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ABOUT THE STUDY
In several fields, it is crucial to analyze organic molecules in 
samples with varying matrix compositions. Liquid or gas 
chromatographic techniques are used to identify organic 
compounds in a huge majority of cases. Thus, it is crucial that 
these techniques have negligible effect on the environment. 
Based on the type of chromatography, several methods are 
utilized to make chromatographic separations more 
environmentally friendly. In gas chromatography, helium should 
no longer be used as the carrier gas since it is a limited resource. 
Due to the energy savings provided by low thermal mass 
technology, GC separations can be more environmentally 
friendly. In liquid chromatography, the goal should be to use less 
solvent while replacing poisonous and ecologically harmful 
solvents with safer alternatives.

Making industrial productions as environmentally friendly as 
feasible is a major need of the modern day that not only supports 
sustainable growth but also lessens financial burdens by 
enhancing yield through more economical methods. The 
analytical and chemical research simply raised serious concerns 
about the environmental impacts of their methods, notably the 
utilization and generation of hazardous solvents or reagents. 
Thus, the evaluation of their greenness is crucial to determining 
their trustworthiness in developing sustainable techniques. The 
major goal of green chromatography is to make a technique 
greener in all the steps of analysis from preparation to its 
determination [1].

Currently, the most utilized chromatographic techniques like 
High Performance Liquid Chromatography (HPLC) and Gas 
Chromatography (GC), both of which are coupled with various 
detectors, produce the best results for Mass Spectrometry (MS)
[2]. Because inert gases are used as the mobile phases in GC, this 
method is indeed regarded as a comparatively green one [3].

Advancement of green gas chromatography

Sustainability-related initiatives in GC have targeted the 
miniaturization of certain equipment parts while enhancing the

currently available commercially accessible GCs. It is possible to 
distinguish between traditional bench-top GC and micro-GC 
(µGC) based on the size and designs of the GC column [4]. From 
an ecological perspective, it is evident that µGC involves a 
reduction in the consumption mobile phase and less time of 
analysis, which results in less energy use. Due to this, several 
other types of columns, such as Micro Electro Mechanical System 
(MEMS), metallic-based and open tubular formats, have been 
suggested for µ GC [5-11]. On the other hand, there are still 
many technical problems with these µGC columns, including the 
challenges of coating or packing the columns with stationary 
phases, the need to increase the achieved separation resolution, 
and the proper achievement of a particular column geometry 
with the various suggested supporting materials (metals, glass, 
polymers, silicon, etc.). These problems have undoubtedly 
hampered µGC's expected development [4,12].

To minimize the size of the detectors of GC, efforts have focused 
on the necessity of a better interface with the column to 
guarantee a high detection capacity while enhancing the 
potential portability of equipment. In order to meet 
sustainability standards, new working modes were also developed 
for the miniaturization of GC systems. As a result, two 
illustrative instances of such modes are the microcirculatory GC 
and the micro-comprehensive two-dimensional GC (µGC × 
µGC) [9,10]. Microcirculatory GC and µGC × µGC make it 
easier to analyse complex samples, even enabling the resolution 
of isomeric molecules in comparatively less time.

The faster GC separations are often achieved by adjusting 
temperature programs, which typically involve increasing 
temperature ramps [13,14]. This reduces analysis times, but it 
also increases energy use, which is contrary to principles of Green 
Analytical Chemistry (GAC). By applying vacuum conditions to 
the analytical column, low-pressure GC enables a decrease in 
both the temperatures needed for the analysis as well as the 
analysis times [15]. In addition, Low Thermal Mass (LTM) 
technique has enabled the development of effective temperature 
programs that are characterized by rapid capillary column 
heating.
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Advancement of green liquid chromatography

One of HPLC's main sustainability weaknesses continues to be 
the use of huge quantities of solvents, which is accompanied by a 
considerable generation of solvent wastes. In order to accomplish 
these goals, innovative mobile phases for Reverse-Phase HPLC 
(RP-HPLC) have been developed, such as acetone-water or 
ethanol-water combinations, which have good miscibility, low 
toxicity, and high biodegradability, but this method also requires 
particular stationary phases (polar-embedded) [16-20].

Another well-known, more environmentally friendly HPLC 
method is Micellar Liquid Chromatography (MLC) [21-23]. 
Recent research has suggested using Deep Eutectic Solvents 
(DES’s) as a replacement for organic solvents, although MLC 
only needs a small amount of them to maintain micelles [24,25]. 
Additionally, DES’s often do not produce interferences in the 
detection of UV-Vis range.

Another environmentally friendly approach for avoiding organic 
solvents is to utilize supercritical mobile phases like H2O or CO2 
[26-30]. Supercritical mobile phases are known to have properties 
halfway between those of a liquid and a gas, including high 
diffusivity, low viscosity, and low density. Pure CO2's low 
eluotropic strength, one of the drawbacks of Supercritical Fluid 
Chromatography (SFC), necessitates the use of little methanol to 
successfully complete the chromatographic separation.

Apart from environmental benefits, miniaturization in HPLC 
has resulted in increased detection sensitivity and efficiency 
[3,31]. The chromatographic working mode known as capillary 
LC uses narrow-bore columns to increase separation efficiency 
while using less solvent. As well as Sequential Injection 
Chromatography (SIC), a different miniaturized method 
combines HPLC with inline sample treatment and pre-
concentration. In this method, analytes are eluted without 
sample preparation using an appropriate mobile phase (Figure 1)
[32].

As a result, µGC, portable GC, and µGC × µGC should be 
emphasized in relation to greener miniaturized GC. Regarding 
more environmentally friendly miniaturized HPLC, it is 
important to emphasize Chip-based HPLC, portable HPLC, and 
SIC. In addition to novel stationary phases and miniaturization, 
HPLC also includes additional environmental advancements 
through the use of more environmentally friendly mobile.
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CONCLUSION
Miniaturization has been the major focus of the developments 
toward greener chromatographic techniques. There is no doubt 
that miniaturization results in less energy usage, less 
consumption of mobile phases, and less waste production. This 
miniaturization also helped to development of fresh stationary 
phases for the creation of novel micro columns.
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Figure 1: An overview of the key advancements made in 
chromatographic systems to provide greener techniques.
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