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ABSTRACT
In general, high grade gliomas have a dismal prognosis. However, recent advances in disease classification, surgical

treatment, and adjuvant therapy have increased the overall survival of this patient population. While a significant

number of resources is used to improve treatment for high grade gliomas, there are few advancements in technology

development towards an accurate non-invasive assessment of response to these therapeutic modalities. The advent of

new treatment modalities and especially the increasing number of immunotherapy clinical trials for high grade

gliomas necessitate the development of new approaches for accurate and timely assessment of treatment response in

brain tumors. Conventional MRI assessment of response to immunotherapy is inadequate to guide treatment leading

to a high number of surgical procedures for definitive assessment. In this review, we are outlining the evolution of

imaging criteria as well as the advancements in imaging technology and computational analysis to address the

challenges of disease monitoring in the setting of immunotherapy for high grade gliomas. We give particular

emphasis on radiomics, a new field on image analysis that algorithmically assesses a large number of imaging features

for an accurate diagnosis.
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INTRODUCTION

Glioma is one of the most common and malignant types of
primary brain tumors in adults as they account for 28% of all
brain tumors and 80% of all malignant brain tumors [1].
Glioblastoma, a high grade glioma, is the most aggressive and
refractory brain tumor with a median survival of less than two
years [2]. The current standard of care includes surgical
resection, radiation, and adjuvant chemotherapy with
temozolomide [3]. The majority of patients will experience
disease relapse and no therapy currently exists that significantly
prolong survival after relapse [4]. In fact, from the time of first
between six to nine months [5]. Due to the lack of significant
improvement in survival using these conventional therapies,
progression or recurrence, median survival duration ranges
immunotherapy as a novel therapy is being pursued to improve
outcome in glioblastoma patients [6]. Immunotherapy relies on

stimulating the host immune system to target and eradicate
cancer cells through both innate and adaptive immune responses
[7]. By overcoming the immunosuppressive Tumor
Microenvironment (TME), immunotherapy has improved
clinical outcomes in patients with recurring solid tumors that are
resistant to other treatments [8,9]. Different immunotherapeutic
modalities include, but are not limited to vaccine
immunotherapy, cell-based immunotherapy, and checkpoint
inhibitor immunotherapy [6]. For high grade glioma patients,
however, these therapeutic options have yet to show significant
efficacy [10].

Progress in high grade glioma patient outcomes has been limited
not only by the lack of effective treatments, but also by the
inherent difficulty in assessing treatment response. Non-invasive,
longitudinal imaging has been central to evaluating disease
progression and treatment response in neuro-oncology [11].
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Historically, structural imaging such as Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT) were used to
monitor changes in tumor morphology and size in response to
conventional treatment [12]. However for a tumor-directed
inflammatory response seen in immunotherapy, traditional
response criteria and conventional imaging techniques have
been poor predictors of therapeutic outcomes [13]. Radiation
and chemotherapy for high grade gliomas can lead to an
increase in tumor edema, volume, and enhancement shortly
after initiating treatment [14,15]. These changes can cause
difficulty in detecting disease progression when using
conventional imaging techniques and response criteria [15]. This
apparent post-treatment increase in tumor size on imaging,
followed later by tumor regression and clinical improvement, is
known as Pseudoprogression (PsP) [16]. In particular, the
inflammatory response and PsP after immunotherapy are often
indistinguishable from true Progression of Disease (PD) (Figure
1) [17,18].

Figure 1: Pseudoprogression versus disease progression: The use
of conventional MRI technology after immunotherapy for high
grade gliomas can make the diagnosis of true disease progression
versus pseudoprogression challenging, thus, a brain biopsy is
often needed for definitive diagnosis.

Given the short overall median survival in high grade glioma
patients, it is imperative for clinicians to accurately and swiftly
distinguish between PsP and PD in order to properly tailor a
patient’s treatment plan. Prematurely stopping an effective
treatment or maintaining an ineffective therapy will negatively
impact outcomes.

This review summarizes the current state and future directions
of different non-invasive imaging techniques and criteria used to
evaluate treatment response including immunotherapy in high
grade glioma patients. Also, novel ways to leverage the imaging
data through the field of radiomics is discussed.

LITERATURE REVIEW

Overview of imaging criteria

Various non-invasive imaging criteria have been established over
the years in an attempt to create widely applicable metrics for
evaluating disease progression and treatment response across
studies in neuro-oncology.

Macdonald criteria: Historically, the standard algorithm used to
assess oncological disease status and treatment response was the
Macdonald criteria [19]. Introduced in 1990, it measured
glioblastoma tumor burden by the two-dimensional
measurement of contrast-enhancing lesions identified in MRI or
CT [19]. It also included metrics to help define Complete
Response (CR), Partial Response (PR), Stable Disease (SD), and
Progressive Disease (PD) which provided a standard to allow for
the comparison of progression-free survival between clinical
trials [19]. However, as new therapies were developed, this
criteria did not adequately differentiate between PsP and PD
[20]. In the MacDonald criteria, a significant increase (at least
25%) in the contrast-enhancing lesion is used as a surrogate
marker for PD and often leads to a change in treatment [19].
However, contrast-enhancement is nonspecific and often reflects
the passage of contrast material across a disrupted blood brain
barrier [21]. Increased enhancement can be caused by a variety
of nontumoral processes such as postsurgical changes, seizures,
ischemia, radiation necrosis, and treatment-related
inflammation [22–25]. Enhancement can also be affected by a
variety of factors including changes in radiologic techniques,
corticosteroid doses, and the use of antiangiogenic agents
[26,27].

The introduction and increased usage of bevacizumab, an anti-
angiogenic agent, as a treatment for glioblastoma gave rise to the
phenomenon known as pseudoresponse [21]. It falsely suggests
on imaging that the malignancy responds to treatment and is
poorly identified by the MacDonald criteria [13]. The imaging
reflects significant reduction of tumor enhancement and edema
that is due to a phenomenon known as vascular normalization,
in which there is a reduced permeability to contrast agents
rather than a true anti-tumor effect [28,29]. Other limitations of
the criteria include difficulty in assessing diffuse tumor burden
and with low grade tumors that lacked contrast enhancement
[30].

RANO criteria

These shortcomings gave rise to the introduction of a new set of
standards in 2010: The Response Assessment in Neuro-
Oncology (RANO) criteria [21]. To better address the difficulties
in differentiating PsP from PD, they included non-contrasting,
Fluid-Attenuated Inversion Recovery (FLAIR) MRI and spatial-
temporal factors to help differentiate PsP from PD [21].
Furthermore, they did not declare PD if increasing
enhancement or new lesions were observed in irradiated target
areas of the brain within the 3 months following completion of
chemoradiation therapy [21]. The only exception was if there
was a new enhancement outside the main radiation field or
pathologic confirmation of PD [21].

The criteria also incorporated several metrics such as clinical
status, non-enhancing disease evaluation, and usage of
corticosteroids to more accurately define CR, PD, SD, and PD
[21]. Given the timing at which these criteria were introduced,
many of the recent immunotherapy glioblastoma trials utilize
RANO criteria [11]. Although several studies have demonstrated
the superiority of the RANO criteria compared to the
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Macdonald criteria, neither fully discriminate PsP and PD
[31-33].

iRANO criteria

In 2016, with the rapid expansion of immunotherapeutics under
investigation for high grade glioma treatment and the recent
development of other immune response criteria for other solid
tumors (Immune-Related Response Criteria (irRC), Immune-
Related Response Evaluation Criteria In Solid Tumors
(irRECIST), and Immune Response Evaluation Criteria In Solid
Tumors (iRECIST)), the RANO criteria were updated and
adapted to specifically address immunotherapeutic responses
[34,35]. They are now called iRANO (Immunotherapy Response
in Neurooncology) criteria [35]. Because of the difficulty in
differentiating PsP from PD following immunotherapy, one of
the main focuses of this criteria was to provide
recommendations for management of patients with early
progressive changes seen on imaging after beginning
immunotherapy [35]. iRANO differs from the RANO criteria by
advocating repeat brain MRI after three months if patients
demonstrate PD within the first six months of initiating therapy
and stable neurologic function [35]. At repeat assessment, if PD
is still present, the patient should be classified as having PD
from the date of initial noted radiographic progression and
treatment modification is recommended [35]. However, if repeat
imaging shows stable or improved disease, the immunotherapy
treatment should continue [35]. After six months, new or
continued worsening is defined as PD while any decreased
lesion size indicates an anti-tumor effect [35]. Unfortunately, like
the Macdonald and RANO criteria, the iRANO criteria are
operator-dependent and rely on two-dimensional measurements
(MRI and CT) of enhancing lesions, which are made more
difficult with an irregular or ill-defined margins. Furthermore,
this watchful waiting jeopardizes patients that have PD to
remain on ineffective therapy with its potential toxicity and
delaying more effective treatment; conversely, the failure to
properly identify PsP can lead to premature discontinuation of
an effective immunotherapy.

mRANO criteria

Thus, in 2017, a modified RANO (mRANO) was released [36].
The modifications include the use of contrast-enhanced T1
subtraction maps to increase lesion conspicuity, the use of the
post-radiation time point as the baseline for newly diagnosed
glioblastoma response assessment, the removal of qualitative
non-enhancing tumor assessment requirements, and a
treatment-agnostic assessment for identifying PD, PsP, CR, and
pseudoresponse [36].

The original study’s primary safety endpoint was freedom from
Severe Adverse Events (SAEs) during the procedure and through
30 days after operation [10]. The SAEs were defined based on
MVARC criteria [11]. All patients were followed for 1 year with
those end points measured at 1, 3, 6, and 12 months. We
assessed the New York Heart Association (NYHA) class at
baseline, discharge and 1, 3 months.

We assessed MR and mitral valve annular diameter on
echocardiography at baseline, intraprocedural period, discharge,
and 1, 3, 6, 12 months.

Non-invasive imaging options

Due to inherent limitations in conventional imaging techniques,
attention is being directed towards other non-invasive
longitudinal imaging options to evaluate high grade glioma
patients. The non-invasive imaging techniques can be
categorized as structural imaging and functional imaging (Figure
2). Structural imaging includes conventional MRI and CT
whereas functional imaging relies on more advanced imaging
techniques. Functional imaging provides physiologic and
metabolic information that cannot be obtained from structural
imaging and includes both physiologic and molecular imaging
techniques. Advanced MRI, Positron Emission Tomography
(PET), and Single Photon Emission Computed Tomography
(SPECT) can be modified and used for both physiologic and
molecular imaging. Physiologic imaging evaluates differences in
perfusion, fluid diffusion, and environmental conditions to
differentiate between healthy and malignant brain tissue [11].
Molecular imaging modalities visualize specific proteins,
receptors, or metabolites associated with a targeted pathology,
tissue, or cell population [11].

Figure 2: Overview of various imaging techniques used to
monitor high grade glioma immunotherapy response: MRI
(Magnetic Resonance Imaging); CT (Computed Tomography);
DWI (Diffuse-Weighted Imaging); PWI (Perfusion-Weighted
Imaging); ASL (Arterial Spin Labeling); DSC (Dynamic
Susceptibility Contrast); DCE (Dynamic Contrast-Enhanced);
PET (Positron Emission Tomography); FDG
(Fluorodeoxyglucose); MRS (Magnetic Resonance Spectroscopy).

Structural imaging: Despite the development of new imaging
modalities over the past several decades, conventional MRI and
CT that evaluate structural components prevail as the most
common imaging modalities for high grade gliomas. The current
standard parameters to monitor tumor progression are with
contrast enhancement on T1 MRI and the extent of T2
hyperintense areas on FLAIR MRI [37]. However, as mentioned
previously, enlargement of contrast enhancement or widening of
the hyperintense areas can be nonspecific [16]. Furthermore,
since high grade gliomas affect and invade brain tissue at the
molecular level, the borders of the tumors cannot be well
visualized with conventional MRI [11].

Functional imaging, physiologic imaging: Functional imaging
has become more heavily utilized in high grade glioma patients.
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Several of these advanced imaging techniques that provide
physiologic information such as Diffusion Weighted Imaging
(DWI) MRI and Perfusion Weighted Imaging (PWI) MRI are
already utilized in clinical practice [11].

DWI MRI

DWI MRI provides physiologic data by assessing the
microscopic motion of water molecules in the brain parenchyma
in order to evaluate the tumor microenvironment [37,38]. In
areas that water diffusion is focally restricted, DWI MRI shows
as a bright image signal [39]. Through mathematical subtraction
of unwanted T2 effects, it provides the Apparent Diffusion
Coefficient (ADC) map, on which dark signal corresponds to
areas of restriction [40]. The ADC has been found to correlate
with the cellularity of tumors [41]. High grade gliomas are
expected to have low Apparent Diffusion Coefficient (ADC)
values because of their high cellularity and progressive tumor
often demonstrates lower mean ADC values than normal brain
tissue and necrotic debris [38,42]. Previous studies have shown
differences in the ADC values of PsP and PD, but with different
ADC thresholds [42–44].

PWI MRI

On the other hand, PWI provides hemodynamic characteristics
of brain lesions such as cerebral blood flow, cerebral blood
volume, permeability estimates, and contrast time peak in order
to evaluate the tumor microvasculature [38]. There are three
major perfusion MRI techniques, Arterial Spin Labeling (ASL),
Dynamic Susceptibility Contrast (DSC), and Dynamic Contrast-
Enhanced (DCE) MRI. Unlike ASL, both DSC and DCE are
acquired during IV contrast administration [45]. ASL-MRI
involves magnetically labeled arterial blood water protons within
circulating blood before entering the brain instead of contrast
for perfusion characterization [46]. This technique is much less
frequently used compared to the other perfusion modalities
[46]. DSC MRI measures alterations in T2/T2* (gradient echo)
signal intensity during the first phase of an IV injection of
gadolinium contrast [47]. It is the most commonly used
functional imaging technique due to its relatively short imaging
time and the widespread availability of the post-processing
software [48]. It obtains data that gives several parameters that
can be quantified and compared such as relative cerebral blood
volume (rCBV) [48]. DCE MRI, or permeability imaging, allows
for the measurement of vascular permeability pharmacokinetics
and utilizes T1 relaxation of contrast with fast imaging
acquisition [37,49]. It is often a useful adjunct for lesions that
have indeterminate rCBV values, susceptibility artifact from
blood products, or calcification that prevents DSC
quantifications [50]. Due to the vascular hyperpermeability and
BBB disruption in high grade gliomas, the IV contrast can leak
from intravascular compartments to the extravascular space,
subsequently leading to an increase in T1 signal intensity from
the paramagnetic effect [51]. However, DCE quantification
requires challenging pharmacokinetic modeling in which there
are a variety of methods with accepted standard [52]. Thus, it is
less commonly used in daily practice than DSC MRI. The
limitations of PWI include the effects of BBB disruption,

extravascular contrast leakage, and different post-processing
software tools on the accuracy of rCBV calculations [53-55].

Molecular imaging

Advanced MRI, PET, and SPECT can be modified and used for
both physiologic and molecular imaging. Physiologic imaging
evaluates differences in perfusion, fluid diffusion, and
environmental conditions to differentiate between healthy and
malignant brain tissue [11]. Molecular imaging modalities
visualize specific proteins, receptors, or metabolites associated
with a targeted pathology, tissue, or cell population [11].

FDG PET

Imaging techniques can also be harnessed and modified to
provide molecular imaging data. One example is
Fluorodeoxyglucose (FDG) PET, which is the most widely used
molecular agent for PET [56]. PET measures metabolic uptake
and FDG PET uses FDG, which is a marker for glucose
metabolism that is transported across the BBB to CNS tissue, as
a metabolic tracer to elucidate different tumor metabolic
properties [38]. When using FDG PET, high-grade tumors like
glioblastoma generally demonstrate increased FDG metabolite
uptake due to their elevated metabolic state, while radiation
necrosis has low FDG uptake [38].

Amino acid PET

Amino acid PET is another type of PET technique that utilizes
tracers with greater turnover in metabolically active tumors that
demonstrate lower background uptake in normal brain than
FDG [57]. These tracers include 18-F-L-Fluoro- DOPA ([18F]-
DOPA), 3'-deoxy-3'[(18)F]-fluorothymidine ([18F]-FLT), 18F-
fluoro-ethyl-tyrosine ([18F]-FET), and L-[methyl-11C]-methionine
([11C]-methionine) [58].

Antibody-based PET

Antibody-based PET is also a technique that is being more
frequently used in neuro-oncology. It uses antibodies or
antibody derivatives that bind to prognostically or
therapeutically relevant receptors or proteins expressed in tumor
and immune cells such as PD-1, PD-L1, CTLA-4, and EGFR
[11]. These macromolecules access high grade gliomas and CNS
metastases through disrupted areas of the BBB, but cannot
access CNS tissue well when the BBB is intact such as non-
enhancing regions of high grade gliomas or low-grade gliomas
[59].

Reporter transgene imaging

Another molecular imaging approach has been the use of an
MRI, PET, or SPECT molecular reporter probe. This probe
interacts with the product of a reporter gene that is introduced
into desired cells to express a specific protein that is not
normally expressed in non-target tissues [60]. The probe
accumulates in the target tissue and is able to be imaged [60].
This approach is also known as reporter transgene imaging and
it is useful in longitudinal imaging of cell viability and
trafficking following introduction of the reporter gene [61]. Like
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antibody-based PET, these reporter molecules must be able to
cross the BBB in order to detect target cells throughout CNS
tissues [61].

MRS

Lastly, Magnetic Resonance Spectroscopy (MRS) is a molecular
imaging technique that is being used in patients with suspicion
of a high grade tumor. It examines the distribution of chemical
metabolites within a designated volume of tissue [62]. Two main
MRS techniques are Single Voxel Spectroscopy (SVS) and Multi-
Voxel Spectroscopy (MVS) [63]. SVS has a quicker turnaround
but cannot capture spatial heterogeneity whereas MVS requires
more complex preparation and post-processing, as well as longer
wait times [63]. Although protons are the metabolites most
commonly used for MRS, other nuclei such as metal ions and
phosphorus have also been utilized [62,64].

Clinical studies incorporating functional imaging
techniques for immunotherapy

While the above imaging modalities have all been utilized in
high grade glioma patients, few studies have explored how these
modalities can be used to monitor response to immunotherapy.

Structural imaging modalities have been the standard to assess
treatment response, but with the development of more advanced
imaging techniques, functional imaging has been a particular
area of interest [11]. Immunotherapy as a field has become quite
vast and now encompasses a variety of modalities: checkpoint
inhibitors, viral, cell-based, and vaccine immunotherapy.

Checkpoint inhibitor immunotherapy

Checkpoint inhibitor immunotherapy is used to overcome
immunosuppressive cell-cell signaling mechanisms between
cancer cells and effector immune cells such as cytotoxic T
lymphocytes [65]. Monoclonal antibodies that bind to
Programmed Death-1 (PD-1), Programmed Death-Ligand 1 (PD-
L1), and Cytotoxic T Lymphocyte-Associated protein 4
(CTLA-4) have proven successful at generating immune
responses in groups of patients with various solid tumor
malignancies such as non-small cell lung cancer, renal cell
carcinoma, and melanoma [7]. Thus far, the only completed
randomized phase III trial assessing the impact of nivolumab
(PD-1 checkpoint immunotherapy) on glioblastoma patients
showed no survival compared with those who received
bevacizumab [66]. There are various ongoing clinical trials that
are assessing the efficacy of other checkpoint inhibitor
immunotherapies in glioblastoma patients [67,68].

Viral-based immunotherapy

Viral-based immunotherapy uses live, immunogenic viruses that
replicate in tumor cells to stimulate immune responses within
the tumor microenvironment [69]. Oncolytic virotherapy is
based on harnessing replicating viruses that selectively kill only
the infected cancer cells rather than normal cells by directly
lysing the host tumor cells, thereby releasing additional tumor
antigens to enhance the immune response [69]. In glioblastoma,
oncolytic virotherapies are able to change the TME to favor an

antitumor response by reprogramming tumor-associated
macrophage polarization [70].

Cell-based immunotherapy

In cell-based immunotherapy, precursor cells from the innate or
adaptive immune system are collected from healthy donors or
patients, activated or transformed ex vivo, and infused into the
patient as immune cells that recognize and destroy specific types
of antigen-presenting tumor cells without needing priming via
antigen presenting cells [71]. These cell-based immunotherapies
are varied and include T-cell receptor-transduced T-cells,
lymphokine-activated natural killer cells, and Chimeric Antigen
Receptor (CAR) T-cells [72,73].

Vaccine immunotherapy

Lastly, vaccine immunotherapy stimulates immune responses by
presentation of tumor cell antigens in antigen presenting cells to
T cells to lead to T cell clonal expansion, circulation, and
destruction of antigen-bearing tumor cells [74]. These vaccine
strategies employ various techniques that include but are not
limited to tumor cell-based, peptide-based, and dendritic cell-
based techniques [75,76].

Physiologic imaging in glioblastoma patients

While advanced functional imaging techniques are more
commonly used in other solid tumor immunotherapy trials, they
are becoming increasingly used to monitor glioblastoma patient
response to different immunotherapeutics (Table 1). Physiologic
imaging such as DWI MRIs have been used in glioblastoma
clinical trials using checkpoint inhibitor therapy.

One study by Qin et al. used DWI MRIs to evaluate response to
checkpoint inhibitor in ten patients with recurrent glioblastoma
[77]. These patients were treated with anti-CTLA-4 and/or anti-
PD-1 CPIs and the researchers showed that intermediate ADC
(IADC) DWI volume changes within FLAIR regions of high
cellularity was correlated with immunotherapy response [77].
Five out of the ten patients were deemed to have a therapeutic
response to the CPIs and they were identified by the IADC
changes as faster when compared to conventional MRI (median
time of 93 vs. 121 days after treatment) [77]. The study also
showed that therapeutic outcome defined as time to
progression, was more strongly correlated with the IADC
volumes than with Gd-contrast enhancement, FLAIR, or 2D
RANO measurements [77]. The authors acknowledge that
although these preliminary findings are promising, they require
further exploration in larger human cohorts as well as in animal
models to better understand the relationship between IADC
volumes and immunotherapy treatment response [77].
Furthermore, although there was an improvement in treatment
response detection in using IADC over conventional MRI, it is
important to identify response even earlier than the three
months to switch non-responding patients more quickly to an
alternative treatment.

Song et al. published a small retrospective study utilizing relative
ADC (rADC) changes to determine six month progression free
survival in a group of nineteen recurrent glioblastoma patients
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receiving anti-PD1 immunotherapy (either nivolumab or
pembrolizumab) [78]. Out of the nineteen patients that met
inclusion criteria and had sufficient follow-up, seven were
determined to have treatment response whereas twelve were
determined to have PD after six months using the mRANO
criteria [78]. They compared quantitative values of imaging
biomarkers such as rADC, Ktrans, Vp, Ve, and rCBV in pre-
and post-ICI MRIs and only changes in rADC values were
indicative of treatment response [78]. Six out of seven patients
with treatment response had interval increased rADC, whereas
eleven out of twelve patients with no treatment response had
interval decreased rADC (p=0.001) [78]. Although this study
showed that physiologic imaging data could be used to
effectively differentiate treatment responders from non-
responders, rADC values were collected after six months and
not earlier.

Physiologic imaging has not been frequently used for cell-based
immunotherapy. One study used multiparametric MRI
parameters obtained from DTI, DSC, and 3-D echo planar
spectroscopic imaging (3D-EPSI) to monitor treatment response
to EGFRvIII targeted CAR-T cell therapy in ten recurrent
glioblastoma patients [79]. Using a set of obtained parameters,
they computed progression probabilities using logistic regression
models and were able to objectively characterize each lesion as
PsP, PD, or treatment response at each individual time point
(one, two, and three months from treatment initiation) [79-116].

Imaging
technique
category

Imaging
modalities

Type(s) of
immunothe
rapy
received

Number of
patients

Reference

Physiologic    

 DWI* MRI Checkpoint
inhibitor

10
glioblastoma
s

[77]

 Multiparam
etric MRI

Checkpoint
inhibitor

19
glioblastoma
s

[78]

 Multiparam
etric MRI

Cell-based 10
glioblastoma
s

[79]

 PWI* MRI,
DWI* MRI

Vaccine 8
glioblastoma
s

[80]

 PWI MRI Vaccine 22
glioblastoma
s

[81]

Molecular    

 [124I]-FIAU
PET*
reporter
probe

Viral 5
glioblastoma
s

[60]

 [124I]-FIAU
SPECT*

Viral 8
glioblastoma
s

[83]

 PET
reporter
gene

Cell-based 1
glioblastoma

[85]

 PET
reporter
gene

Cell-based 7
glioblastoma
s

[61]

 [11C]-
methionine
uptake PET

Vaccine 14
glioblastoma
s

[87]

 18F-FET
PET*

Vaccine 3
glioblastoma
s

[90]

 [18F]-CFA
PET*
reporter
probe

Vaccine +/-
checkpoint
inhibitor

3
glioblastoma
s

[92]

Radiomics

 

 

Features
extracted
from
conventiona
l, PWI* or
DKI* MRI

Best
performanc
e with
AdaBoost*,
RUSBoost*,
and SVM-
rbf* trained
mainly on
features
extracted
from T1pc*
and CBV*
maps

 

Vaccine

 

29
glioblastoma
s

 

[116]

Abbreviations: *DWI: Diffusion Weighted Imaging; PWI: Perfusion-
Weighted Imaging; FIAU PET- Furanosyl-5-Iodo-Uracil Positron
Emission Tomography; FIAU SPECT: Furanosyl-5-Iodo-Uracil Single
Photon Emission Computed Tomography; DKI: Diffusion-Kurtosis
Imaging; AdaBoost-adaptive boosting algorithm; RUSBoost: Random
Undersampling Boosting Algorithm; SVM-rbf: Support Vector
Machine Radial Basis Function; T1pc: T1 Postcontrast; CBV:
Cerebral Blood Volume

Table 1: Imaging techniques and methodologies used for
immunotherapy treatment response in high grade glioma
patients.

Physiologic imaging has also been used as a treatment response
modality in patients receiving vaccine immunotherapy. In a pilot
study, eight recurrent glioblastoma patients were treated with a
dendritic cell vaccine and the researchers used both PWI and
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DWI MRIs to differentiate between immunotherapy-related PsP
versus PD [80]. They showed that the highest rCBV and lowest
minimal ADC (rADCmin) in the contrast-enhancing regions
were associated with PD, but they did not provide any
relationship with treatment response [80]. Cuccarini et al. used
DWI and DSC MRIs to evaluate response to a specific dendritic
cell vaccine in twenty-two newly diagnosed glioblastoma patients
[81]. Similar to the song group, they were able to use rADC to
predict response to immunotherapy and survival [81]. They
showed that patients who were DC vaccine treatment
responders, with elevated NK cells post-treatment, had a
significant decrease in rADCmin when looking at pre and post-
treatment values, compared to the non-responders [81].
Furthermore, they showed that when comparing imaging from
two months prior to PsP or PD, ∆rCBVmax ≥ 0.47
distinguished TTP from PsP with a sensitivity of 67% and
specificity of 75% (p=0.004) [81]. Previously, an earlier study
looking at a group of patients treated with an autologous
irradiated tumor cell vaccine had not shown any relationship
between rCBV values with treatment or survival time [82].
Cuccarini’s group, however, showed that longitudinal rCBV
changes could be useful in distinguishing PsP from PD [81].

Molecular imaging in glioblastoma patients

PET and SPECT imaging techniques have been used for
glioblastoma patients being treated with gene therapy and
oncolytic viruses. Jacobs et al. used PET imaging to monitor the
response of five patients with recurrent glioblastoma to the
transduction of a genetically modified herpes simplex virus
type-1 thymidine kinase (HSV-1-tk) gene with subsequent
prodrug activation by ganciclovir [60]. The HSV-1-tk acts as a
safety gene, such that when exposed to the chemotherapeutic
ganciclovir, the virus will undergo programmed cell death [60].
The PET reporter probe, I-124-labelled 2’-fluoro-2’-deoxy-1-D-
arabino-furanosyl-5-iodo-uracil ([124I]-FIAU), was a specific
marker substrate for gene expression of the transduced HSV-1-tk
gene in order to identify the location, magnitude, and extent of
the vector-mediated gene expression [60]. The gene therapy
proved to be safe in all five patients [60]. However, the probe
only accumulated in one out of five patients and did not provide
any therapeutic benefit in any of the patients [60]. Another
group used SPECT imaging to monitor response to oncolytic
viral therapy in eight glioblastoma patients [83]. Similar to the
Jacobs group, they used a modified HSV-1-tk gene and a
radiolabeled thymidine analog, [123I]-FIAU, to detect expression
of the gene and the viral distribution [83]. They were unable to
show accumulation of the reporter probe in any of the eight
treated patients [83]. Overall, for viral-based immunotherapies,
it is unclear how effective molecular imaging techniques are to
monitor treatment response. Significant progress needs to be
made in these techniques in differentiating PsP and PD.

Molecular imaging techniques have also shown some promise in
assessing treatment response in glioblastoma patients receiving
cell-based immunotherapies. This approach includes using
molecular imaging of immune or inflammatory cells to identify
patients demonstrating effective immune cell trafficking or
activation in the tumor in a manner that is more effective, less
invasive, or quicker than relying on conventional imaging or

biopsy to determine PD. Typically, cells will be labeled with a
contrast agent for the respective imaging machine such as MRI,
PET, or SPECT prior to injection into the patient [84]. The
injected cells are then monitored to determine the cell
localization and trafficking in the target tumor region [84].

Yaghoubi et al. developed a specific PET imaging system to
detect the genetically engineered autologous CD8+ CTLs
injected into a glioblastoma patient, difficult by conventional
imaging methods alone [85]. In a case report, a single
glioblastoma patient was enrolled in a clinical trial of adoptive T
cell therapy with genetically engineered CTLs expressing the
PET imaging reporter gene, the HSV-1-tk gene, and the CAR
IL-13 zetakine gene [85]. The IL-13 zetakine allowed the
engineered CTLs to specifically target and kill residual
glioblastoma cancer cells and the HSV-1-tk enzyme
monophosphorylates [18F]-FHBG so that PET can be used in
living organisms to image cells that express the PET reporter
gene [85]. The [18F]-FHBG scans showed significantly higher
signal after the infusion of the engineered CTLs within the
tumor lesions of the brain and they were successful in showing
that this reporter probe can penetrate the BBB [86]. This led to
a larger clinical trial (NCT01082926) that has been completed,
but the efficacy of the cell-based therapy or the use of PET for
treatment response detection have not yet been published.
Nevertheless, Keu et al. demonstrated that the PET imaging
system developed by Yaghoubi using [18F]-FHBG could be used
in longitudinal monitoring of the proliferation, trafficking, and
survival of adoptively transferred genetically engineered CTLs
[61]. In seven glioblastoma patients in this study, the therapy was
safe, and the imaging technique was noted to be sufficient to
properly locate and track the infused CTLs [61]. The uptake of
the tracer was increased in all brain lesions after infusion of the
CTLs compared to the pre-treatment PET, but the volume of
distribution and pattern of increase in PET signal intensity
varied between patients [61]. Due to the small number of
patients enrolled in this study, it was unable to link changes in
[18F]-FHBG signal before and after adoptive T cell infusions to
patient outcome and survival [61]. Given that [18F]-FHBG was
the first PET reporter probe to receive investigational new drug
approval from the FDA (IND #61,8880) and the enormous cost
of ACT therapy (approximately $200,000/individual), it has
been difficult to get enough patients to help further refine and
understand this imaging technique [61]. These studies
demonstrate the importance of differentiating between specific
immune cell trafficking and localization within glioblastoma
lesions and non-specific pooling of PET agents to assess the
efficacy of cell-based immunotherapy through reporter gene
physiologic imaging techniques.

Vaccine immunotherapy for glioblastoma has also utilized
molecular imaging techniques to determine treatment response.
Chiba et al. used PET molecular imaging to define parametric
response maps in fourteen recurrent glioblastoma patients who
received the WT1 peptide vaccination [87]. WT1 gene products
have been shown to be overexpressed in glioblastoma, thus
making the WT1 antigen a viable target for immunotherapy
[88,89]. The authors used 11C-methionine uptake PET prior to
treatment and twelve weeks post-treatment. Voxel-wise PET
analysis in MRI contrast-enhancing areas of the tumor and
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showed that a 5% increase of 11C-methionine was a sufficient
threshold to differentiate treatment non-responders from
responders [87]. In contrast, conventional MRI was not helpful
in identifying those who responded to treatment [87]. In
another study, the authors examined five patients who received
dendritic cell vaccine treatment as well as 18F-fluoroethyl-
tyrosine (18F-FET) PET imaging and conventional MRI [90]. In
three patients, 18F-FET PET was able to confirm PD using the
RANO criteria for conventional MRI [90]. In three patients,
they were able to correctly determine that a patient was
exhibiting PsP with 18F-FET PET whereas conventional MRI
incorrectly deemed it as PD [90]. The 18F-FET PET imaging
findings were confirmed by histopathology and RANO criteria
[90]. These specific PET images were obtained within six weeks
of initiating vaccine immunotherapy, thus potentially providing
accurate treatment response information much faster than
conventional imaging techniques [90]. Furthermore, 18F-FET
PET imaging provided more accurate diagnosis of PD over
conventional MRI alone after standard therapy in a larger
glioblastoma patient study [91]. Although promising, much
larger studies are needed to confirm its potential.

In another study, three glioblastoma patients were given a PET
probe for deoxycytidine kinase (dCK), 2-chloro-2′-deoxy-2′-
[18F]fluoro-9-b-D-arabinofuranosyl-adenine ([18F]-CFA), and
imaged by PET prior to and following treatment with a DC
vaccine and either pembrolizumab or bevacizumab [92]. These
patients were also imaged by PWI and DWI MRI and the
researchers used the imaging data combined with the
information provided by the PET scans to create an
immunotherapeutic response index (ITRI) [92]. This index
determined through these imaging modalities was correlated
with response to the combination immunotherapy and thus
were able to noninvasively localize and quantify the immune
responses induced by immunotherapy [92]. The authors
suggested that this novel index and combination of imaging
modalities could standardize how immunity and immune
response to these therapies are measured and may serve as a
reproducible predictive biomarker of survival and treatment
response in glioblastoma patients [92].

While there is a lot of promise in the imaging field to detect
treatment response in glioblastoma patients receiving
immunotherapy, certain limitations exist. Many of the studies
are retrospective with small patient numbers. They utilize
varying imaging protocols and techniques, which limits the
ability to use them in routine clinical practice and makes
comparison difficult. Thus, standardization is essential. Future
studies will require a much larger number of patients to provide
more definitive evidence of their efficacy and to demonstrate
which modalities have the most reliable metrics for monitoring
immunotherapy response.

Radiomics

Given the current limitations of even the most cutting edge of
advanced imaging modalities, integration of imaging with
radiomics is increasingly attractive. Radiomics is a biomedical
field that involves the computational and statistical extraction of
large amounts of advanced quantitative data from a variety of

imaging modalities such as MRI, CT, SPECT, PET, and others,
via machine learning methods in order to develop predictive
models that aim to enable a more personalized medical
approach [93]. This field is producing biomarkers to provide key
insights in the diagnosis, classification, and therapeutic
management of various solid tumors as well as synergy with
other data such as molecular biomarkers and patient
characteristics to facilitate diagnostic and treatment decision
support models [94].

There are many iterations and variations of radiomics analysis
pipelines based on the imaging modalities and statistical
methods used. However, several common overarching steps are
involved: preprocessing and image acquisition for development
of the radiomics model; tumor labeling/segmentation;
identification of relevant features that may relate to the
molecular properties of the tumor; and statistical modeling
correlating the radiomic analysis information with a diagnosis or
clinical outcome [95]. After the images are initially acquired
from their respective modalities, the lesions are identified and
image segmentation occurs, which can be an automated or
manual process, as well as 3D reconstruction of the Region Of
Interest (ROI) [95]. Then, the next important step is feature
extraction and classification [95]. Radiomics features are defined
as characteristics of the imaging modalities that are too complex
for a human to determine or appreciate independently and are
the basis for the various radiomics analyses that are performed
[96]. These radiomics features include quantitative descriptions
of the shape, volume, size, intensity, and texture of the region of
interest (ROI) [97]. They are also divided into texture (first-order
statistics) and histogram-based (second-order statistics) features
[97]. Feature extraction produces several numerical values and
can be analyzed using advanced statistical and machine learning
methods [98]. These machine learning methods can be either
supervised or unsupervised, and can include random forest,
support vector machine, cluster analysis, convolutional neural
network, and deep learning neural network [98].

Tissue biopsies can fail to characterize the entirety of the tumor
due to heterogeneity seen in high grade glioma tumors [99].
Radiomics, however, may become an important tool by taking
the whole tumor region into account for better characterization
[100].

Radiomic studies for glioblastoma diagnosis, prognosis,
and progression

One aspect of radiomics is the incorporation of multiple image
features to create a noninvasive molecular signature that can
characterize glioblastoma and predict survival. Gevaert et al.
showed that the use of quantitative imaging values, such as
irregularity of border edges in a certain ROI, correlated
significantly with overall survival and characterization of
glioblastoma with regard to molecular subtypes [101]. Moreover,
they were able to generate sets of imaging features that
correlated with patients’ underlying gene expressions [101].

Through the creation of a “radiogenomic map,” imaging
characteristics could be used to derive genomic and clinical data
[101]. Yang et al. ran a similar analysis after manual
segmentation of tumor from postcontrast T1 and T2-FLAIR
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images to extract a wide variety of imaging texture features [102].
Using computational methods to pick subsets of the features,
the authors generated ROC curves for prediction of molecular
subtype and twelve-month survival [102]. The area under curve
values ranged from 0.70-0.82 for prediction of molecular
subtype and was 0.69 for prediction of twelve-month survival
[102].

Lee et al. also created a predictive model for identification of
molecular subtype and twelve-month survival estimates [103]. In
this model, the authors conducted a spatial point pattern
analysis on T1 post-contrast and T2-FLAIR images [103]. The
prediction of twelve-month-survival based on these analyses
yielded a sensitivity and specificity of 0.86 and 0.64, respectively
[103]. The accuracy of the ROC curves in predicting molecular
subtype of the glioblastomas ranged from 0.7-0.93 [103].
Jamshidi et al. constructed radiogenomic maps that also
incorporated mRNA expression and copy number variations in
the genetic analysis [104]. Six imaging features (contrast
enhancement, necrosis, contrast-to-necrosis ratio, infiltrative
versus edematous T2 abnormalities, mass effect, and
subventricular zone involvement) were used to create a model
that was then correlated to mRNA expression and copy number
variation [104]. This radiogenomic map identified specific genes
that were then correlated to tumor aspects including
aggressiveness, edema, and mass effect [104].

Hsu et al. showed that the immune component of the tumor
microenvironment could be characterized based on radiomics
analysis [105]. After collection of RNAseq data, the authors
clustered the immunophenotypes of the 154 glioblastoma
samples into five categories [105]. T1 post-contrast and ADC
values were then collected to extract features which could then
be used to correlate one of the five immunophenotypic subsets
[105]. Accuracies for the T1 contrast model ranged from
0.72-0.88 in predicting the immunophenotypic breakdown
while accuracies for the ADC model ranged from 0.61-0.79
[105]. After patients were classified based on these radiomics
models, the authors showed that patients who displayed a more
favorable immunophenotypic subtype on imaging had a better
overall survival (OS) [105]. Overall, these studies show the
capacity of radiomics to provide a non-invasive method to gain
insight to the tumor phenotype and predict patient survival.

Radiomic studies for glioblastoma adjuvant treatment
response

There have also been studies that focus on determining
treatment response in glioblastoma patients using radiomics
analyses. Artzi et al. utilized unsupervised clustering analysis of
conventional, DSC, DWI, DSC, and DCE features to classify
FLAIR abnormalities in fourteen glioblastoma patients receiving
bevacizumab therapy [106]. A total of 40 MRIs were analyzed to
create a radiomics model to differentiate PsP from PD [106].
This model was correlated with patient outcome including PFS
at weeks eight and sixteen post-therapy [106].

Chang et al. also harnessed radiomics to develop a predictive
model for bevacizumab therapy response in glioblastoma
patients [107]. The study included 126 patients with recurrent
glioblastoma, 84 patients who were placed in the training cohort

and 42 patients in a testing cohort for the radiomics model. Pre-
and post-therapy DWI and conventional MRI features were
inputted into a random forest algorithm to create a model that
predicted OS with a hazard ratio of 5.10 (p<0.001) in the
training cohort and 3.64 in the testing cohort (p<0.005) [107].
Kickingereder et al. used a radiomic model and implemented a
supervised principal component analysis to generate a
prediction model for stratifying treatment outcome to
bevacizumab for both PFS and OS in patients with 172
recurrent glioblastoma patients [108]. Their radiomics analysis
used conventional MRI sequences and stratified patients into a
low or high risk group for PFS (HR=1.60; p=0.017) and OS
(HR=2.14; p<0.001) and was successfully validated for patients
in their validation cohort for both PFS (HR=1.85, p=0.03) and
OS (HR=2.60, p=0.001) [108]. These studies provide promising
radiomic biomarkers that could more effectively determine
treatment response in glioblastoma patients than conventional
imaging or advanced imaging techniques alone.

Radiomic studies for immunotherapy response

While the application of radiomics to monitor response to
immunotherapy response is a natural extension of the prior
studies, there is a paucity of data in the literature for
glioblastoma. There have been investigations into the use of
radiomics for monitoring immunotherapy response in patients
with other solid tumors. Sun et al. performed a retrospective
multicohort study in which four independent cohorts of
patients with advanced solid tumors were included [109]. RNA-
sequencing data derived from tumor biopsies and pretreatment
images from these cohorts were used to develop and validate a
radiomics biomarker predictive of immunotherapy response and
CD8 T cell tumor infiltration [109]. They developed a
Radiomics Signature (RS) of CD8 T cell count comprised of
eight radiomics features based on the 135 patients enrolled in
the Molecular Screening for Cancer Treatment Optimization
(MOSCATO) trial, which was validated with an independent
cohort of 119 patients from The Cancer Genome Atlas (area
under the curve (AUC)=0.67, p=0.0019) [109]. This signature
was further validated in two other cohorts [109]. The first
independent cohort included 100 patients with tumors
classified as either immune-desert or immune-inflamed
(AUC=0.76, p<0.0001) with either poor or dense CTL
infiltration [109]. The second independent cohort of patients
treated with ICIs demonstrated that the signature was associated
with clinical outcomes; a high baseline radiomics score
correlated with an objective response instead of stable disease or
progression (p=0.025) and an improved overall survival
(p=0.0022) [109]. One of the eight radiomics features in this
signature was a technical variable, the peak kilovoltage, a finding
that the authors noted highlighted the importance of image
acquisition parameters [109]. This study is of great interest since
it is the first immunotherapy study to link imaging, tumor
phenotype, and clinical responses to treatment. A later study
validated this radiomics signature in 68 patients with 139
metastatic solid tumors who received pembrolizumab and
stereotactic radiosurgery (SRS) [110]. The RS was treated as a
dichotomous variable, with the bottom 25% or lower defined as
low-RS [110]. Patients with low-RS were significantly less likely to
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be SRS responders (p=0.012), and had worse PFS (median: 2.76
vs. 3.38 mo., p=0.01) and OS (median: 6.21 vs. 13.3 mo,
p=0.005) [110]. Patients with high-RS correlated with
transcriptional activation of adaptive and innate immune
signatures in biopsies from irradiated tumors, which could
suggest those that are SRS and treatment responders [110].

Another radiomics study that investigated response prediction to
immunotherapy was by Trebeschi et al. in 203 patients with
advanced melanoma and non-small-cell lung cancer (NSCLC)
undergoing anti-PD1 ICI therapy [111]. In this study, pre-
treatment CTs of patients with 1055 primary and metastatic
lesions were used to build a machine learning model to predict
treatment response at the lesion level [111]. The model proved
to be significant for both melanoma nodal metastases
(AUC=0.64, p=0.05) and NSCLC pulmonary and nodal
metastases (AUC=0.83 and 0.78, p<0.001) with better predictive
performance for NSLC metastases [111]. By combining the
lesion-specific data on the patient level, they were able to predict
immunotherapy response with an AUC of up to 0.76 (p<0.001)
for both cancer types, with a one-year survival difference of 24%
(p=0.02) [111]. The authors also performed biological validation
of their radiomics biomarker using an independent cohort of
262 NSCLC patients with pre-operative CT and gene expression
data [111]. The top gene sets most strongly correlated with their
biomarker were those involved in cell cycle progression and
mitosis [111].

Basler et al. also demonstrated the predictive potential of
PET/CT-based radiomics in a retrospective cohort of 112
metastatic melanoma patients being treated with ICIs [112].
They used pretreatment CT and PET for 716 baseline
metastases, tumor lesion volume, and the routine blood markers
LDH and S100 to help differentiate PsP from PD [112]. Using
this information, they developed seven different model classes,
including models that used each modality separately (blood
biomarkers, lesion volume, and radiomics) as well as various
combinations of the modalities such as blood and lesion volume
or blood biomarkers and radiomics [112]. The best performing
model was the combined blood biomarkers and radiomics
model excluding the volume-related features (AUC=0.82) [112].
This study lends support to the idea that a multi-modal
approach will be best to provide early determination of
immunotherapy treatment responders [112].

Another aspect of immunotherapy treatment is the development
of Immune-Related Adverse Events (irAEs) in a subgroup of
patients. These irAEs are diverse and have important clinical
implications with the most common being dermatitis,
endocrinopathies, enterocolitis, hepatitis, pneumonitis,
transaminitis, and uveitis [113]. Being able to quickly identify
patients that will develop severe irAEs is therefore paramount.
Colen et al. published a proof of concept study demonstrating
the potential of radiomics to predict patients who are at risk for
developing immunotherapy-induced pneumonitis [114].
Although it is not as common as some of the other irAEs, it is of
particular concern given its life threatening nature [115]. This
retrospective study involved a group of patients with advanced
cancer who were enrolled in early phase immunotherapy clinical
trials that had been treated with at least one immunotherapeutic

agent [114]. They used pretreatment CTs from two patients who
developed pneumonitis and as a control, a random thirty
patients who did not [114]. Six volumes of interest for each
patient were delineated with a total of 1860 features extracted
per patient [114]. They used a Maximum Relevance Minimum
Redundancy (MRMR) feature selection method to identify
features and rank them based on their relevance to the outcome
(immunotherapy-induced pneumonitis) and redundancy [114].
Immunotherapy-induced pneumonitis was predicted using an
unsupervised anomaly detection algorithm [114]. They showed
that the most predictive features were skewness (measurement of
histogram symmetry) and angular variance of sum of squares
(measure of dispersion of the voxel intensity distribution), with
100% accuracy (p=0.00033) [114].

Radiomics for immunotherapy response in glioblastoma
patients

Currently, there is only one study in the literature regarding the
use of radiomics to track response to immunotherapy for
glioblastoma. Ion-Margineanu et al. examined whether analysis
of MRI, PWI, and diffusion kurtosis MRI (DKI) images using a
radiomics pipeline could distinguish progressive disease or
treatment response when treated with dendritic cell
immunotherapy [116]. By acquiring imaging texture features and
histograms of MRI intensity values in both a manual or semi-
manually outlined ROI model, the authors created a pipeline to
assess treatment response [116]. The model was scored based on
a Balanced Accuracy Rate (BAR) consisting of the average of the
sensitivity and specificity [116]. Features extracted from T1 post-
contrast MRI and CBV maps in manually delineated ROIs
trained with the adaptive boosting algorithm (AdaBoost)
algorithm yielded the highest BAR value of 0.956 [116]. For
further automation, algorithms created from a combination of
T1 post contrast features and cerebral blood volume readings
from semi-manually delineated ROIs yielded BAR values of
0.947 and 0.932 when using the random undersampling
boosting algorithm (RUSBoost), or support vector machine
radial basis function (SVM-rbf), machine learning algorithms
respectively [116]. The findings suggest potential use of
radiomics pipelines to assess therapeutic response to
immunotherapy in glioblastoma.

Despite radiomics being an extremely promising field to
accelerate personalized medicine for glioblastoma patients,
challenges and limitations exist. One of its biggest challenges is
the field’s data reproducibility. Given the novelty as well as the
technical complexity of this methodology, there is currently
significant variability in segmentation techniques and feature
extraction algorithms that can adversely impact the sensitivity of
the radiomics features [117]. Another important obstacle is data
sharing, a common challenge in all biomedical research, as it
must overcome administrative, regulatory, cultural, and personal
difficulties and comply with the Health Insurance Portability
and Accountability Act (HIPAA) [118,119]. These past radiomics
studies involve small sample sizes that make it difficult to draw
significant conclusions and generalizations. Data sharing
problems need to be addressed to further advance this field.
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DISCUSSION AND CONCLUSION

High grade glioma patients face a grim prognosis with often
ineffective treatments and potentially significant side effects.
They must undergo a complex, and often, invasive clinical
workup to assess response to the treatment provided. As
immunotherapy is being investigated as a treatment for high
grade gliomas, better tools to assess real-time response to
immunotherapy are needed. Pseudoprogression mimicking true
progression of disease is an issue that is especially important.
Patient survival time is extremely short and determining
treatment response earlier even by a few months can make a
significant difference. Innovations in advanced imaging
techniques and modalities facilitated more effective and quicker
evaluations of the treatment efficacy. Significant hurdles remain
to incorporating effective advanced imaging strategies into
routine clinical practice. Relatively low incidence of high grade
gliomas, the high cost of performing these studies, and the low
number of patients enrolled in immunotherapy clinical trials
pose a huge challenge in accruing adequate numbers of patients
needed to train and test machine learning algorithms to
differentiate immunotherapy responders from non-responders.
A report showed that only one in three of neuro-oncological
studies published after 2010 used the RANO criteria and with
the recent development of other criteria, a standardized
response criteria and terminology across the neuro-oncology
field are needed. With validated guidelines to compare these
multi-modal advanced imaging techniques, their use will become
more routine to detect treatment response.

Radiomics is a powerful tool that can help resolve some of the
challenges found in advanced imaging to provide important
information on diagnosis, prognosis, progression, and treatment
response in high grade glioma patients. However, it has its
limitations and challenges that must be overcome. It has the
advantage of noninvasively providing information about the
whole tumor environment but, it is operator-dependent.
Radiomics will be one important tool in a toolbox of various
techniques such as patient characteristics, genomics,
metabolomics, and transcriptomics that in the future will
together provide a more personalized medical approach.
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