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Abstract
Epinephrine is an important neuroendocrine regulator to control growth hormone (GH) secretion in vertebrates. 

Somatolactin (SL), the latest member of the GH family, is a novel pituitary hormone with diverse functions in fish. In 
a previous report it was shown that epinephrine had a potent inhibitory effect on SL release in fish. However, very 
little is known about the mechanisms responsible for epinephrine inhibition of SL gene expression. In primary cultures 
of tilapia neurointermediate lobe (NIL) cells, epinephrine not only reduced SL mRNA levels, but could also abolish 
pituitary adenylate cyclase-activating polypeptide (PACAP)-stimulated SL gene expression. The inhibitory effects of 
epinephrine on SL gene expression were mimicked by additions of α2-adrenergic agonists clonidine and UK14304, 
whereas similar treatments with the α1-agonist cirazoline or the β-agonist isoproterenol had no effects in this regard. 
In parallel experiments, the SL response to epinephrine was significantly abolished by co-incubations with the α2-
antagonist yohimbine, but the α1- or β-antagonist was not effective in this regard. In tilapia NIL cells, the α2-adrenergic 
agonist clonidine suppressed cAMP production and blocked forskolin and PACAP induction of total cAMP production. 
By using a pharmacological approach, the adenylate cyclase (AC) activator- and cAMP analog-stimulated SL responses 
were blocked treatment with clonidine. Furthermore, adrenergic inhibition of SL gene expression was also mimicked by 
inhibiting AC and blocking protein kinase A (PKA). These results, as a whole, suggest that α2-adrenergic stimulation 
can downregulate SL gene transcription by inhibiting the AC/cAMP-dependent mechanism at the tilapia pituitary level.
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Introduction
In vertebrates, the adrenergic system is known to be involved in 

the regulation of growth hormone (GH) secretion and gene expression 
at the hypothalamic and pituitary levels. The adrenergic receptors (or 
adrenoceptors) mediating central and peripheral actions of epinephrine 
are typically subdivided into three main families (α1, α2, and β) based 
on their pharmacology, structure, and signaling mechanisms [1,2]. 
The α1-adrenoceptors increase levels of intracellular calcium, whereas 
α2- and β-adrenoceptors inhibit and stimulate adenylyl cyclase (AC), 
respectively [1]. In mammals, the influences of epinephrine on GH 
secretion are selective for one type of adrenoceptors at the hypothalamic 
or pituitary cells levels. Results of studies in both primates and 
rodents have shown that α2-adrenoceptors play an important role in 
stimulating GH secretion in the central nervous system [3]. In contrast, 
α2-adrenoceptors are not involved in GH secretion [4] and GH gene 
expression [5] at the pituitary cell level. Although still controversial, 
β-adrenergic activation is also involved in regulation of GH secretion. 
In the baboon, central action of norepinephrine was mediated by 
β-adrenergic receptors to inhibit GH release [6], whereas β-adrenergic 
receptor agonists can stimulate rat GH secretion in rat pituitary cells 
[7] and increase GH gene expression in ovine pituitary cells [5]. 
Similar to mammals, the role of adrenergic as a GH-releasing factor 
has also been confirmed in lower vertebrates including fish. In goldfish, 
intraperitoneal injection of norepinephrine resulted in decreased serum 
GH levels, whereas intraventricular injection of norepinephrine has 
no effects on GH secretion in vivo [8]. Since the pituitary lies outside 

of the blood-brain barrier, these results suggest that norepinephrine 
may directly act on the pituitary to inhibit GH secretion. This idea is 
further corroborated by in vitro studies showing that norepinephrine 
is effective in suppressing goldfish GH secretion [9] and grass carp GH 
gene [10] in pituitary cells via α2-adrenoceptors.

Somatolactin (SL), the latest member of GH family, is a pituitary 
hormone unique to fish species. SL is derived from GH during early 
stages of gnathostome evolution [11], but lost secondarily in the 
lineage leading to land vertebrates after the lungfish branched off 
[12]. SL appears to have significant roles in chromatophore regulation 
and lipid metabolism [13,14], maturation [15], stress response [16], 
ion transport [17] and acid-base balance [18]. Among the known SL 
inhibitors in fish, somatostatin can inhibit SL gene expression through 
coupling of AC/cAMP and PLC/IP3/PKC cascades [19]. In addition 
to somatostatin, epinephrine has been implicated as a SL-releasing 
inhibitor. A previous in vitro study had demonstrated that epinephrine 
dose-dependently inhibited SL release in the organ-cultured pituitary 
of rainbow trout [20]. However, no information is available regarding 
the mechanisms responsible for epinephrine inhibition of SL gene 
expression at the pituitary level.
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In the present study, using primary cultures of tilapia 
neurointermediate lobe (NIL) cells as a model, the effects of epinephrine 
on the SL mRNA expression were investigated at the pituitary level. 
The receptor specificity was further characterized using adrenergic 
analogs for α1-, α2-, and β-adrenoceptors. The post-receptor signaling 
mechanisms for SL gene expression were also investigated. In this 
study, we have demonstrated for the first time that epinephrine can 
act at the pituitary level via α2-adrenoceptors to regulate SL gene 
expression through the AC/cAMP-dependent mechanism.

Materials and Methods
Animals

Sexually mature male tilapia (Oreochromis mossambicus) (standard 
length: 11 ± 0.5 cm, body weight: 50 ± 5.0 g) were maintained in 
freshwater aquaria at 28ºC under 10 hr dark/14 hr light photoperiod. 
The fish were fed commercial diet (40% protein, 12% fat, 2% fiber, 8.5% 
moisture, 8% ash, Tongwei, China) to satiety twice a day at 10:00 and 
16:00. During the process of tissue sampling, the fish were sacrificed 
by spinosectomy after anesthesia with 0.05% MS222 (Sigma, St Louis, 
MO) according to the procedures approved by the Animal Ethics 
Committee of Sichuan University.

Pharmacological agents

Epinephrine and Ovine PACAP38 were obtained from Sigma 
(St. Louis, Mo). Adrenergic analogs including clonidine, UK 14304, 
cirazoline, isoproterenol, propranolol, 2-{[β-(4-Hydroxyphenyl) ethyl] 
aminomethyl}-1-tetralone hydrochloride (HEAT), and yohimbine 
were obtained from Tocris (Bristol, UK). These pharmacological 
compounds have been previously used in goldfish [9], grass carp [10], 
tilapia [21] and zebrafish [22], confirming that they are highly selective 
for respective targets in fish models. 3-isobutyl-1-methylxanthine 
(IBMX), 8-(4-chloro-phenylthio)-cAMP (CPT-cAMP), forskolin, 
H89, MDL12330A and actinomycin D were obtained from Calbiochem 
(San Diego, CA). Stock solution of PACAP was dissolved in double-
distilled deionized water and stored frozen in small aliquots at -80ºC. 
Epinephrine and clonidine were dissolved freshly in culture medium 
right before drug treatment to avoid oxidation caused by prolonged 
storage. Other test agents were first dissolved in dimethyl sulfoxide 
(DMSO). Stock solutions of test substances were diluted with 
prewarmed (28ºC) culture medium to appropriate concentrations 15 
min prior to drug treatment. The final dilutions of DMSO were less 
than 0.1% and had no effects on SL gene expression in tilapia NIL cells.

Primary culture of tilapia NIL cells

Tilapia pituitary cells were prepared by trypsin/DNase II digestion 
method as described previously [23]. Briefly, The NIL of individual 
pituitaries was isolated by manual dissection under a stereomicroscope, 
diced into 0.6 mm fragments using a McILwain tissue chopper 
(Brinkmann, Mississauga, Ont.), and digested in type II trypsin (4 mg/
ml, GIBCO) for 30 min at 28ºC with constant shaking. After that, the 
reaction was terminated by adding trypsin inhibitor (2.5 mg/ml, Sigma) 
and pituitary fragments were dispersed in Ca2+- free MEM [S-MEM 
with 26 mM NaHCO3, 25 mM HEPES, 1% antibiotic-antimycotic, 
and 0.1% BSA; pH 7.7] with DNase II (0.01 mg/ml, Sigma). After that, 
total cell yield and percentage viability were estimated by cell counting 
in the presence of trypan blue using a hemocytometer. NIL cells 
were cultured in 48-well culture plates (Costar, Corning Inc., N.Y.) 
at a seeding density of ~1 × 106 cells/well in M199 (Invitrogen). NIL 
cells were incubated overnight at 28ºC under 5% CO2 and saturated 
humidity to allow for the recovery of membrane receptors after trypsin 

digestion. On the following day, culture medium was replaced with 
serum-free M199 and drug treatment was initiated for the duration as 
indicated in individual experiments.

Real-time PCR measurement of SL

Tilapia NIL cells were seeded at a density of ~1 × 106 cells/ml/well 
in 48-well culture plates and treated with hormones or drugs for the 
duration as indicated in individual experiments. After that, total RNA 
was isolated using RNAzol (MRC, Cincinnati, OH, USA), digested 
with RNase-free DNase I to remove genomic DNA contamination, 
and reversely transcribed using M-MLV (TaKaRa, Dalian, China). 
After that, real-time PCR assays were performed on the CFX96 Real-
Time PCR Detection System (Bio-Rad Laboratories, CA, USA). PCR 
reaction were conducted with a SYBR Select Master Mix kit (Applied 
Biosystems) using the primers specific for tilapia SL (GenBank No: 
AB442015) [SL forward primer: 5' CCCACTCCCTTTGCGACTT 3' 
and SL reverse primer: 5' TAGCGGTCCAGTGTCGTCT 3']. Real-time 
PCR for the SL were performed with initial denaturation at 94°C for 3 
min followed by 35 cycles of amplification with denaturation at 94°C for 
30 sec, annealing at 56°C for 30 sec, and extension at 72°C for 30 sec and 
then fluorescent signal collection at 80ºC for 1 sec. For data calibration, 
serial dilutions of plasmid DNA containing the ORF of SL was used 
as the standards for these real-time PCR assay. As an internal control, 
real-time PCR for 18S rRNA was conducted using the primers specific 
for 18S rRNA [forward primer: 5' GGACACGGAAAGGATTGACAG 
3' and reverse primer: 5' GTTCGTTATCGGAATTAACCAGAC 3']. In 
these experiments, no significant changes were observed for 18S rRNA 
expression. The quantitative results were normalized as a ratio of the 
target gene/18S rRNA expression level.

Measurement of cAMP production

The NIL cells were seeded at a density of ~1 × 106 cells/2 ml/dish 
in poly-D-lysine precoated 35-mm dishes and cultured overnight 
at 28ºC as previously described [19]. On the following day, culture 
medium was replaced with 0.9 ml HEPES-buffered Hanks’ balanced 
salt solution with 0.1% BSA and 0.1 mM IBMX. IBMX, the inhibitor 
for phospho-diesterases, was included to prevent cAMP degradation 
in NIL cells. Drug treatment was initiated with various combinations 
of drugs at appropriate concentrations and the cells were allowed to 
incubate at 28ºC for 30 min. After that, culture medium was harvested 
for the measurement of cAMP release whereas cellular cAMP content 
was extracted from NIL cells with 1 ml PBS. These cAMP samples were 
quantified by using a cAMP ELISA kit (Wuhan EIAab Science Co., 
Ltd). 

Data transformation and statistics

All of the experiments were performed at least twice, and all of the 
treatments in each experiment were tested in quadruplicate from 40 
individual fish. For real-time PCR of SL transcripts, standard curves 
with a dynamic range of 105 and correlation coefficient of ≥ 0.95 
were used for data calibration with Bio-rad CFX 3.0 software. The 
quantitative results were normalized as a ratio of the target gene/18S 
rRNA expression level. Data of SL gene expression were transformed 
as a percentage of the mean value in the control group without drug 
treatment (referred to as “% Ctrl”). Data presented (as means ± SEM, 
N = 4) were analyzed using ANOVA followed by Duncan’s test using 
Prism 6.0. Differences between groups were considered as significant 
at P < 0.05.
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Results
Adrenergic regulation of SL gene expression in tilapia NIL 
Cells

To examine adrenergic regulation of SL gene expression at the 
pituitary level, we used a tilapia NIL cells as a model to test the direct 
effects of epinephrine on SL mRNA expression. As shown in Figure 1A, 
treatment with epinephrine (1 µM) could time-dependently inhibit SL 
mRNA expression, and the maximal inhibition on SL mRNA expression 
was observed at 48 h. The duration of drug treatment was fixed at 
48 h unless stated otherwise in subsequent experiments. In parallel 
experiments, increasing concentrations (0.01-10 µM) of epinephrine 
were effective in triggering a dose-dependent decrease in SL mRNA 
levels (Figure 1B). The minimal effective dose for epinephrine to inhibit 
SL gene expression was 10 nM, and SL transcripts were reduced to 45% 
of control levels at maximal effective doses of 1 µM. 

Effects of adrenergic agonists on SL gene expression

To clarify the receptor specificity for epinephrine action, the effects 
of adrenergic agonists on SL gene expression were examined in tilapia 
NIL cells. As shown in Figure 2A, the inhibitory effects of epinephrine 
on SL gene expression were mimicked by the increasing levels of α2-
agonist clonidine (0.01-10 µM) and UK14304 (0.01-10 µM), whereas 
α1-agonist cirazoline (0.01-10 µM) or β-agonist isoproterenol (0.01-10 
µM) was not effective in altering SL mRNA expression (Figure 2B). 

Effects of adrenergic antagonists on epinephrine inhibition of 
SL gene expression

To further characterize the receptor specificity of epinephrine 
inhibition on SL gene, tilapia NIL cells were exposed to adrenergic 
antagonists specific for different subtypes of adrenoceptors. In these 
experiments, the inhibitory effect of epinephrine was tested in the 
presence or absence the α2-antagonist yohimbine, or α1-antagonist 
HEAT, or β-antagonist propranolol. In this case, epinephrine 
consistently suppressed SL gene expression and this inhibitory action 
was blocked by simultaneous treatment with α2-antagonist yohimbine 
(5 µM, Figure 3A), but not affected by treatment with the α1-antagonist 
HEAT (Figure 3B) and β-antagonist propranolol (Figure 3C). To 
further examine the specificity of α2 receptor activation on SL gene 
expression, the effects of α2-antagonist yohimbine on the SL response 
to the α2-agonists clonidine and UK14304 were studied in tilapia 
NIL cells. In the present study, α2-agonist clonidine- and UK14304-
inhibited SL gene expression were prevented in the presence of the α2-
antagonist yohimbine (Figures 3D and 3E).

α2-adrenergic regulation of SL transcript stability

To shed light on the mechanisms for α2-adrenergic inhibition of 
SL mRNA expression, the effects of α2-agonist clonidine treatment on 
SL mRNA stability were also tested. Clearance analysis of SL transcript 
was performed in NIL cells pretreated with the transcription inhibitor 
actinomycin D (8 µM). In this case, the clearance rate of SL transcripts 
expressed as the time required for half of the original amount of SL 
mRNA to degrade (i.e., T1/2) was used as an index to monitor SL 
transcript stability. As shown in Figure 4, SL mRNA levels were 
reduced gradually in a time-dependent manner with a T1/2 value of ~ 31 
h. However, the clearance profile or T1/2 value for SL transcripts was not 
affected by the co-treatment with clonidine (1 µM).
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Figure 1: Adrenergic regulation of SL mRNA expression in tilapia NIL cells. 
(A) Time-course and (B) dose-dependency of epinephrine (EP) on SL mRNA 
expression. NIL cells were incubated with EP (1 μM) for 12, 24, 48 h or with 
increasing doses of EP (0.01-10 μM) for 48 h. SL mRNA data are expressed 
as mean ± SEM and groups denoted by different letters represent a significant 
difference at P < 0.05 (ANOVA followed by Duncan’s test).
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Figure 2: Effects of adrenergic agonists on SL gene expression. Tilapia NIL 
cells were incubated with increasing doses of α2 agonist clonidine (Clon, 
0.01-10 µM) and UK14304 (UK, 0.01-10 µM) (A), or incubated with α1-agonist 
cirazoline (Cira, 0.01-10 µM) or β agonist isoproterenol (Isop, 0.01-10 µM) (B) 
for 48 h. SL mRNA data are expressed as mean ± SEM and groups denoted by 
different letters represent a significant difference at P < 0.05 (ANOVA followed 
by Duncan’s test).
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blocked by simultaneous incubation with epinephrine (1 µM, Figure 
5). Similarly, this stimulatory effect was also blocked by simultaneous 
treatment with the α2-agonist clonidine (1 µM).

α2-adrenergic inhibition of cAMP production

Given that is known to inhibit cAMP synthesis via activation of α2-
adrenergic receptor at the pituitary level in fish [10], the effects of α2-
adrenergic receptor agonist clonidine on cAMP production were tested 
in tilapia NIL cells. As shown in Figure 6A, forskolin was effective in 
elevating total cAMP production. In contrast, basal levels and forskolin-
induced increases in cAMP production were significantly attenuated 
by application of clonidine (Figure 6A). In tilapia NIL cells, cAMP 
contents were also significantly elevated by PACAP treatment (10 
nM), and this stimulatory action could be alleviated by simultaneous 
incubation with clonidine (Figure 6A). In parallel studies, increasing 
levels (0.01-10 µM) of the AC inhibitor MDL12330A (Figure 6B) and 
the PKA inhibitor H89 (Figure 6C) could mimic the dose dependence 
of clonidine inhibition on SL gene expression. To further evaluate the 
functional role of the cAMP-dependent pathway in clonidine-induced 
inhibition of SL gene expression, tilapia NIL cells were exposed to 
clonidine (1 µM) in the presence of the AC activator forskolin (1 
µM) and cAMP analog CPT-cAMP (100 µM), respectively. In this 
case, addition of clonidine (1 µM) inhibited not only basal SL gene 
expression but also forskolin- and CPT-cAMP-stimulated SL gene 
expression (Figure 6D). 

Discussion
Based on the studies in rainbow trout, epinephrine dose-

dependently inhibited SL release in the organ-cultured pituitary 
[20]. Since epinephrine does not readily cross the blood brain barrier 
[29], this catecholamine must directly act at the level of pituitary 
gland to inhibit SL secretion. This idea was further corroborated by 
our present studies that showed  epinephrine could inhibit SL gene 
expression in a time- and dose-dependent manner, suggesting that 
SL response to epinephrine may represent a common phenomenon 
in fish models. To shed light on the receptor specificity for SL 
response to epinephrine at the pituitary level, we clarified the receptor 
specificity using a pharmacological approach. In the present study, 
epinephrine-induced inhibitory actions were mimicked by the α2-
agonist clonidine and UK14304 but not by the α1-agonist cirazoline 
or β-agonist isoproterenol. Furthermore, epinephrine inhibition on SL 
gene expression could be prevented by the α2-antagonist yohimbine, 
whereas the α1-antagonist HEAT and the β antagonist propranolol 
were not effective in this regard. Apparently, α2 inhibition of SL gene 
expression could not be due to SL mRNA degradation as clonidine 
treatment did not alter the half-life of SL transcripts. These results, as a 
whole, provide evidence for the first time that the inhibitory action of 
epinephrine on SL gene expression is mediated by α2-adrenoceptors in 
tilapia NIL cells.

To further evaluate the functional role of epinephrine as a SL 
inhibitor in fish, we also examined functional interactions between 
PACAP and epinephrine in regulating SL gene expression. PACAP is 
a member of the secretin/glucagon/vasoactive intestinal polypeptide 
(VIP) family [30]. This peptide was first isolated in ovine hypothalamus 
based on its ability to stimulate AC activity in rat pituitary cells [31]. 
The mature peptide of PACAP reported in other vertebrate species, 
including fish, amphibians, and birds, exhibits more than 90% sequence 
homology when compared to the mammalian counterpart [32]. The 
role of PACAP as a hypophysiotropic factor is supported by the findings 
that: 1) PACAP nerve fibers are present in the median eminence and 2) 
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Figure 3: Effects of adrenergic antagonists on SL gene expression. Pituitary 
NIL cells were incubated with epinephrine (EP, 1 μM) in presence or absence 
of α2-antagonist yohimbine (Yohi, 5 Μm, A) or α1-antagonist HEAT (5 μM, B), 
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1 μM, E) on SL gene expression could be blocked by α2-antagonist yohimbine 
(Yohi, 5 μM) for 48 h. SL mRNA data are expressed as mean ± SEM and 
groups denoted by different letters represent a significant difference at P < 0.05 
(ANOVA followed by Duncan’s test).
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Adrenergic regulation of basal and PACAP-stimulated SL 
mRNA expression

The role of PACAP as a novel SL regulator has received increasing 
attention in teleosts [24-28]. To test the functional interactions between 
PACAP and epinephrine in regulating SL gene expression, tilapia NIL 
cells were challenged with PACAP (10 nM) for 48 h in the presence or 
absence of epinephrine. In this study, basal levels of SL mRNA were 
elevated by PACAP treatment, and this stimulatory action could be 
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PACAP can elevate basal secretion of GH, gonadotopin, prolactin, SL 
and adrenocorticotropic hormone [33]. In the present study, PACAP 
consistently stimulated SL mRNA expression in tilapia NIL cells, and 
these stimulatory actions could be blocked by epinephrine or the 
α2-agonist clonidine. Therefore, it would be logical to postulate that 
epinephrine may act as a negative regulator for PACAP induction of 
SL gene expression by acting through α2-adrenoceptors in the tilapia 
pituitary.

In general, α2-adrenoceptors are functionally coupled to Gi/Go 
G-proteins [34], which are negatively coupled with AC. However, 
the post-receptor signaling mechanisms for epinephrine-induced 
inhibition of SL gene expression are largely unknown. In tilapia 
NIL cells, α2-agonist clonidine treatment could inhibit total cAMP 
production and the ability of forskolin to increase cAMP production was 
also inhibited by clonidine. In our previous studies, PACAP-induced 
stimulation of SL mRNA expression can be attributed to the coupling 
of the AC/cAMP/PKA system [26]. These findings have prompted us to 
speculate that epinephrine may interfere with these signaling pathways 
to inhibit the stimulatory actions of PACAP on SL gene expression. 
This hypothesis was supported by the results of direct measurement 
of cAMP production in tilapia NIL cells. In the present study, PACAP 
consistently elevated cAMP levels in tilapia NIL cells, and these 
stimulatory actions could be blocked by simultaneous treatment with 
the α2-agonist clonidine. In parallel experiments, clonidine inhibition 
on SL mRNA expression could be mimicked by blocking cAMP-
dependent pathway with the AC inhibitor MDL12330A and the PKA 
inhibitor H89. Furthermore, the α2-agonist clonidine was effective in 
abolishing the SL responses to CPT-cAMP and forskolin, suggesting 
that epinephrine may interfere with the AC/cAMP pathways to inhibit 
SL gene expression. These results, as a whole, suggest that α2-adrenergic 
stimulation can downregulate SL gene transcription by inhibiting the 
AC/cAMP/PKA pathway in tilapia NIL cells.

Conclusion
In summary, we have demonstrated for the first time that 

epinephrine can suppress SL gene expression by acting directly at the 
pituitary cell level. These inhibitory actions are mediate through α2-
adrenoceptors negatively coupled to the cAMP-dependent pathway. 
This adrenergic inhibition not only affects basal SL gene transcripts 
but also attenuates the SL response to PACAP. Since PACAP is an 
important physiological SL-releasing factor in fish, the present findings 
may suggest that the α2 inhibitory influence at the pituitary level is 
an integral component of the neuroendocrine control of SL gene 
expression.
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