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Introduction
Hemophilia is a disorder of the blood coagulation cascade caused 

by deficiencies in Factor VIII (FVIII, hemophilia A) or Factor IX (FIX, 
hemophilia B). Both diseases are X-linked and primarily affect males. 
Severe hemophilia (<1% activity of FVIII or FIX) results in recurrent 
musculoskeletal bleeding into joints and muscles causing pain and 
disfigurement. Current therapy for hemophilia involves intravenous 
infusion of recombinant coagulation factors which are effective at 
controlling bleeding, but are expensive and administered frequently 
(every 8-12 hours during active treatment). Hemophilia A and B are 
diseases particularly well suited for gene therapy strategies as small 
increases in circulating factor levels have significant clinical impact 
and benefit for the patient. There are a number of excellent reviews 
that cover current advances in the genetic treatment of hemophilia [1-
3]. Many of these reviews emphasize viral methods of gene delivery, 
which are effective and currently being evaluated in clinical trials. 
Despite current clinical interest, viral methods have several limitations, 
including induction of the immune system. Nonviral gene delivery for 
hemophilia is an emerging field that has made steady progress toward 
clinical application. This review focuses on recent advancements in 
nonviral gene delivery and the obstacles that remain preventing clinical 
use. 

Nonviral Gene Therapy – Advantages/Obstacles
Nonviral gene delivery approaches have several advantages over 

viral-based gene delivery. One major advantage is the reduced cost and 
simplified production of DNA compared to more complicated viral 
production. Purified DNA is generally stable, can be lyophilized for 
packaging and has a long-shelf life [4]. Nonviral gene delivery methods 
are less immunogenic as they contain no viral protein antigens that 
may activate the immune system. Activation of the immune system 
against viral epitopes present in viral vectors can lead to the destruction 
of virally transduced cells and loss of gene expression [5]. Furthermore, 
immune memory cells may block the ability to re-administer the viral 
vector once immunity develops. Lastly, most gamma retroviral-based 
vectors systems tend to integrate in or near actively transcribed genes 
leading to insertional mutagenesis. If the insertion event leads to 
proto-oncogene activation or disruption of a tumor suppressor gene, 
a malignancy could result as seen in several clinical trials [6]. Nonviral 
gene delivery methods are less likely to cause insertional mutagenesis 
providing increased safety; however this increase in safety is dependent 
on the type of vector used. Episomal vectors do not integrate and 
therefore should cause no mutations, while integrating nonviral 

approaches utilizing transposons or integrases still have the potential 
for insertional mutagenesis, but at a reduced frequency. Despite the 
potential advantages of nonviral delivery, a number of problems with 
nonviral vectors exist, including delivery issues and lack of persistent 
long-term expression. The immunological effects of different nonviral 
gene delivery methods and the development of inhibitory antibodies 
are beyond the scope of this review, yet are another important facet of 
gene therapy for hemophilia.

Nonviral Gene Delivery – Chemical and Physical 
Methods

The delivery of nucleic acids across biological membranes is 
challenging and generally requires chemical or physical methods to 
enhance delivery. There are several well written reviews that explore 
these topics in greater detail [7,8]. In most cases, the nucleic acids are in 
the form of circular plasmids, but linear DNA or RNA can be delivered. 
Situation specific goals will influence the type of nucleic acid utilized. 
Circular plasmids are commonly used because of their ease to generate 
in bacteria and the closed supercoiled nature of the DNA may provide 
some protection from degradation by serum endonucleases during 
delivery. Linear DNA, although more unstable, may be the preferred 
form of nucleic acid in certain situations as they can from concatemers 
[9]. RNA is appropriate if transient gene expression is desired, such 
as transposase expression. Regardless of the choice of nucleic acid, 
chemical or physical methods are required for efficient gene delivery.

Chemical methods

Chemical methods use compounds such as cationic liposomes or 
cationic polymers (such as polyethylenimine) to compact and package 
the nucleic acids into nanoparticles. Packaging of the nucleic acids helps 
to protect them from nucleases during in vivo delivery and facilitates 
passage of the genetic material inside cells and past endosomes to gain 
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Abstract
Over the last 10-15 years, significant advances in vector design and delivery techniques have facilitated the development 

of nonviral approaches for the treatment of hemophilia. Despite these advancements, there remain several obstacles preventing 
the successful application of these approaches in larger mammals such as dogs and humans. This review covers nonviral gene 
therapy approaches using both in vivo gene delivery and ex vivo gene transfer. Plasmid-based approaches, as well as integrating 
transposons are examined for efficacy, risks and limitations. Results are presented on the only human clinical trial in hemophilia that 
utilized nonviral approaches.
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entry to the nucleus. Chemical methods work well for transfecting 
cells in culture, but when used in vivo can cause toxicities including 
aggregation of blood cells [10], activation of complement [11], cytokine 
activation and cytotoxicity to the tissue or organ exposed to the highest 
concentration of the complexes [12,13]. While these drawbacks have 
limited the use of these formulations in humans, chemical-based 
approaches to nonviral DNA delivery have been used in small animal 
models of hemophilia [14,15]. 

Systemic intravenous administration of chemical DNA complexes 
leads primarily to deposition within the first capillary bed the complexes 
encounter, mainly the lung, but also distribute to other organs including 
the liver, spleen, kidneys and heart [16]. Polyethylenimine is a linear 
or branched polymer that is a popular reagent to deliver DNA due to 
commercial availability, and improved efficacy [17]. Linear PEI (22 to 
25 Kd) is more efficacious then cationic liposomal formulations and 
less toxic than branched forms of PEI [18,19]. However, PEI does have 
toxicity when used in vivo especially at higher concentrations, which 
limits use in larger animals and humans [20]. New biodegradable 
cationic polymers with less toxicity include aminoesters and chitosan, 
yet efficiency in vivo is not substantially different than linear PEI [21-23]. 
More complex chemical formulations exist where the DNA complexes 
are packaged into lipid-polymer hybrids, specialized nanoparticles 
or are engineered to have ligands for cell receptors on their surface, 
but are more difficult to produce [7]. A recent study by Kern et al., 
utilized a nanocapsule formulation designed to target hepatocytes and 
liver sinusoidal endothelial cells to treat hemophilia [15]. While these 
improvements have reduced toxicity, investigators are still generating 
new intravenous formulations with the hope of increased efficacy and 
applicability to human clinical trials. 

Chemical formulations can be designed for alternative routes of 
administration including inhalation, topical and oral. While inhalation 
and topical delivery of DNA may not be relevant for the treatment of 
hemophilia, non-invasive oral approaches have merit [24]. Chitosan 
is a biodegradable cationic polysaccharide that forms complexes with 
DNA. Chitosan is thought to protect the DNA from digestion and 
increase the cellular uptake. Two groups have used chitosan/DNA 
nanoparticles to deliver the FVIII gene to cells within the gut [25,26] 
resulting in transient FVIII expression.  The therapy was safe with 
repeated administration and there was no development of inhibitory 
antibodies.  

Physical methods

Physical methods of nonviral DNA delivery involve a host of 
approaches that use physical energy to facilitate the passage of nucleic 
acids through biological membranes. The methods include pressure-
based approaches such as hydrodynamic, direct injection methods, 
electroporation, ultrasound-enhanced and magnetofection. In many of 
these approaches toxicity is reduced since the nucleic acids are naked 
or non-formulated.  Most of the adverse effects observed with these 
physical methods are due to the physical energy, which is self limited. 
Generally, the tissues/cells recover quickly allowing re-application of 
the approach. 

In hydrodynamic delivery, naked DNA is administered 
intravenously via tail vein injection using a large volume (~8-10% of 
body weight) over a brief period of time (5 to 10 sec). The hydrodynamic 
method was developed in mice as the animals could survive the large 
change in blood volume by expanding their liver leading to deposition 
of DNA within hepatocytes [27,28]. Additional organs that receive 
DNA after hydrodynamic gene delivery in mice include the kidney, 

spleen, lung and heart. When standard plasmids are delivered, transient 
expression was observed in up to 30-40% of hepatocytes, however 
expression wanes over the next few days and then falls considerably 
(~103  fold loss) to low yet detectable levels by 1-2 weeks. Over the next 
2-3 months expression usually becomes undetectable. This approach is 
routinely applied in small animal models of hemophilia for testing of 
transposon-based systems and other non-integrating vectors.

Unfortunately, the hydrodynamic delivery approach is not easily 
adaptable to larger animals. Dogs and humans would not survive 
the large volume injections required to swell the liver. Mechanical 
approaches involving intravascular catheters with balloons to isolate 
vasculature within specific lobes of the liver were first developed in 
rabbits [29], and subsequently tested in larger animals such as swine 
[30-32]. These successes led to a small trial in humans delivering the 
thrombopoietin gene [33]. Attempts at treating hemophilic dogs 
using catheter-mediated hydrodynamic therapy are underway at 
the University of Minnesota under the direction of Drs Hackett and 
McIvor. Their recent article suggests that these approaches still need 
optimization before they can be considered in humans [34].

Obtaining long-term gene expression

While chemical and physical methods of DNA delivery are 
moderately efficient at delivering nucleic acids to cells and tissues, 
a second major obstacle to effective nonviral delivery is the lack of 
long term-expression. The reasons for transient gene expression are 
complex, and include a combination of cellular activities including 
the degradation or extruding of non-integrated plasmid DNA, 
transcriptional silencing of the exogenous plasmid or apoptotic cell 
death. Over the past decade, investigators have been modifying vector 
designs in order to facilitate long-term gene expression and significant 
advances have been made. 

Transposons and integrases

One of the major advances in promoting long-term gene expression 
in nonviral systems has been the use of transposons and integrases to 
facilitate genomic integration of the delivered genes. The first use of 
transposons to treat hemophilia came from the laboratory of Mark Kay 
where the Sleeping Beauty transposon system, originally characterized 
by Ivics [35], was used in combination with hydrodynamic gene 
delivery to treat adult hemophilia B mice [36]. The results showed 
that with a mutant transposase, FIX expression was only transient 
with undetectable FIX levels by 60 days. With the transposase, FIX 
expression stabilized at ~100 to 200 ng/ml and continued until the end 
of the experiment (5 months). The same approach was used to treat 
adult hemophilia A mice; however, these mice developed inhibitory 
antibodies against the gene product, FVIII, limiting expression was 
unless the mice were tolerized prior to gene delivery [37]. Similarly, 
our own laboratory used the Sleeping Beauty transposon to deliver 
the FVIII gene to neonatal mice using a chemical approach (PEI) 
[14]. Because the immune system of neonatal mice is naive, these 
mice did not develop inhibitors and thus, did not require tolerization. 
Other transposons such as the piggyBac transposon have been used to 
facilitate long-term expression within the liver [38], but have not been 
used for the treatment of hemophilia to date. 

Since the initial discovery of the Sleeping Beauty transposon system, 
improvements have been made to the system to facilitate efficient 
integration. Significant improvements came from the development of 
hyperactive transposases with increased activity [39,40]. Transposon 
vectors may also incorporate other cis-acting regulatory elements that 
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enhance integration [41]. Finally, transposon systems can be combined 
with viral vectors to prolong the duration of gene expression as in this 
example using a high capacity adenoviral vector to delivery FIX to dogs 
[42]. 

While transposon systems clearly enhance expression over time, 
the fact that transposons integrate increases the risk of insertional 
mutagenesis. Several studies investigated where transposons integrate 
within the genome [43-45]. The results of these studies suggest that 
both the Sleeping Beauty and piggyBac transposases have slight biases 
towards integration near transcriptional start sites and microsatellite 
repeats. Despite these biases, they appear safer than retroviral vectors, 
which have an increased tendency to integrate near actively transcribed 
genes. Therefore, there is inherent risk of insertional mutagenesis using 
any integrating system including transposon-based approaches.

Our laboratory and others have attempted to minimize the risks 
associated with transposon insertional mutagenesis by forcing the 
Sleeping Beauty or piggyBac transposons to integrate at specific sites 
within the genome [46-48]. While some advances were made on this 
front, these site-specific transposases still have a significant fraction of 
non-targeted integration events that may cause insertional mutagenesis. 
Lastly, there is a concern that if the transposase gene is expressed over 
time in cells that have a transposon there may be multiple excision and 
integration events that would further increase the risk of insertional 

mutagenesis. A recent study examined the persistence of the plasmid 
expressing the transposase gene in T cells [49]. Although there was no 
detectable protein by Western blot, PCR analysis was positive in 5 of 15 
bulk T cell populations that underwent nucleofection and selection for 
the transposon gene [49]. Due to these risks, one group has proposed 
using RNA as the source of the transposase gene, which cannot integrate 
and thus, cannot lead to long-term transposase expression [50].

Another approach to facilitate long-term expression is to use 
integrases that integrate in a more site-selective manner. A prime 
example is the phiC31integrase pioneered by Michelle Calos [51]. In 
this system, the phiC31 integrase mediates the integration of plasmids 
bearing an attB site into endogenous sequences in the genome with 
partial identity to the phage attP site (pseudo-attP sites). A comparison 
of the mechanisms of integration of the Sleeping Beauty transposon 
and the phiC31 integrase is presented in (Figure 1). Based on analysis 
of integrations within the human genome, there appears to be a limited 
number of pseudo-attP sites that are targets for integration with 
several sites seemingly preferred over others. For example, a region 
on chromosome 19q13.31 was targeted 7.5% of the time [52]. The 
limited number of potential integration sites should reduce the risks 
of insertional mutagenesis, yet this hypothesis has not been tested. The 
phiC31 integrase has been used to correct hemophilia B in murine 
systems [53,54]. Finally as with the Sleeping Beauty transposase, there 
is concern that persistent low level expression of the phiC31 integrase 

Figure 1: Comparisons of the mechanisms of integration for Sleeping Beauty transposon and phiC31 integrase. A. Transposition of Sleeping Beauty requires flanking 
inverted repeat/direct repeat sequences (IR/DR elements). Transposase proteins bind to the IR/DR elements and generate a synaptic complex that targets TA-
dinucleotides within the genome using a cut and paste mechanism. The remaining plasmid sequence is lost during integration. B. The phiC31 integrase is a member 
of the serine-recombinase family of site-specific recombinases. The minimal sequences required for integrase activity are a 39 bp attP site and a 34 bp attB site [51]. 
The entire plasmid integrates into the genome with flanking attR and attL sites.
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may lead to genomic instability. This was observed when the phiC31 
integrase was intentionally expressed over time in cells in culture [55]. 
Providing the gene encoding the phiC31 integrase in the form of RNA 
may reduce these risks.

Regulatory sequences

Obtaining long-term expression without integration would be 
a major accomplishment for nonviral therapy. By incorporating 
specialized gene regulatory sequences within the plasmids to 
enhance expression, investigators have been able to prevent silencing 
and promote long-term expression without integration. By using 
specialized promoters [56] and incorporating other important 
DNA sequences such as hepatic locus control regions (LCR) [57], 
enhancers [58], intronic regions, untranslated regions (UTR’s) [59] 
and polyadenylation signals, investigators can modify the levels and 
duration of gene expression. Utilization of these approaches for the 
treatment of hemophilia was first described in 2001 by Dr. Carol Miao 
[60]. Since that time, there has been a number of different hepatic 
control regions (HCR’s) identified that have similar properties and 
can promote long-term expression. By incorporating these regions the 
plasmids may reside as episomes as partial hepatectomy leads to loss 
of expression suggesting the gene was not integrated into the genome 
[60]. Lastly, episomal vectors containing scaffold/matrix attachment 
regions (S/MARs) within the nonviral vector may facilitate long-term 
expression in vivo [61]. Proof of concept experiments using episomal 
vectors to treat hemophilia have been made using components of 
the Epstein-Barr virus [62,63], but risks of malignancy and immune 
rejection would prevent the use of this approach in larger animals.

Other factors that likely influence in vivo expression from non-
integrated vectors include the CpG content of the plasmids introduced 
and the presence of bacterial sequences within the vector. The innate 
immune system can be activated by bacterial DNA and this activation 
is due to unmethylated CpG motifs that are recognized by the Toll-
like receptor 9 on vertebrate immune cells [64]. Furthermore, CpG 
methylation of DNA influences transcription by altering the affinity 
of certain DNA-binding proteins including transcription factors 
and histones [65]. By generating vectors with reduced CpG content 
expression could be enhanced in vivo [66]. Furthermore, other 
bacterially-derived DNA sequences present within nonviral vectors 
alter long-term expression in vertebrates. Chen et al. has shown that 
making minicircles devoid of bacterial sequences can lead to enhanced 
and long-term expression following hydrodynamic gene delivery [67]. 
Recent improvements to this system make generating minicircles easier 
and will facilitate the analysis of other cis-acting regulatory sequences 
[68]. An approach to treatment of hemophilia that uses a combination 
of modified promoters, hepatic LCRs, S/MARs and minicircles may 
provide long-term expression without the concerns of insertional 
mutagenesis. 

Localized In vivo tissue delivery

Localized delivery of nonviral vectors has several benefits over 
systemic delivery. The benefits of localized delivery may include 
enhanced transfection efficiency leading to a higher proportion of cells 
expressing the gene, reduced concern of insertional mutagenesis in 
off-target organs, and a reduction in the risk of generating immune 
responses against the introduced gene or transfected cells. For the 
treatment of hemophilia, two target tissues including the liver and 
skeletal muscle are reasonable in vivo targets. 

Liver directed therapy is an optimal choice for gene replacement 

as liver sinusoidal endothelial cells and hepatocytes have the capacity 
to synthesize and secrete sufficient quantities of coagulation factors to 
affect clinical outcomes. Physical and chemical methods can be used to 
target the liver; however, any targeted in vivo method has the potential 
for off-target delivery. Hydrodynamic therapy is a prime example of 
liver-directed therapy, yet the technique still has to be perfected in 
larger mammals and the off-target effects have not been characterized.  
Ultrasound-mediated gene delivery to the liver [69] and electroporation 
of the liver [70] are two approaches that could be considered, yet 
hydrodynamic approaches are more efficacious. Chemical-mediated 
delivery of nucleic acids to the liver requires targeting mechanisms with 
many approaches involving the asialoglycoprotein receptor [15,71,72]. 

Skeletal muscle is an abundant target that may be used to produce 
and secrete functional coagulation factors and other therapeutic 
proteins (review [73]). Initial studies with cationic complexes revealed 
myotoxicity [74]; yet direct injection of naked DNA followed by 
electroporation was effective in treating murine models of hemophilia 
[75]. Further advances in the field have included chemical formulations 
that enhance delivery followed by electroporation [76,77], and pressure-
induced transvenular extravasation [78] also known as hydrodynamic 
limb vein injection [79]. These improvements in skeletal muscle 
delivery are leading to long-term expression in muscle tissue that could 
translate into an attainable treatment of hemophilia in humans.

Ex vivo delivery to cells

Ex vivo gene transfer, followed by administration of the transfected 
cells into the recipient, is a viable approach for hemophilia gene therapy. 
A number of different cells types have been used to produce coagulation 
factors including fibroblasts, endothelial cells, hematopoietic stem cells 
(HSC), mesenchymal cells, and muscle cells (myoblasts). The benefits 
of ex vivo therapy include targeting a specific cell type, which essentially 
eliminates expression in unwanted cell types such as germline cells 
or antigen presenting cells (APCs). Ex vivo approaches are less likely 
to cause systemic toxicity compared to chemical-based approaches 
or physical methods such as hydrodynamic therapy. Lastly, ex vivo 
transfected cells may be sequestered or contained within microcapsules 
preventing their dissemination throughout the body and eliminating 
immune destruction of the producing cells [80]. This approach 
allows for the removal of the microcapsules if any adverse events 
occur. Potential drawbacks of ex vivo approaches include the need to 
individualize treatment for each patient if autologous cells are used, the 
labor intensive nature of the approach, insufficient protein secretion in 
vivo, and the potential for malignant expansion of the introduced cells.

Fibroblasts: Fibroblasts were the target in the first human clinical 
trial that used nonviral DNA as the delivery vehicle [81]. The trial 
involved isolation of fibroblasts from patients and stable introduction 
of a B-domain depleted FVIII construct using electroporation and cell 
selection/expansion. Twelve patients with severe hemophilia A (<1% 
activity) were enrolled in the trial; none with inhibitors. They received 
injections of expanded fibroblasts that produced FVIII into the greater 
or lesser omentum via a laproscopic procedure at different doses (100 
to 800 million cells). Seven of nine patients who received injections into 
the greater omentum had either a decrease in spontaneous bleeding 
and/or a diminished need for factor replacement over the next several 
months. FVIII levels were essentially unchanged or slightly higher than 
baseline in all patients except one who received the highest producing 
fibroblast clone where levels rose by 1-4% transiently. None of the 
patients with injections into the lesser omentum received benefit. 
By one year, all patients had returned to baseline FVIII levels and 
their usual rate of bleeding. There were no serious adverse events or 
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laboratory abnormalities during the course of the trial including no 
evidence for immune activation or inhibitors.

Endothelial cells: Endothelial cells have an inherent capability 
to produce and secrete functional Factor VIII and therefore make an 
excellent target for gene delivery. Lin et al. reported the transfection 
and subsequent selection and expansion of human blood outgrowth 
endothelial cells (BOECs) with a FVIII expression plasmid [82]. The 
expanded BOECs were injected into NOD/SCID mice at various cell 
doses. FVIII levels correlated with injected cell dose with some animals 
achieving normal (100-200 ng/ml) to supratherapeutic levels of FVIII 
protein. Furthermore, protein levels increased overtime until the 
termination of the experiment at 5 months. Histological evaluation of 
the treated animals showed bone marrow and splenic infiltration of the 
BOECs. This result raises the concern that injected cells may need to be 
contained to prevent overgrowth or malignancy. A subsequent study 
used a lentiviral vector to transduce the BOECs and sequestered them 
within a mircrocapsule to prevent systemic dissemination [83]. 

HSC and Bone Marrow Stromal cells: Hematopoietic stem 
cells were used to produce FVIII within platelets by placing the gene 
under the control of megakaryocytic lineage-specific promoter. While 
transgenic animals and viral vectors have been used to apply this 
approach in murine HSC [84,85], no attempts to transfect murine HSC 
with nonviral approaches have been published. Similarly, bone marrow 
mesenchymal cells were retrovirally transduced to express FVIII and 
given to NOD-SCID mice resulting in phenotypic correction [86]. The 
ability to use nonviral approaches to stably transfect HSC and bone 
marrow mesenchymal cells may require further enhancements to 
improve efficiency, stabilize gene expression [40,87,88] and reduce the 
risks of transformation [89]. 

Myoblasts: Myoblasts have been used to produce coagulation 
factors and correct deficiencies in mice. The coagulation genes are 
typically delivered by nonviral methods followed by selection and 
expansion of producing clones. Initial experiments injected the 
transfected myoblasts back into muscles directly [90]. In an attempt to 
create a universal therapy for many patients, allogeneic myoblasts were 
used and re-implanted within mirocapsules [91]. The microcapsules 
prevented the destruction of the myoblasts by immune cells and 
prevented myoblast cell dissemination within the recipient. An 
extension of these studies using human derived myoblasts in mice has 
been conducted [92]. While this approach has potential, investigators 
are still optimizing the composition of the microcapsule to enhance cell 
viability without risking cell dissemination [80]. 

Concluding Remarks
Nonviral gene delivery has made significant strides over the past 

10-15 years, yet challenges remain. Novel physical methods of delivery 
have been developed that led to significant expression within the liver. 
Chemical methods have evolved with newer, biodegradable and less 
toxic formulations. Advances have been made in enhancing gene 
expression over time and basic insights have been made into how 
expression is lost. While nonviral approaches are not being utilized 
in current clinical trials, they may play a role in the future. Their 
evolution will depend on the success of currently active AAV trials 
and if immune activation against AAV capsid proteins continues to 
be problem in human clinical trials. If viral approaches fail, attention 
should focus on nonviral delivery methods. Further research will be 
needed to identify the most promising delivery approaches in larger 
animals and how these can be adapted to human clinical trials. Vector 
design will be an important aspect of future nonviral delivery. Critical 

cis-acting regulatory sequences that enhance expression and promote 
episomal maintenance will be essential. Further improvements will 
include the removal of potential inhibitory sequences (bacterially-
derived sequences and CpGs) and codon optimization to ensure robust 
expression. By optimizing these parameters, safe and effective nonviral 
gene therapy for hemophilia patients may be possible.
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