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Abstract
There has been much progress in the clinical treatment of Progressive Vascular Diseases (PVD) since the 

introduction of statins, calcium channel blockers, and other relevant drugs. Yet long term PVD still plagues much of 
our aged population. The use of gene therapy, delivering therapeutic transgenes, should provide both long-term and 
safe treatment, as well as more physiologically relevant treatments. Adeno-associated Virus (AAV) can provide long 
term and safe gene delivery, very appropriate for long term PVD. In regard to therapeutic transgenes for the treatment 
of PVD, there is a choice of several gene categories, all of which may provide a significant level of efficacy yet 
have different metabolic modes of action. As examples there are anti-inflammatory cytokine genes, blood lipoprotein-
metabolism genes, and anti-oxidant genes.
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Introduction
The various forms of PVD, most notably atherosclerosis, encompass 

a large percentage of the morbidity and mortality of the aged population, 
and challenges cancer for the highest position of mortality [1]. As 
opposed to small molecule drugs (pills), the uses of genes (and their 
encoded proteins) which act in regulating the disease process should 
provide more physiologically relevant treatments with higher efficacy. 
Atherosclerotic plaque, particularly in its intermediate, most common 
form, can be thought of as an immune cell tumor. Almost all types of 
immune cells have been found within atherosclerotic plaque and have 
been deemed as causative agents. Monocytes, macrophages and derived 
foam cells are present in abundance within developing atherosclerotic 
plaques, however it remains to be proven which of these immune cell 
types are the mechanistic driver, the etiologic agents, of atherogenesis 
and PVD [2,3]. For example T cells have also been found to be elevated 
in atherosclerotic plaque, and these cells have also been suggested as 
critical mechanistic drivers of PVD [4]. 

The Viral Vectors Available
There are three main virus types used for transgene delivery (gene 

therapy). These are adenoviruses (Ad) [5], retrovirus/lentivirus [6] 
(usually Human Immunodeficiency Virus-Based, HIV), and Adeno-
associated Virus (AAV) [7]. Figure 1, shows the use of these three types 
over time for the treatment of PVD. It can be seen in Figure 1A that the 
use of Ad is on decline over time, and this is likely due to its short term 
expression, its association with inflammation, and its association with 
adverse reactions (death, inflammatory reactions) during its use (all 
negatives for the treatment of PVD. The use of lentiviral (retrovirus) 
vectors, in Figure 1B, are on the strong upswing, yet retroviruses as a 
general type are also known to be linked to adverse reactions and often 
with truncated expression periods. The worst documented retrovirus 
adverse reaction is the development of cancer, in both animal models 
and in patients. AAV is the focus here as it gives both long term 
transgene delivery (needed for the treatment of long-term vascular 
diseases) and its high level of safety.

Regarding AAV, since its first use in 1984 [7,8] for gene delivery 
AAV is a vector of continuous growing popularity (Figure 1C), and 
for good reason. AAV gene delivery has been shown to last at least ten 
years in patients [9] and has had no adverse reactions attributed to it 
in clinical trials. Moreover, AAV is the only gene therapy vector which 
has been approved as standard of care use in humans (in Europe) [10]. 
There are over 100 AAV types known and now many new synthetically 
altered capsid types are being generated every year [11]. The liver 

appears to be a major reservoir for infection (gene delivery) by many 
AAV types, as are various types of muscle. In arteries the arterial 
smooth muscle cells are the primary target for AAV type 2, as well as 
many other AAV types [12]. 

The Therapeutic Transgene Approaches
There are a number of gene therapy approaches which might be 

taken to prevent or slow down atherosclerosis. The three that will be 
covered here include transgenes which down-regulate the immune 
system, dyslipidemia in the circulation and arterial wall or which 
inhibit reactive oxygen species.

Down-Regulation of the Immune System/Anti-
Inflammation

As it is unclear which immune cell type, and which specific type 
of inflammation, is at the heart of atherogenesis the use of a general 
anti-inflammatory genes would seem to be advantageous for anti-
atherosclerosis effect [13,14]. The two most well known, well studied 
genes include transforming growth factor beta 1 (TGFβ1) and 
interleukin 10 (IL10). TGFβ1 is very pleiomorphic in its effects, yet 
its broad negative effects on the immune system are well documented 
[15]. Perhaps its most prominent adverse effect is its association with 
the induction of fibrosis [16]. Thus perhaps at this time TGFβ1 is not a 
desirable transgene for treating vascular disease due to its complicated 
and divergent effects.

IL10 [17] may be superior to TGFβ1 as fewer complications have 
been attributed to it, yet it has also been associated with it a number 
of adverse reactions such as anemia, and increased infections [18]. 
Regarding desirable therapeutic effect IL-10 has a broad effect on 
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multiple immune cell types. In particular, IL-10 decreases Mo/Mac 
activation, recruitment and proliferation, which are likely involved 
in plaque development [19]. Moreover, and importantly, the IL10 
transgene has been studied by multiple groups using AAV delivery, and 
all have shown it to have significant efficacy in animal models [20-24]. 
Like most cytokines, IL10 has a very short half-life in blood and because 
of this we consider that gene therapy is the most advantageous way to 
use IL10 therapeutically. This is because the gene has a much longer 
half-life than the protein. Again, AAV has the longest documented 
transgene life in patients [9]. 

Both IL-10 and TGFβ1 are Th1 response cytokines and there are 
other cytokines which are in this category which may be useful for 
inhibiting immune response within arteries. As cytokines are secreted 

proteins and largely act through diffusion and blood transport both the 
arterial wall and the liver are both appropriate platform tissues to target 
gene therapy, with the arterial wall, itself, being the most desirable 
approach. 

 Down-regulation of dyslipidemia

The level and makeup of lipoproteins in the blood are critical in 
directing vascular clinical outcome towards atherosclerosis or not [25]. 
High Density Lipoprotein (HDL), a complex assembly of proteins 
and lipids, gives desirable trafficking of lipids/lipoproteins which 
results in lower lipid levels (e.g. cholesterol) out of arterial walls. Apo 
A1 is one of the major protein components of HDL, thus higher Apo 
A1 levels would be one potential strategy for regulating dylipidemia 
[26,27]. A number of studies have shown that Apo A1 gene delivery 
offers additional protection against PVD, particularly atherosclerosis. 
Additionally, there is one natural mutation to the ApoA1 gene, Milano, 
which appears to have higher athero-protective attributes than wild 
type [28]. This desirable mutant gene has also been used therapeutically 
by gene delivery and has shown efficacy against PVD/atherosclerosis 
[29]. 

Conversely, Low Density Lipoprotein (LDL) is undesirable at high 
levels, is associated with atherogenesis, and at high levels would be 
considered a dyslipidemia. ApoB100 is a major protein component of 
LDL. Thus lowering ApoB100 might be an approach towards lowering 
vascular disease. The use of shRNA genes, or other inhibitory gene-type 
agents inhibiting ApoB100 expression, might be an additional strategy 
to limit PVD/atherosclerosis [30].

Down-regulation of reactive oxygen species

When are present in all cells and are eliminated by antioxidants. 
When Reactive Oxygen Species (ROS) are produced at high levels, 
above what the normal endogenous antioxidant defenses can handle, 
then oxidative stress takes place. Of course ROS are very important 
because of the widespread damage it can cause through its alteration 
of cellular proteins, DNA, and lipids. Moreover, ROS is a factor in 
many diseases of aging, and its role in cardiovascular disease is well 
documented [31]. It is clear that ROS intersects with and promotes both 
inflammation and dyslipidemia in their roles in causing atherogenesis. 

As ROS is an ever present problem cells encode a number of 
anti-oxidant genes. These include superoxide dismutases (SODs), 
glutathione peroxidases (GPXs), catalases, glutaredoxins. thioredoxin 
peroxidases (peroxiredoxins, eg. PRDX6), and others [32]. We 
have recently shown that AAV-delivered PRDX6 is able to inhibit 
atherosclerosis in Low Density Lipoprotein Receptor Knockout mice 
(LDLR KO) on high cholesterol diet [33].

Summary
In summary the future is promising for the development of AAV-

based gene therapies for limiting PVD, with many possible approaches 
likely to show significant efficacy. 
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