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ABSTRACT

Objective: To evaluate dietary adequacy of patients presenting for evaluation at an outpatient Traumatic brain injury

(TBI) clinic.

Research Design and Method: We identified 6 key dietary antioxidants with defined dietary intake reference ranges

that are considered important for brain health. Adult patients completed the 24-hour recall-face-to-face interview to

calculate estimated nutrient intake. Nutrients were assessed individually and were also summarized into a summary

score of intakes. Individual nutrients, summary nutrient intake, were compared with recommended dietary

requirement (RDA) to assess the adequacy, body mass index was calculated, and medical records were abstracted for

diagnoses of TBI.

Results: A total of 71 TBI patients were complete the study, the majority were young age between 18-30 years, half of

patients were classified as mild TBI while 12.7% and 40.8% were classified as moderate and severe TBI respectively

based on Glasgow Coma Scale (GCS). Motor vehicle accidents were the most common cause of TBI followed by falls

from height. One fourth of patients were underweight, while (47.9%) were normal weight and 24% were overweight

and/or obese. Most of patients (72%) were current smokers; no patient met the RDAs for all six dietary antioxidants.

Eighteen patients only (25%) fulfilled the requirements for 4 or more nutrients, while 53 patients fulfilled 6 or fewer

requirements. The overall daily intake of dietary antioxidants was significantly lower than the RDA.

Discussion: The importance of micronutrients is often neglected. Diets failing to meet RDAs for important brain

nutrients were common in an outpatient TBI clinic, with the worst mean scores of intakes for those patients

compared with the estimated average requirements. Multidimensional treatment plans, perhaps incorporating some

of the described nutritional adjuvants, will thus merit more investigations from both the bench and the bedside to

elucidate effective strategies to best treat TBI patients.
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INTRODUCTION

Supportive nutrition is considered a critical part of treating
patients with acute severe traumatic brain injury (TBI), but there
is little research on the role of nutrition in different forms of

TBI and there is no specific standard of nutritional care for TBI
patients after discharge from the hospital.

TBI is a major public health concern, more than 10 million
people worldwide each year are affected by traumatic brain
injury (TBI), representing 30% to 40% of all injury-related
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mortalities and disabilities among all age groups, with enormous
social and economic impacts [1,2]. The incidence of patients
suffering from TBI-related disabilities is 2-3-times higher than
those with neurological disabilities from Alzheimer’s disease or
cerebrovascular disorders have been expected by epidemiological
previsions until 2030.

TBI still represents a major global health burden and public
health challenge among all ages in all countries regardless of the
patient’s income level, despite recent advances in trauma
research and the ongoing efforts of collaborative
multidisciplinary studies to tackle this problem and improve
patients’ outcomes. The incidence of TBI is estimated to be 939
in 100,000 worldwide with the major causes being falls, vehicle
accidents, wars, and sports [3-6]. The mortality rate of TBI
worldwide is estimated to be between 7% and 23% with 90% of
TBI-related deaths occurring in developing countries [7,8].
Additionally, TBI imposes an economic burden on societies
where its annual global cost reaches 400 billion dollars [9].

The energy associated with an external mechanical force,
because cerebral tissue to absorbed part of it results with TBI.
This amount of energy causes the derangement of a myriad of
biochemical, metabolic, and molecular functions, deeply
affecting brain cell homeostasis and leading to temporary or
permanent impairment of consciousness, neurocognitive
deficits, neuromotor disabilities, or psychological disturbances
[10,11]. These disturbances in TBI depend on the severity of the
impact. The most commonly used system and scale to assess the
severity of TBI is the Glasgow Coma Scale (GCS) which
classifies TBI into mild (GCS range 13-15), moderate (GCS
range 9-12) and severe (GCS range 3-8). The GCS is obtained by
scoring specific clinical assessments, including eye opening,
motor and verbal responses [12]. Cerebral cells and blood vessels
damage occurred during primary TBI injury. A cascade of
biochemical and molecular mechanisms triggered by the primary
insult are refer to secondary TBI injury which start immediately
after impact, last for hours, days, or weeks depending on the
injury severity, and may culminate in cerebral cell death with a
loss of neuronal functions. Imbalance of ionic homeostasis,
release of excitatory neurotransmitters (glutamate, aspartate),
glucose dysmetabolism with mitochondrial dysfunction, and free
radical overproduction are the main characteristics of secondary
insult. The activation of different molecular pathways and
inflammatory cascades, leading to cellular apoptosis and damage
of the BBB permeability are the final consequences of TBI [13].

Triggering molecular damaging processes (lipid peroxidation,
DNA damage, protein oxidation) and in exacerbating glutamate
excitotoxicity, mitochondrial dysfunction, ionic dysregulation,
and activation of cellular proteases are well documented as a
result of reactive oxygen species (ROS) and free radicals
formation in brain tissue following TBI [14-16]. After TBI one of
the main processes activated is glutamate release, that causes an
influx of Ca2+ into neuronal cells via activation of NMDA
receptors and leads to an “early” calcium dysregulation [17,18].
This negatively impacts the main mitochondrial function,
leading to energy imbalance and contributing to increased ROS
production with documented post-traumatic membrane lipid
peroxidation [19-22]. A state where oxygen levels along with

oxygen-derived free radicals overwhelm the scavenging
antioxidant system is referred to oxidative stress. These include
agents like hydrogen peroxide (H2O2), superoxide anions (O2

-),
hydroxyl (OH-), and peroxyl (ROO-) radicals [23].

Excitotoxicity occurs once injury-induced, as a result excess of
Ca2+ promotes the production of ROS as well as nitric oxide
(NO) where protective mechanisms such as antioxidants fail to
control these radicals, leading to oxidative stress [24]. Alteration
of various macromolecules including DNA, proteins, and lipids
which eventually impairs various cellular processes occurred
because of free radical concentration increased [25]. The
macromolecules alterations reversibility predisposes individuals
to a wide range of disorders including neurodegenerative
diseases [26,27].

High oxidative metabolic activity, relatively low antioxidant
capacity, and low repair mechanisms leads to brain tissue
damage due to oxidative stress [28,29]. In TBI, ROS can be
produced via the arachidonic acid (AA) cascade activity,
mitochondrial leakage, catecholamine oxidation, and by
neutrophils [30,31]. In addition, NADPH oxidases (Nox) are a
family of membrane enzymes that reduce oxygen into ROS. Nox
play a major role in the pathophysiology of the nervous system
and they have a crucial contribution in the development of
secondary injury after TBI. It was shown that the activity of Nox
is elevated 1 h after TBI and is set in action by microglia and
that the inhibition of Nox can attenuate the secondary injury
post TBI [31,32]. Hence, Nox inhibition can also act as a
therapeutic target [32]. No treatment has been effective in
eradicating the consequences of injury up to date. Focusing on
alleviating the impact of secondary injury and managing its
biochemical contributors is the main aim of all therapies. With
a growing body of evidence on the role of oxidative stress in
TBI, antioxidants are being considered as potential therapeutics
[20,21,33,34].

System reinforcement could play a key role in the management.
This reinforcement appears as a safe, low-cost, and
multifunctional novel therapeutic approach in TBI patients.
Antioxidant therapies are effective over a long period of time,
allowing for suitable use in clinical settings. Due to the
encouraging preclinical results and the antioxidant drug profiles,
acute antioxidant reinforcement is emerging as a highly cost-
effective alternative for neuroprotection in TBI patients [35].
Major changes in nutritional status have been observed after
TBI in the clinic. The combination of alterations in blood flow,
excitotoxicity, free radical damage and altered global and
regional metabolic rates has been identified as a major
contributor to secondary damage from brain injury [36]. This
metabolic crisis in the early stages of TBI can be detrimental to
outcomes, recent studies have shown that supplementing basic
nutrition can significantly improve functional outcomes in
patients [37,38]. Based on the Brain Trauma Foundation
guidelines for hospital management of TBI, minimal standards
for nutritional supplementation were included, suggesting that
patients be placed on full nutritional replacement within 72
hours [39].

Currently, there is no neuroprotective agent, which
demonstrated improved neurological outcomes in a large phase
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III clinical trial. The potential use of unconventional treatments,
such as antioxidant defense, of note is that standard nutritional
replacement is typically formulated to contain mainly
macronutrients: carbohydrates, fats, and proteins, with no
vitamins or other minerals. Deficiencies in nutrition may
further exacerbate TBI symptoms and the depletion of bioactive
vitamins, minerals and other compounds may make it difficult
for the body to process other pharmaceutical compounds, a
phenomenon observed in experimental brain injury [40,41].

As nutritionally based therapies supplement basic biological
function and have therapeutic action in the injured brain, these
therapies may eventually represent an important component of
combination therapies. In this paper, we provide an overview of
the overlooked area of nutritional antioxidants adequacy in TBI
patients. However, in recent years, many vitamins, minerals, and
essential nutrients have risen to prominence as potential
primary therapeutics and have generated increasing interest
[42,43]. Nutraceutical therapies may provide an excellent avenue
of treatment for many patients with brain injury. However, they
are considerably understudied relative to other
pharmacotherapies. The nutritional antioxidants discussed
below represent a wide array of therapeutic mechanisms which
offer many opportunities for complementary or even synergistic
mechanisms with other pharmaceuticals, below we highlight the
most findings from the experimental brain injury and their
actual intake of these nutrients in Khoula hospital (National
Trauma Center)-Muscat/Sultanate of Oman. Vitamins are
nutrients that are required for normal physiological functioning;
many play crucial roles within the brain in a variety of processes.
Recent research has begun to examine how they are involved in
dysfunction of the nervous system, from chronic disease to acute
insults. The vitamins reviewed below were selected based on
existing evidence showing benefits in the treatment of neural
insults. Most of the vitamins have been explored with regards to
experimental brain injury. The specific nutrients responsible for
this effect remain elusive, but antioxidant vitamins, such as
vitamin E, carotene, and vitamin C, which are free radical
scavengers, may be major contributing factors to this
phenomenon. Patient intake of the below dietary antioxidants
have been directly assessed in post TBI patients, and adequacy
was assessed by comparing the actual daily intake with the
required dietary allowances (RDA) guidelines.

Vitamin C (ascorbic acid, ascorbate) is a potent water-soluble
antioxidant in humans. It inhibits peroxidation of membrane
phospholipids and acts as a scavenger of free radicals [44]. It also
behaves as an enzyme modulator, causing the up-regulation of
endothelial NOS (eNOS) and down-regulation of NADPH
oxidase. A sorbate can protect neurons from NMDA-induced
excitotoxicity and to prevent lipid peroxidation induced by
various oxidizing agents, especially in combination with α-
tocopherol because of its antioxidant and pharmacodynamics
properties. Ascorbic acid is widely recognized as one of the most
important endogenous free radical scavengers [45]. It has also
been suggested to have a neuroprotective role in reducing
damage from excitotoxicity [46]. As part of the general metabolic
dysfunction in TBI, tissue levels of ascorbic acid have been
shown to be severely reduced immediately and do not return to
normal until 72 hours post-injury [47,48]. Another important

role of vitamin C is the regeneration of vitamin E [49]. Brain
concentration of vitamin C is 10-fold higher than its plasma
levels [50,51]. This may indicate its potential role as a cerebro-
protective agent. Additionally, reduced vitamin C levels have
been reported in aged animals as a potential mechanism for
increased injury [52]. Vitamin C involvement in patients with
severe TBI and the radiologic diagnosis of diffuse axonal injury
clinically was trialed. A significant earlier stabilization of the
perilesional edema compared with the placebo group after
received a total dose of 32 g of intravenous vitamin C during the
first 7 days after TBI, with a maximum single dose of 10 g on
the first day and absence of many parameters of clinical
importance and monitoring techniques may make the
interpretation of these results challenging, although encouraging
results regarding the use of vitamin C in humans [35].

Vitamin E is a fat-soluble vitamin known to be one of the most
potent antioxidants. It breaks the propagation of the free radical
chain reaction in the lipids of biological membranes. Vitamin E
deficiency in humans is caused by either fat malabsorption or
genetic abnormalities, leading to peripheral neuropathy and
ataxia [53]. Low levels of antioxidants such as vitamin E,
ascorbic acid, and reduced glutathione (GSH) could lead to
tissue peroxidation disability in rats. Vitamin E deficiency also
influences the activities of SOD, catalase, and glutathione
peroxidase [54]. The consumption of vitamin E beyond the
requirement levels cited in the Dietary Reference Intakes (DRIs)
has been studied extensively from 1990 through 2010. Early
observational studies and animal studies suggested that vitamin
E antioxidant properties would protect the body against
devastating chronic diseases having oxidative stress as part of
their pathobiology, such as cardiovascular diseases and cancer
[55]. On the other hand, Vitamin E, mainly alpha tocopherol, is
the major peroxyl radical scavenger in biological lipid phases
such as cell membranes, and its antioxidant mechanism is
related to the inhibition of lipid peroxidation and NADPH
oxidase. One clinical trial of vitamin E has been performed in
patients with severe TBI and the radiologic diagnosis of diffuse
axonal injury for 7 days, patients received vitamin E at 400
IU/day intramuscularly, which resulted in improved clinical
outcome and reduced mortality at discharge. Despite promising
results, clinical trials using vitamins C and E, isolated or in
combination, are needed to change current therapeutic
measures in patients suffering TBI [35].

The requirement for the essential nutrient vitamin D can be met
by a combination of de novo synthesis and intake, either from
dietary sources or supplements. Plant sources derived vitamin D
is D2, while D3 is the form derived from the intake of animal-
based foods. Vitamin D3 also can be synthesized from
cholesterol by exposure of the skin to ultraviolet light. Both
forms of vitamin D act as prohormones. Modified first by the
liver enzyme 25-hydroxylase, vitamin D is then transported to
the kidney microsomes where it is converted to the active
hormonal form known as 1,25-dihydroxyvitamin D, or calcitriol.

In addition to the role of vitamin D in calcium absorption,
serum calcium balance, and bone metabolism, it recently has
appreciate an essential role in the brain and central nervous
system (CNS), the enzyme 1 alpha-hydroxylase, that expressed by

Daradkeh G, et al.

J Nutr Food Sci, Vol.11 Iss.3 No:792 3



the human brain is responsible for the hydroxylation of 25-
hydroxyvitamin D to its active, hormonal form, 1,25-
dihydroxyvitamin D: as well as the nuclear receptor for vitamin
D. The current Recommended Dietary Allowance (RDA) for
vitamin D is 600 International Units (IU) per day for both male
and female adults up to the age of 70 [56]. At age 70, the RDA
increases to 800 IU. There are several considerations to consider
when applying these recommendations to others at risk for
traumatic brain injury (TBI). It is not known whether the
dietary vitamin D requirement for optimal brain function under
normal or injured conditions should be different. Median
estimates of vitamin D intake from foods are below the
Estimated Average Requirements (EARs) of 400 IU recently
established by the IOM. However, vitamin D also is synthesized
in the skin, and therefore vitamin D status is not accurately
reflected exclusively by dietary intake. Using National Health
and Nutrition Examination Survey (NHANES) data from 2000
to 2006, levels of 25-hydroxyvitamin D in serum, a depiction of
total vitamin D exposure, were above 50 nmol/mL, the level
identified as meeting the needs of most of the population.
There have been no clinical trials to address the possibility that
vitamin D supplementation may promote resilience to
subsequent TBI. However, human data (in elderly populations)
does indicate that failure to maintain adequate vitamin D
nutriture is associated with diminished neurocognitive health.
For example, plasma 25-hydroxy vitamin D concentrations of
less than 20 ng/mL in individuals 65-99 years of age were
associated with increased prevalence of dementia, and
concentrations below 10 ng/mL were associated with increased
cranial indicators (detected via magnetic resonance imaging
[MRI]) of cerebrovascular disease such as white matter
hyperintensity volume and large vessel infarcts [57].

Thiamin (vitamin B1) is a water-soluble vitamin found in many
food products including meat, legumes, sunflower seeds,
vegetables, and whole or enriched grain products. In animal
products, >95% of thiamin is found in its phosphorylated and
biologically active form, thiamin pyrophosphate (TPP) (also
known as thiamin diphosphate [TDP]), while it exists in its free
form in plants sources. The essential roles of thiamin in the
body consequences of Thiamin Deficiency (TD), and treatment
strategies for at-risk patients should be aware by the nutrition
and metabolic support professional. In the body, Thiamin plays
both coenzyme and non-coenzyme roles. Untreated TD
Impaired oxidative and energy metabolism, serious and
potentially irreversible neurological damage or death can occur.
Moreover, thiamin facilitates neurotransmission, probably by
potentiation of the release of the neurotransmitter’s
acetylcholine, dopamine, and norepinephrine. A finding of an
increased brain inflammation, as evidenced by increased
proinflammatory cytokines, chemokines, interferons, and
interferon-inducible proteins, as well as up-regulated
inflammatory gene expression have been reported in TD
patients as well, oxidative stress, glutamate-mediated
excitotoxicity, and inflammation which are the brain
pathophysiology were associated with TD.

Niacin (vitamin B3), a soluble B group vitamin which has been
shown to be neuroprotective in rodent models of cerebral
ischemia. A reduction in the size of the infarction when

administered up to 2 h with B3 has been shown following
induction of permanent focal cerebral ischemia in rats [58]. It
has been shown that a dose of 500 mg/kg of B3 provided the
greatest reduction in the size of the infarct, although, other
doses reduced the size of the infarct to a lesser extent [59]. As
well, Administration of B3 after transient focal cerebral ischemia
has been shown to reduce the size of the infarct and improve
neurological outcome [60].

Dietary requirement

The dietary reference intakes for dietary antioxidants of most
age groups are listed as the recommended dietary allowance
(RDA). According to the Institute of Medicine, “the RDA is the
average daily dietary intake level; sufficient to meet the nutrient
requirements of nearly all (97%-98%) healthy individuals in a
group and is calculated from an Estimated Average Requirement
(EAR).”

METHODS

The Institutional Review Board of sultan Qaboos university and
khoula hospital (National Trauma Center)-in Muscat/Sultanate
of Oman approved the research plan (MERC/11/03) and these
analyses using the criteria described by Bourre [61,62].
Regarding macronutrient and micronutrient intake and the
brain, we identified micronutrients important to optimal brain
function, we focused on measuring the estimated nutrient
intake of dietary antioxidants with RDA and patients’ written
informed consent was obtained.

Seventy-one adult outpatients aged 18-65 years; males referred to
the polytrauma clinic were invited to participate in the study. All
patients had a history of a documented medically confirmed
TBI; blast injury; or a head injury involving a fall, bullet wound,
vehicular accident, or other type of head injury and subsequent,
ongoing neurobehavioral symptoms.

The exclusion criterion included: psychiatric or neurological
history other than those resulting from a TBI, non-Omani
patients and those who were known to have cognitive
impairments that would preclude completion of the protracted
assessment or age younger than 18 years.

Demographic and anthropometric measurements

Demographic information including age, education level,
marital and smoking status were collected using a structured
questionnaire. Age was divided into two groups: 18-30 years and
31-65 years. Weight was measured in kilogram to the nearest 0.1
kg using a digital weighing scale (Seca 208, Vogal and Halke,
Germany). Height was measured to the nearest 0.5 cm by using
a stadiometer protocol adapted from Lohman et al. with a
vertical measuring scale fixed to a metal bar connected to
weighing scale [63]. Body Weight change was calculated as:
(current BW in kilograms ideal BW in kilograms)/ideal BW ×
100. as “height=85.10+1.73 × knee height-0.11 × age” for males,
“height=91.45+1.53 × knee height-0 For patients who were
unable to stand, height was estimated by using knee height
equation.16 × age” for females, and by ulna length for males,
height (cm)=4.605U+1.308A+28.003, and for females, height
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(cm)=4.459U+1.315A+31.485, and by demi span for Males:
height (cm)=(1.40 × demi-span in cm)+57.8 and for Females:
height (cm)=(1.35 × demi-span in cm)+60.0 [64-66]. The mean
height of the three measurements was considered in
calculations. Body Mass Index (BMI) was calculated as wt.
(kg)/ht.(m2), and the cutoff points of the world health
organization were used [67]. Glasgow Coma Scale (GCS) is a
neurological scale which aims to give a reliable and objective way
of recording the conscious state of a person for initial as well as
subsequent assessment. GCS is, a valid, reliable, and highly
objective instrument used all over the world in multi clinical
settings, conditions, especially in the emergencies' situations.
GCS is considered the gold standard instrument for health care
providers, including nurses to assess the level of consciousness
[68]. Traumatic brain injury was classified into three categories
based on Glasgow Coma Scale (GCS): mild if GCS scores ≥ 13,
moderate If GCS between (9-12), and severe head injury if GCS
score ≤ 8 [69].

Food intake

Patient’s dietary intake was assessed from daily food intake only
(no supplementation) by using the 24 hour recall, through face-
to-face interview with each patient [70]. Household utensils with
the different portion size of common foods were used to assist
the patients to report the accurate amount of food consumed,
and the results were used to generate estimated nutrient intake
for each respondent. Cut-off nutrient values were based on age
and gender specific estimated average requirements (EARs) and
the RDAs in the DRIs from the Food and Nutrition Board [71].
EAR is considered the micronutrient intake that would meet
the needs for half of the population, while RDA is the intake
level that would meet the needs of ∼ 98% of the population.
Dietary antioxidants adequacies were assessed by comparing the
actual intake with the recommended daily allowance (RDA),
after analysis of daily food intake using electronic program
[72,73]. Based on World Health Organization categories, body
mass index (BMI) was divided into four groups: underweight
(<18.5 kg/m2), normal (18-24.9 kg/m2), overweight (25-29.9
kg/m2) and obese (≥ 30 kg/m2) [74]. No other behavior or
mood assessments were carried out. We did not assess any
laboratory tests as part of the study. The aims of this study were:
(1) To identify data from TBI patients on the consumption of
vitamins, and dietary antioxidants reported to be important for
optimal brain function (2) To assess the adequacy of dietary
antioxidants in patients presenting for an evaluation of possible
TBI in providing those nutrients. Our hypothesis was that many
of the patients presenting for evaluation for possible TBI are
consuming diets that are not meeting the recommended dietary
allowances (RDAs) for micronutrients considered helpful for
optimal brain physiology.

RESULTS

Demographic and clinical characteristics

Demographic and clinical characteristics were obtained for all 71
patients with nutrient intake values, patients age ranging from
18 to 65 years and a mean age of 27.3 years (SE:1.4) fulfilled the
eligibility criteria of enrollment in the study. All patients were

males, most of them (75%) were young age between 18-30 years,
46.5% of subjects were classified as mild TBI while 12.7% and
40.8% were classified as moderate and severe TBI respectively
based on Glasgow Coma Scale (GCS). Motor vehicle accidents
were the most common cause of TBI (91.7%), followed by falls
from height (8.3%). One fourth of patients were underweight
BMI<18.5 (kg/m2), while (47.9%) were normal weight BMI
18.5-24.9 (kg/m2), 16.9% were overweight BMI 25-29.9 (kg/m2)
and 7.1% were obese BMI ≥ 30 (kg/m2). Fifty-one (72%)
patients were current smokers Table 1.

Characteristics n %

Age

18-30 years 53 75

31-65 years 18 25

Body Mass Index (kg/m2)

Underweight BMI ≤
18.5 (kg/m2)

20 28.1

Normal weight BMI
18.5-24.9 (kg/m2)

34 47.9

Overweight BMI
25-29.9 (kg/m2)

12 16.9

Obese BMI ≥ 30
(kg/m2)

5 7.1

The severity of Trauma (Glasgow Coma Scale) GCS

Mild (GCS ≥ 13) 33 46.5

Moderate (GCS 9-12) 29 12.7

Severe (GCS ≤ 8) 9 40.8

TBI Cause

Vehicle accident 65 91.5

Fall from height 6 8.5

Current smoker

Yes 51 71

No 20 29

Table 1: Demographic and Anthropometric Characteristics of
TBI Patients.

Dietary antioxidants intake

Seventy-one patients were complete the 24-hour dietary recall
interview, and the results were used to generate estimated
nutrient intake for each patient. Cut-off nutrient values were
based on age and gender-specific estimated average requirements
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(EARs) and the RDAs in the DRIs from the Food and Nutrition
Board [75]. RDA is the intake level that would meet the needs of
∼ 98% of the population. The study findings showed that no
patient met the RDAs for all six dietary antioxidants. Eighteen
patients only (25%) fulfilled the requirements for 4 or more
nutrients, while 53 patients fulfilled 6 or fewer requirements.
The overall daily intake of vitamin C was (76 mg), vitamin D
(3.7 mg), and vitamin E (4 mg) were significantly lower than the
RDA (p<0.0001, 0.0002 and 0.0001) respectively Figure 1 (A, B,
C). Thiamin (B1), Niacin (B3) and Choline overall daily intake
(0.8 mg) and (12 mg) and (420 mg) respectively were
significantly lower than the RDA (P<0.02, 0.02 and 0.0001)
Figure 1 (D, E, F).

Figure 1: Adequacy of dietary antioxidants intake compared
with RDA.

DISCUSSION

Reactive oxygen and nitrogen species (ROS/RNS) play an
integral role in brain injury and posttraumatic neuronal
degeneration [76,77]. Endogenous protective mechanisms such
as glutathione (GSH) and superoxide dismutase (SOD) may
become overwhelmed by increased production of free radicals in
the setting of acute traumatic stress, another important factor in
posttraumatic neuronal degeneration is lipid peroxidation
mediated by oxygen radical species [76,77]. In addition to
disrupting the membrane phospholipid architecture, lipid
peroxidation contributes to the formation of cytotoxic aldehyde
containing by products that bind to and impair the function of
cellular proteins [78]. The oxidation of DNA and proteins then
may trigger programmed cell death. This process is exacerbated
during the reperfusion phase of injury, resulting in additional
microvascular damage and neuronal cell death. Oxidative stress
has been implicated as a central pathogenic mechanism in

traumatic brain injury (TBI) because the brain is especially
vulnerable to such stress, compared to other tissues [79,80].
Many of the harmful biological events associated with TBI such
as DNA damage, brain-derived neurotrophic factor (BDNF)
dysfunction, and disruption of the membrane phospholipid
architecture, and has therefore been suggested as a principal
culprit in both acute and long-term events of TBI may cause by
overproduction of reactive oxygen species (ROS) [81,82].

Antioxidant supplementation probability to reduce the risk of
developing other forms of trauma (e.g., stroke and epilepsy) or
protect against developing adverse health outcomes after injury
have investigated through several clinical trials. It has
nevertheless become clear that oxidative stress after TBI triggers
many of its outcomes, and antioxidant compounds should be
considered to ameliorate these outcomes. AS mammals are
unable to perform their synthesis of low molecular weight
antioxidants, they depend on regular intake with diet to have
adequate circulating and tissue concentrations of antioxidants
[83]. In the case of increased ROS and RNS formation, the
quality of food consumed and/or supplementation of adjuvants
and nutraceuticals is of fundamental importance to provide
significant protection [84,85]. Despite of the link between
oxidative/nitrosative damage and TBI is evident, as well as
continuous growth of studies, reporting either preclinical or
clinical data, using supplementation with natural or synthetic
low molecular weight antioxidants, that have appeared in the
literature in the last decades as potentially useful treatments in
TBI, still the awareness that deficiency in antioxidant-rich foods
in the daily diet may further exacerbate TBI symptoms still
highly plausible [86-88].

Ascorbic Acid (AA) is one of the most abundant water-soluble
antioxidants within mammalian tissues, acting as a reducing
factor in several enzymatic reactions [89]. Being a powerful
reducing agent, it quickly reacts, with a wide range of ROS and
RNS, including peroxyl nitrite and hydroxyl radicals. As the
body cannot be synthesize AA, it depends on vitamin C-rich
food ingestion to satisfy its needs [90]. Although AA is one of
the most studied free radical scavengers and is particularly
abundant in the brain, only one preclinical and one clinical
study have examined the effects of AA in TBI, even though it
has been shown that the level of AA in the cerebral tissue
decreases rapidly following experimental TBI [91,92]. Its
depletion is strictly dependent on the severity of the injury,
remaining well below control values even longer after severe TBI
and returning to pre-impact concentrations after 72 h in mildly
injured animals [93,94]. Our study found that the overall daily
intake of vitamin C was (76 mg), significantly lower than RDA
p<0.0001, which may aggravate post-TBI symptoms, the finding
of this study is in consistent with others in literature [95,96],
who indicated that AA, even if administered alone, reduced
mortality rate, decreased cerebral tissue and circulating levels of
malondialdehyde (MDA), restored brain values of AA, and
stimulated tissue superoxide dismutase levels In a model of
closed-head TBI. Beneficial effects of high dosage of this
antioxidant were observed in AA-treated patients who showed
decreased progression of perilesional edema on CT scan in a
double blind controlled clinical trial of 100 TBI patients [97].
Our findings showed that intake of vitamin E (Tocopherols) (4
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mg) were significantly lower than the RDA, (P<0.0001) which
may complicate post-TBI symptom this finding is matching with
other studies in literature.

Tocopherols are a family of fat-soluble compounds, having a
remarkable antioxidant capacity. Tocopherol administered early
post-injury is beneficial to decrease tissue damage associated
with TBI and may reduce ROS-mediated tissue damage and
promote cerebral tissue regeneration following TBI [98,99].
Improvement of neurocognitive tasks and motor function were
reported after administration of tocopherol-succinate suggesting
that this type of infusion might be effective in the clinical setting
to decrease TBI-associated damage [100]. TBI-increased oxidative
damage to proteins, the decrease in SOD and BDNF caused by
TBI, and improved TBI-associated motor function impairments.
The authors’ conclusions were that dietary-tocopherol
supplementation could decrease the damaging effects of mild
TBI on synaptic plasticity and cognitive functions [101]. The
overall daily intake of vitamin D (3.7 mg) was significantly lower
than the RDA (p<0.0001). Vitamin D is a fat-soluble serco
steroid is another hormonal factor that could influence recovery
after TBI. Recovery after TBI may impair because of neuro
inflammation and may be a linking mechanism for the
beneficial effects of vitamin D in rat models of TBI [102-104].
This study showed inadequate intake of vitamin D compared
with RDA, this finding is consistent with the observation of
Daradkeh et al. who reported 23.8% of patients being vitamin
D deficient, and a further 66.7% were insufficient Post-TBI
[104]. These finding was inconsistent what has been reported by
Lowrance et al. and Cordain L et al. [105,106].

Choline is an essential nutrient available from a wide variety of
nutritional sources. It is an important molecule involved in
synthesis of structural cell membrane phospholipids, other
signaling molecules, and is also a precursor for acetylcholine
[107]. As such, it is postulated that dietary choline
supplementation may minimize cognitive deficit, reduce brain
inflammation, and protect the penumbra. Our findings showed
that choline dietary intake was significantly lower than RDA
(P<0.0001) which may lead to aggravates and delay post-TBI
complications. This finding is supported by the findings of
others; dietary choline supplementation was shown to
significantly reduce brain injury induced spatial learning deficits
in a rat model. Additionally, the choline-supplemented diet
helped reduce brain inflammation and spared cortical tissue
[108]. Our finding showed overall daily intake (12 mg) of niacin
(B3) was significantly lower than the RDA (P<0.02), this finding
inconsistent with other findings. Vitamin B3 (nicotinamide) is
one very interesting compound has been shown to be
neuroprotective in rodent models of cerebral ischemia. Reduce
the size of the infarction when administered up to 2 h following
induction of permanent focal cerebral ischemia in rats has been
shown [109]. Significantly reduced infarct size in different
strains of rats and improve neurological outcome [110-112].
Significantly improved performance and motor performance was
reported after a single dose of B3 administration following
ischemia within 7 days, while improved behavioral performance
has also been shown after multiple doses of B3 administered
following ischemia [113]. Given the recent evidence that B3
administration following experimental ischemia has a beneficial

effect it is reasonable to assume that B3 may also be therapeutic
following TBI. Adequate dietary intake of thiamin (B1) is very
necessary because thiamine reserves are depleted as early as 20
days of inadequate oral intake. Thiamine contributes to wound
healing by functioning in antibody and leukocyte cell formation
and collagen synthesis. Thus, maintaining thiamine levels is
important for patients with traumatic and other surgical
wounds. Our finding showed overall daily intake (0.8 mg) of
thiamin (B1), was significantly lower than the RDA (P<0.02),
this finding inconsistent with other findings in literature. The
practical use of micronutrient supplementation in nutrition
therapy in general has been recently reviewed [114]. The specific
role of thiamine (vitamin B1) in nutrition therapy in certain
disease states particularly traumatic brain injuries is important
for fundamental biological processes and enzymatic reactions,
and deficiencies may lead to disastrous consequences [115,116].
The importance of micronutrients is often neglected. The
attitude that “one size fits all” is not applicable to vitamin and
trace element supplementation. A statistically significant
biochemical thiamin deficiency was noted in healthy patients
who sustained significant trauma with Injury Severity Score ≥ 12
requiring admission to the ICU. There is some suggestion that
thiamine administration may play a role in recovery from
trauma [117].

CONCLUSION

TBI represents a heterogeneous pathophysiological process that
is clearly a challenge to manage. Multiple clinical studies of
nutritional strategies have not defined a specific pathway that
can serve as a sole, standalone target in TBI nutritional therapy.
Multidimensional treatment plans, perhaps incorporating some
of the described nutritional adjuvants, will thus merit more
investigations from both the bench and the bedside to elucidate
effective strategies to best treat TBI patients. Unfortunately,
many strategies that are promising in the lab or in animal
models have not borne fruit in clinical trials to date.
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