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Abstract
Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current 

standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene 
therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby 
potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for 
hemophilia gene therapy and this review article focuses on those that use adenoviral vectors.
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Introduction
Hemophilia is a group of genetic disorders that impairs blood 

clot formation. Hemophilia A is a deficiency in coagulation factor 
VIII (FVIII) and hemophilia B is a deficiency in coagulation factor 
IX (FIX). Current standard of care for hemophilia patients is protein 
replacement therapy whereby patients are intravenously infused with 
the missing coagulation factor and this is effective in limiting acute 
bleeds and reducing morbidity and mortality, as well as preventing 
long term disability, pain, and reduced range of motion in joints for 
both hemophilia A and B patients [1,2]. However, the short half-life of 
FVIII and FIX require multiple weekly intravenous infusions to achieve 
hemostasis [3,4]. This high frequency is inconvenient and costly and 
thus protein replacement therapy is often given in response to bleeds 
rather than prophylactically. In addition, protein replacement therapy 
presents several problems including complications in venous access, 
inhibitor formation, allergic reactions, and thrombosis [5].   

Given these disadvantages, the motivation to develop gene therapy 
for hemophilia is high and significant efforts have been made towards 
this goal in the last two decades. Hemophilia A and B are attractive 
candidates for gene therapy because: 1) even low levels (1% of normal 
activity) of clotting factors are therapeutic, as established by clinical 
studies with infusions of recombinant factor [2]; 2) FIX can be 
produced by a variety of tissues and still retain its biological activity 
[6]; 3) small and large disease animal models are available to investigate 
experimental treatments; 4) determination of clinically relevant 
endpoints is straightforward and unequivocal using well-characterized 
clotting assays. Despite the clinical similarities, there are a number of 
important differences between hemophilia A and B. First, the prevalence 
of hemophilia A is ~10 fold higher than hemophilia B [7] and this could 
facilitate patient enrolment for clinical trials. Second,   the FIX cDNA 
is relatively small (~1.5 kb) and thus can be accommodated into most 
viral vectors, while the larger 7 kb FVIII cDNA (or even at 4.4 kb for 
the B-domain deleted construct) can limit vector choice. Third, for 
protein-based therapy, development of neutralizing antibodies (called 
inhibitors) occurs much more frequently against FVIII (7-52%) than 
FIX (1-3%) [8], thus favoring hemophilia B for experimental treatments 
such as gene therapy. On the other hand, normal circulating levels of 
FVIII (100 to 200 ng/ml) are much lower than normal circulating levels 
of FIX (3,000 to 5,000 ng/ml), thus levels of protein expression required 
for clinical benefit may be less for FVIII thus perhaps necessitating 
lower vector doses which would improve safety.

A variety of gene and cell therapy strategies have been investigated 
for hemophilia gene therapy and many of these are covered by other 
review articles in this journal’s series. This review will focus solely on 
adenoviral vectors for hemophilia gene therapy. 

The Adenovirus

The adenovirus (Ad) has a non-enveloped icosahedral capsid 
of ~100 nm containing a linear double-stranded DNA genome of ~ 
36 kb [9]. Of the ~50 serotypes of human Ad, the most extensively 
characterized and thus vectorized are serotypes 2 (Ad2) and 5 (Ad5) 
of subgroup C. The 36 kb genome of Ad2 and Ad5 is flanked by cis-
acting inverted terminal repeats (ITRs) which are required for viral 
DNA replication. A cis-acting packaging signal (Ψ), required for the 
encapsidation of the Ad genome is located near the left ITR (Figure 
1). The Ad genome can be roughly divided into two sets of genes: the 
early region genes, E1A, E1B, E2, E3 and E4, are expressed before DNA 
replication and the late region genes, L1 to L5 are expressed to high 
levels after initiation of DNA replication. The E1A transcription unit 
is the first early region to be expressed during viral infection and it 
encodes two major E1A proteins that are involved in transcriptional 
regulation of the virus and stimulation of the host cell to enter an S 
phase-like state. The two major E1B proteins are necessary for blocking 
host mRNA transport, stimulating viral mRNA transport and blocking 
E1A-induced apoptosis. The E2 region encodes proteins required for 
viral DNA replication and can be divided into two subregions; E2a 
encodes the 72-kD DNA-binding protein and E2b encodes the viral 
DNA polymerase and terminal protein precursor (pTP). The E3 region, 
which is dispensable for virus growth in cell culture, encodes at least 
seven proteins most of which are involved in host immune evasion. The 
E4 region encodes at least six proteins, some functioning to facilitate 
DNA replication, enhance late gene expression, and decrease host 
protein synthesis. The late region genes are expressed from a common 
major late promoter and are generated by alternative splicing of a 
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single transcript. Most of the late mRNAs encode virion structural 
proteins. In addition to early and late region genes, four other small 
transcripts are also produced. The gene encoding protein IX (pIX) is 
colinear with E1B but uses a different promoter and is expressed at an 
intermediate time, as is the pIVa2 gene. Other late transcripts include 
the RNA polymerase III transcribed VA RNA I and II.

The Adenoviral Vector

The human Ad was one of the first viruses to be developed into a 
gene transfer vector for gene therapy. This was accomplished by deleting 
the viral E1 genes to render the vector replication deficient. These first 
generation Ad vectors (FGAd), produced in an E1-complementing cell 
line [10], are highly efficient at transducing target cells in vitro and in 
vivo and mediate very high level transgene expression. Thus some of 
the earliest studies in hemophilia gene therapy were conducted with 
FGAds. All these early studies showed that Ad can mediate very high, 
supratherapeutic levels of FIX in vivo. For example, administration 
of FGAd expressing FIX achieve complete correction of the bleeding 
diathesis in FIX-deficient dogs with levels of plasma FIX reaching 
300% of normal [11]. However, correction was transient and FIX levels 
declined after a few days with therapeutic levels persisting for only 1-2 
months. Similarly, intravascular administration of FGAd expressing 
hFIX into rhesus macaque resulted in high level hFIX at 4 days post-
injection but declined to undetectable levels by 2-3 weeks [20]. 

The reason that FGAd provided only transient transgene expression 
was the erroneous assumption that deletion of E1 would silence the rest 
of the viral genes still present in the vector backbone. Instead, low level 
viral gene expression in transduced cells flagged them for elimination 
by the adaptive cellular immune response thus resulting in transient 
transgene expression and chronic toxicity [12-15]. Processing of 
proteins derived from the viral capsid shell has also been implicated in 
this phenomenon [16]. Clearly, further silencing viral gene expression 
was needed to avoid adaptive immune response against transduced 
target cells. Two strategies were pursued to achieve this objective. One 
approach involved deletion of additional viral early genes such as E2 
and E4. These second generation Ad were easily propagated in cell 
lines engineered to express the missing E2 or E4 functions.   The other 
approach was to delete all of the adenoviral protein coding genes from 
the vector thus eliminating expression of viral proteins from the vector 
[17]. These vectors require a helper-virus for propagation and are thus 
called helper-dependent adenoviral vectors (HDAd) (Figure 2). An 
additional benefit of the large deletion of all viral genes from HDAds 
is their tremendous cloning capacity; up to 37 kb of foreign sequences 

can be inserted so that the large full-length hFVIII cDNA can be easily 
accommodated within HDAd. Production of HDAd is beyond the 
scope of this review but is detailed elsewhere [18].

Reddy et al. [19] compared the efficacy and safety of hemophilia A 
gene therapy using a second generation Ad vector (E1,E2a,E3-deleted) 
and a HDAd, both containing the identical B-domain deleted human 
FVIII expression cassette. In this study, hemophilia A mice were 
intravenously injected with 6×1010 particles of each vector. Plasma 
hFVIII levels in mice treated with HDAd peaked at 2 weeks post-
injection and were 10-fold higher than levels achieved using the second 
generation Ad. Expression of hFVIII in HDAd injected mice was 
sustained for at least 40 weeks although a ~10-fold decrease in plasma 
levels was observed between weeks 2 and 40. In contrast, plasma hFVIII 
levels in second generation Ad injected mice rapidly decreased to 
below the limit of detection by 12 weeks. At a dose of 3×1011 particles 
(1.5×1013 particles/kg) both vectors induced hepatotoxicity as evident 
by ~10-fold increase in AST and ALT levels measured 1 day after 
vector administration. These levels returned to baseline by day 3 post-
injection. However, by day 7, animals injected with second generation 
Ad showed a 10-fold elevation in AST and ALT levels whereas those 
injected with HDAd remained at baseline levels. AST and ALT levels 
did not return to baseline levels until day 28 in the second generation 
Ad injected animals. These results suggested that the initial increase in 
liver transaminases observed at day 1 was caused by direct toxicity of 
virion capsid proteins from both vector types. The toxicity observed 
at day 7 and beyond for second generation, but not HDAd, may have 
been due to viral gene expression from the backbone of the second 
generation Ad. This study clearly demonstrated that HDAd were 

Figure 1: Map of human adenovirus serotype 5. The ~36 kb genome is divided 
into four early region transcription units, E1–E4, and five families of late mRNA, 
L1–L5, which are alternative splice products of a common late transcript 
expressed from the major late promoter (MLP). Four smaller transcripts, pIX, 
IVa, and VA RNA’s I and II, are also produced. The 103 bp inverted terminal 
repeats (ITRs) are located at the termini of the genome and are involved in viral 
DNA replication, and the packaging signal (ψ) located from nucleotides 190 to 
380 at the left end is involved in packaging of the genome into virion capsids.

ITR

E1A
E1B

plX
lVa2 MLP

VAll RNA

VAl RNA

E2B L1 L2 L3 E2A L4 E3 L5 E4 ITR

ψ

Figure 2: The Cre/loxP system for generating HDAds. The HDAd contains only 
~500 bp of cis-acting Ad sequences required for DNA replication (ITRs) and 
packaging (ψ); the remainder of the genome consists of the desired transgene 
and non-Ad stuffer sequences. The HDAd genome is constructed as a bacterial 
plasmid (pHDAd) and is liberated by restriction enzyme digestion (e.g., PmeI). 
To rescue the HDAd, the liberated genome is transfected into a Cre expressing, 
E1 complementing cell line and infected with a helper virus, an FGAd bearing a 
packaging signal (ψ) flanked by loxP sites. Cre-mediated excision of ψ renders 
the helper virus genome unpackageable, but still able to provide all of the 
necessary trans-acting factors for propagation of the HDAd. The titer of the 
HDAd is increased by serial coinfections with the HDAd and the helper virus.
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superior to second generation Ad in the murine hemophilia A model 
with respect to safety and efficacy. Reddy et al. also reported that 
neither HDAd nor second generation Ad resulted in the development 
of anti-hFVIII antibodies [19]. This is in contrast to what was reported 
by Balague et al. [20] who reported inhibitor development in some, 
but not all, hemophilia A mice injected with HDAd expressing hFVIII. 
However, like Reddy’s study, in those mice that did not develop 
inhibitors, long-term hFVIII expression was observed. It is not known 
why inhibitors were seen in one study but not another and may be 
related to the genetic background of the mice. However, it is interesting 
to note that endogenous Ad-mediated expression of FVIII was much 
less immunogenic than recombinant protein administration [21]. 
Regardless, tolerance to human FVIII can be achieved by neonatal 
injection of HDAd vector in hemophilia A mice [22].

Preclinical and Clinical Studies
The safety and efficacy for HDAd mediated hemophilia gene 

therapy has also been evaluated in the large hemophilic canine model 
[23-26]. In the case of FIX-deficient dogs,   systemic intravascular 
injection of 3×1012 vp/kg of HDAd expressing canine FIX resulted in 
reducing whole blood clotting time from a pre-treatment of >60 min 
to ≤ 20 min for the duration of the observation period (up to 604 days) 
with therapeutic FIX levels for the entire observation period of up to 418 
days [19]. No signs of chronic toxicity were observed. Similarly, in the 
case of FVIII-deficient dogs, systemic intravascular injection of HDAd 
expressing canine FVIII resulted in reduction of whole blood clotting 
time to near normal levels and low level FVIII activity for the duration 
of the experiment of at least 2 years [20]. However, in both these studies, 
acute, albeit transient, laboratory abnormalities (ALT, AST, AP, CPK, 
platelet counts) were observed and attributed to activation of the innate 
inflammatory response [19,20]. Moreover, in both dog studies above, 
inhibitor development were not observed. However, it should be noted 
that in the case of the FVIII study above, the hemophilia A dogs used 
are not known to make inhibitors to cFVIII.

There has been a single case of intravascular administration of 
HDAd into a human patient. In this clinical trial, 4.3×1011 vp/kg of a 
HDAd expressing FVIII was intravenously injected into a hemophilia 
A patient [27]. This subject developed grade 3 liver toxicity, marked 
increase in interleukin-6 (IL-6), thrombocytopenia, and laboratory 
signs of disseminated intravascular coagulopathy. All these values 
returned to baseline by day 19 post-infusion. Unfortunately, no 
evidence of FVIII expression was detected. Also unfortunate is that 
this study has yet to be published in a peer-reviewed format so that 
much of the details remain unknown. Nevertheless, this acute toxicity 
is consistent with activation of the innate inflammatory response as 
described in the studies above as well as many others. 

Dose-Dependent Acute Toxicity
Although the precise mechanism(s) responsible for activation of 

the innate inflammatory response remains to be fully elucidated, it is 
mediated by the viral capsid (which is identical for all Ad-based vectors) 
and the severity of the response is dose-dependent. A variety of strategies 
have been developed to address this adverse outcome. For example, 
use of anti-inflammatory drugs or masking the viral capsid have shown 
promising results in blunting the innate inflammatory response [28-
32]. Modification of the virion to permit evasion of immune cells, such 
as Kupffer cells of the liver, have also yielded promising results [33-34]. 
Because the severity of the innate response to Ad is dose-dependent, 
other promising strategies involve lowering the minimal effective vector 
dose [35-37]. One such strategy makes use of more potent expression 

cassettes. For example, in the case of hemophilia B, three bioengineered 
FIX variants with improved catalytic activity have been tested in the 
context of HDAd [38]. The first vector expressed R338A-FIX, a FIX 
variant with the arginine at position 338 changed to an alanine [39,40], 
which resulted in a 2.9-fold higher specific activity (IU/mg) compared 
with the wild-type FIX. The second vector expressed FIXVIIEGF1, a 
variant with the EGF-1 domain replaced with the EGF-1 domain from 
FVII [41], which resulted in a 3.4-fold increase in specific activity. The 
third expressed R338A + FIXVIIEGF1, a novel variant containing both 
aforementioned modifications, which resulted in a 12.6-fold increase 
in specific activity. High level, long-term, and stable expression of these 
three variants was observed in hemophilia B mice with no evidence 
of increased thrombogenicity compared to wild-type FIX. Thus, these 
bioengineered FIX variants can increase the therapeutic index of gene 
therapy vectors by permitting administration of lower doses to achieve 
the same therapeutic outcome. Various FVIII variants have also been 
evaluated in the context of HDAd [42]. One variant was found to be 
efficacious long-term at half the viral dose compared to wild-type and 
with reduced induction of anti-FVIII antibodies.

There is considerable support for the notion that extrahepatic 
systemic vector dissemination plays a major role in Ad-mediated 
acute toxicity and that preferential hepatic transduction at the expense 
of extrahepatic vector uptake may reduce acute toxicity [43] and 
references therein]. Thus, another approach to achieve dose reduction 
is to use routes of vector administration that permit preferential 
hepatocyte transduction. Several approaches have been developed 
for administration of HDAd that result in increased hepatocyte 
transduction and long-term transgene expression with reduced systemic 
vector dissemination thus permitting use of clinically relevant sub-
toxic doses [44-46]. In one example, a balloon occlusion catheter was 
percutaneously positioned in the inferior vena cava to occlude hepatic 
venous outflow and HDAd was injected directly into the occluded 
liver via a percutaneously placed hepatic artery catheter (Figure 3A). 
This resulted in up to 80-fold improvement in hepatic transduction 
compared to systemic vector injection and with transgene expression 
sustained for up to 2.6 years [46]. This balloon catheter method was use 
to deliver a low dose of HDAd expression hFIX into rhesus macaques 
which can result in therapeutic levels of hFIX expression for up to 2.8 
years (Figure 3B)[47].

Despite impressive duration of expression data in large and 
small animals, transgene expression from HDAd may not be 
permanent because the vector genome does not integrate into the host 
chromosome.   Instead, a slow, steady decline in transgene expression 
has been observed and is consistent with a gradual loss of transduced 
hepatocytes due to physiologic turnover or loss of the episomal vector 
genome or a combination of both. Should transgene expression fall 
below therapeutic levels over time, a HDAd of a different serotype may 
be re-administered to overcome the neutralizing anti-Ad antibody 
elicited with the first administration [48,49]. An alternative approach to 
achieve stable transgene levels in the presence of hepatocyte turn-over 
is based on delivery of hyperactive Sleeping Beauty transposase system 
by HDAd that results in somatic integration of FIX into the hepatocyte 
genome [50]. By this approach, stable canine FIX expression levels 
from integrated vector have been observed long term both in mice and 
hemophilia B dogs [50]. 

Outstanding Issues and Concluding Remarks
In all animal models studied to date, HDAd transduced hepatocytes 
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(as well as all other target cell types examined) are not destroyed by 
an adaptive cellular immune response, thus leading to long-term 
transgene expression. However, whether this holds true for humans 
is not known, especially considering the outcomes of recent liver-
directed clinical trials for FIX-deficiency with AAV vectors [51,52]. 
AAV vectors, like HDAd, do not contain any viral genes and mediates 
long-term transgene expression following hepatocyte transduction in 
all animal models investigated. However, in humans, AAV-mediated 
transgene expression from transduced hepatocytes is subject to 
killing by AAV-specific CTLs. The source of immunogen has been 
attributed to AAV capsid peptides derived directly from the injected 
particle [51,53,54]. Similar to AAV, the HDAd capsid proteins derived 
directly from the administered particle may be a source of immunogen, 
analogous to AAV [55,56]. In this regard, Roth et al. [57] showed that 
HDAd transduction of dendritic cells in vitro can stimulate activation 
of anti-Ad CD8+ T-cells. Indeed, Muruve et al. [58] showed that Ad-
specific CTL were generated following intravascular administration of 
HDAd into mice. Similarly, Kushwah et al. [59] showed that intranasal 
administration of HDAd resulted in Ad-specific CD8+ T-cells. These 
studies show that HDAd can indeed provoke the generation of a 
CTL response directed against the viral protein derived directly from 
the capsid independent of de novo viral protein synthesis following 
administration into mice. However, whether these Ad-specific CTLs 
will eliminate HDAd transduced cells in vivo remains to be shown and 
animal modeling do not appear useful for addressing this important 
issue because they were not in the case for AAV [60-62].
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