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ABSTRACT
As Artificial Intelligence (AI) plays an increasingly prominent role in society, its application in clinical cardiology is 

gaining traction by providing innovative diagnostic, prognostic, and therapeutic solutions. Electrocardiogram (ECG), 

as a ubiquitous diagnostic tool in cardiology, has emerged as the leading data source for Deep Learning (DL) 

applications. A recent study from our group used ECG-based DL model to identify cardiac wall motion abnormalities 

and outperformed expert human interpretation. Motivated by this work and that of many others, we aim to discuss 

advances, limitations, future directions, and equity considerations in DL models for ECG-based AI applications.
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INTRODUCTION
Electrocardiogram (ECG) is a widely available and accessible 
point-of-care diagnostic tool in cardiovascular medicine. 
Historically, ECGs provided critical diagnostic information to 
the bedside clinician, most commonly related to cardiac rhythm 
and myocardial ischemia. However, detection of structural 
cardiac abnormalities was limited and the utility of ECGs as a 
diagnostic tool for non-cardiac indications was low. In recent 
years, the advancement in Artificial Intelligence (AI) and Deep 
Learning (DL) techniques have successfully developed tools that 
provide invaluable diagnostic information for both cardiac and 
non-cardiac indications [1]. It is increasingly recognized that 
latent signals from ECGs beyond human interpretation can be 
readily extracted by AI  models. With the rising prevalence of 
wearable consumer devices with ECG capabilities, there is 
growing interest to extend the diagnostic value of ECG beyond 
cardiovascular indications [2].

Despite the growing momentum for ECG-based AI diagnostics, 
the underrepresentation of diverse patient populations in 
cardiovascular research datasets is being increasingly recognized. 
This underrepresentation creates intrinsic bias in the prediction 
models and can lead to disparities in diagnostic performance [3]. 
Additionally, access to medical care and expensive consumer 
products may similarly skew models trained on data sets collected 

from wearable technologies, which poses further challenges to 
the development of equitable diagnostic tools for consumer 
products [2].

In this review, we aim to review recent progress in DL for ECG-
based assessments of health across multiple organ systems, 
provide perspectives on barriers to their implementation, and 
discuss future directions for AI-enhanced research in 
cardiovascular health and beyond.

LITERATURE REVIEW

Overview of deep learning in ECG-based applications

DL has revolutionized ECG analysis through model architectures 
such as Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), and hybrid models that integrate 
spatiotemporal feature extraction [1,4]. Model creation typically 
involves construction of training, testing and validation data sets 
by exporting ECGs and labeling using multimodal sources 
(laboratories, imaging, clinical diagnosis, etc.) to explore 
biomarkers related to the heart and other organs (Figure 1). The 
ECGs must be pre-processed to reduce background noise and 
baseline variations. The training sets are created using data from 
a single or several institutions, while testing is conducted on a 
holdout set of patients not previously seen by the model.
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External validation on an external data set provides evidence of
generalizability. For rarer conditions with limited data, federated
learning across multiple institutions without data sharing have
been proposed [5].

Equitable algorithm development and
implementation

Model performance may or may not be affected by homogenous 
training data used in the development of DL ECG models. Kaur 
et al.  showed  that  a  model  predicting  incident  heart  failure  
performed significantly worse in younger Black patients. 
Meanwhile, a similar study by Noseworthy et al,. suggested that 
race did not impact predictive capability of an ECG-based model 
predicting reduced ejection fraction [18]. In our study, we 
demonstrated generalizability of the model to an external test 
cohort with distinct demographic makeup [7]. This suggests that 
bias in DL models are dependent not only on the diversity of 
the training data but also on the specific clinical question being 
addressed. Given the known risks of bias in medical decision-
making, the importance of demonstrating DL’s efficacy across 
diverse groups is paramount and should become the standard of 
DL development.

DISCUSSION

Clinical implications

DL ECG models create new opportunities to enhance access to 
diagnostic and prognostic tools, especially in low-resource 
settings without specialist consultation and advanced imaging 
studies. These models could provide new screening modalities 
and reduce diagnostic latency by automated prediction of various 
cardiac and non-cardiac conditions. Additionally, telemedicine 
platforms along with ubiquitous consumer devices with biosignal 
acquisition allow for seamless integration of DL models, allowing 
for continuous remote monitoring of high-risk populations, 
particularly in the era of wearable devices. For instance, 
predictive models could identify asymptomatic individuals at risk 
of developing atrial fibrillation or heart failure, thus enabling 
early preventive measures [8]. Meanwhile, the cost-benefit 
analysis of this new care paradigm remains to be demonstrated 
in clinical practice.

Technical and implementation challenges

Despite recent advances, a number of challenges hinder real-
world implementation of DL ECG technology. First, there is a 
relative deficiency of prospective validation studies, which raises 
concerns about model performance in a variety of clinical, 
geographic, and environmental contexts. While these models 
often achieve exceptional performance in single or multi-center 
cohorts, their generalizability is often limited by data scarcity, 
highlighting the need for multicenter, multinational datasets. 
Interpatient variability in chronic conditions poses another 
barrier, since most models are trained on short-term ECG 
snapshots rather than longitudinal data collected over time. 
Furthermore, the uninterpretable nature of DL models results 
in adoption hesitancy, especially when there is a lack of plausible 
biological relationship between input and output. This 
necessitates further explainability research to align model 
outputs with clinical reasoning. Finally, clinical inertia and a 
lack of outcomes studies demonstrating real-world efficacy delay
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Figure 1: Illustration of cardiac and non-cardiac biomarkers for 
which DL ECG analysis has been applied.

Deep learning of the ECG for cardiac biomarkers

Numerous DL models of ECG have been developed for cardiac 
indications pertaining to functional characteristics, risk 
prediction, and structural information [5-10]. For instance, a 
recent study from our group showed that wall motion 
abnormality is identified with DL and outperformed both expert 
ECG interpretation and Q-wave indices, suggesting that 
additional physiologic signals related to ventricular function are 
captured by the model [7]. Similar work in acute myocardial 
ischemia also showed superior performance of the model 
compared to expert clinicians [9]. The prognostic value of DL 
models provide insights beyond the traditional score-based 
paradigm. Yuan et al,. developed a model that predicts risk of 
atrial fibrillation while in sinus rhythm, while Lee et al,. used 
ECG to identify patients with increased filling pressure and 
found a higher associated mortality rate [8,11].

Deep learning of the ECG for non-cardiac
biomarkers

While it is widely understood that a variety of physiological 
information is encoded in the 12-lead ECG, the diagnostic 
utility of traditional ECG in non-cardiac indications is limited 
when interpreted by human experts. With the hypothesis that 
ECG contains higher-dimensional spatiotemporal information 
beyond human interpretation, a variety of models have been 
developed to study disease entities with or without relationship 
to the cardiovascular system. Butler et al,. hypothesized that 
early cardiac involvement in women at risk for preeclampsia can 
be identified via DL ECG models and successfully showed high 
predictive accuracy for later development of preeclampsia [12]. 
Others have trained models for chronic obstructive pulmonary 
disease motivated by similar reasoning [13]. Detection of 
physiologic derangements including electrolyte and glucose 
have been explored as well [14,15]. Interestingly, studies 
have found success even in disease conditions with less 
apparent physiologic understanding, such as depression and 
cirrhosis, which calls for further explainability studies [16,17].
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adoption, underscoring the urgency to develop pragmatic trials 
to assess the impact of DL ECG tools on patient outcomes.

Ethical and equity considerations

The risk of perpetuating healthcare disparities looms large if 
models are trained on non-representative or homogenous data. 
It is essential to mitigate those risks by emphasizing community-
engaged dataset curation, evaluation of subgroup-specific 
performance metrics, and exploring strategies such as site-
specific fine-tuning to adapt models to local populations [18]. 
Equitable AI development must prioritize transparency in data 
sourcing  in  order  to  ensure  that  historical  inequities  are not  
inadvertently exacerbated.

Recent innovations and future directions

Development of novel approaches is underway to address the 
above challenges while broadening the scope of ECG-based DL 
applications. For instance, unsupervised learning techniques, 
such as domain adaptation via adversarial training, reduce 
reliance on human-labeled datasets-a critical advantage for rare 
conditions or underrepresented populations [19]. Multimodal 
architectures integrating ECG with wearable device data (e.g., 
Photoplethysmography (PPG), ballistocardiography) and point-
of-care biomarkers (e.g., continuous glucose monitor) promise 
richer physiological insights, potentially enabling more 
comprehensive health assessments. Multi-task learning 
frameworks, which simultaneously analyze ECG signals for 
diverse endpoints (e.g., arrhythmia detection and major 
cardiovascular event prediction), show promise toward more 
individualized and holistic risk stratification [20]. Future efforts 
should prioritize collecting longitudinal data to capture 
temporal dynamics to improve chronic disease tracking. Overall, 
close collaboration between AI developers and clinicians is 
pivotal to bridge the gap between algorithmic innovation and 
patient care.

CONCLUSION
ECG-based DL models represent a facet of AI-enhanced 
precision medicine, offering tools for novel diagnostics and 
innovative care delivery. However, realizing its potential requires 
keen attention to model generalizability, explainability, and 
ethical considerations. By addressing these challenges through 
multidisciplinary collaboration and inclusive design, the field 
can harness ECG-derived AI to create practice-changing tools for 
the betterment of our collective health.
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