure 21). The problem includes five-points with 
variables Cl and variables Mach number. The Cl and Mach number 
variation is done by perturbing the nominal values by 10%. The 
operating points are summarized as follows: C1:Cl=0.5, M=0.85, 
C2:Cl=0.55, M=0.85, C3:Cl=0.45, M=0.85, C4:Cl=0.5, M=0.84, 
C5:Cl=0.5, M=0.86. The objective function is the averaged drag 
coefficient. The pitching moment coefficient is only satisfied at the 
nominal operating point (C1). 

The optimization histories are presented in Figure 22. The five-
point optimizations converged successfully after only 14 design 
iterations and the lift and pitch moment constraints are obtained. 
The pressure coefficient distribution on the upper surface for 
the optimized five-point case compared to the single-point case is 
presented in Figure 23. The sectional pressure plots computed at 
the nominal condition (C1) are displayed in Figure 24. The five-
point case compared to the single-point optimization shows poorer 
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Table 9: Results for the CRM wing single-point optimization.

Mesh level Mesh size Baseline Cd Optimized Cd
Delta Cd 
(counts)

Cl Y+
Optimized 

Cmz
Optimized 

alpha

L00 1216512 0.020704 0.019217 14.9 0.4998 0.9 0.1699 2.91
L11 811008 0.020658 0.019043 16.1 0.4999 1 0.1699 3
L22 481280 0.020736 0.019403 13.3 0.5 1 0.17 3.24
L33 288768 0.020514 0.019363 11.5 0.5 4 0.1699 3.39
L44 288768 0.018937 0.01784 10.9 0.4999 10 0.1699 2.88

Figure 19: Drag, lift and pitch moment coefficients histories for the CRM wing optimization with no thickness reduction.

Figure 20: A comparison (mirror view) of the pressure coefficient distribution on the upper surface of the baseline (left) and optimized wing (right) with 
no thickness reduction. The results obtained with mesh level L2.
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Figure 21: Twist (a) and normalized lift distribution (b) along the CRM wing span, optimized with no thickness reduction.

Figure 22: Average drag, lift and pitch moment coefficients histories for the five-point CRM wing optimization. 

Figure 23: A comparison (mirror view) of the pressure coefficient distribution on the upper surface of the single-point optimized wing (left) and the five-
point optimized wing (right). The results obtained with mesh level L22.
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Figure 24: Sectional Cp distribution at four locations along the CRM wing span, while the numbers 2.35% (a), 26.7% (b), 55.7% (c) and 94.4% (d) 
represents normalized locations from the wing root.

Figure 25: Twist (a) and normalized lift distribution (b) along the five-points optimized CRM wing span. The results are for the nominal flow conditions 
(M=0.8). 

performance at the nominal flight conditions. The drag coefficient 
at the nominal flight conditions (C1) is reduced from 207.5 counts 
to 201.94 counts, 8.3 counts higher than the single-point case, 
while the averaged drag coefficient is reduced by 5.6 counts.  The 
optimized wing contains a weak shock wave in the middle of the 
wing, which exists in all the operating conditions. 

The thickness distribution in the nominal conditions (M=0.8) 
obtained in the five-point optimized wing is different than the 
single-point case (Figure 25). The optimization algorithm allows 

thickness reduction of nearly 25%, the lower bound of the 
thickness constraint. The resulted five-point optimized wing is less 
twisted and thinner than the single-point optimized wing.          

DISCUSSION AND CONCLUSION

This study presents a modest experience to construct an 
aerodynamic optimization capabilities based on the gradient 
based algorithms together with an adjoint method that computes 
the required gradients efficiently, developed in the University of 
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Michigan MDO Lab. The main motivation for this research is 
analyzing the sensitivity and robustness of the flow solver, mesh 
warping method and the optimization algorithm to reduced sized 
problems, in a way that would fit the time and resources limitations 
exist in industrial applications. The effectiveness of the optimization 
process is demonstrated by benchmarking the ADODG RAE-2822 
and CRM wing optimization cases. For both ADODG cases we 
obtain well converged results which are comparable to the results 
from previous work. 

For the RAE-2822 case, a drag coefficient reduction of 971 
Counts (49.2%) was obtained within 100 design iterations. The 
main challenge of this problem involves minimizing the wave 
drag while satisfying the thickness and lift constraints. The shock 
wave appeared in the baseline configuration is eliminated in 
the optimized shape and the thickness is reduced by nearly 15% 
compared to the initial value.

Also in this case, the robustness of the flow solver and mesh warping 
algorithm is demonstrated by starting the optimization process 
from a circle geometry (and not airfoil RAE-2822). In spite of the 
fact that this preferred starting condition might not be of interest 
for industrial applications, it definitely examines the robustness 
of the numerical method as well as the FFD parameterization 
method. The optimized shapes starting from RAE-2822 and circle 
are similar to each other except for minor differences. The drag 
coefficient of optimized shapes starting from a circle and from the 
RAE-2822 differs by 0.501 counts only. 

For the CRM wing case, the single-point optimization on the coarse 
mesh with 192 FFD control points reduces the drag coefficient 
by 16 counts (7.7%). The no thickness reduction case results in 
additional five counts compared to the optimized with that allowed 
25% of the baseline thickness. The five-point optimization gives 
higher drag coefficient at the nominal condition compared to the 
single-point optimization, and also in this case a significant shape 
changes and improved performance are achieved.
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