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Abstract
Significant amounts of heavy metals have been added to the soils globally due to the natural as well as anthropogenic 

activities. The heavy metal accumulation in crops may cause serious disorders in plants as well as in human beings. 
Therefore, investigation on heavy metals toxicity is remaining an area of scientific interest. In order to increase crop 
productivity and minimizing health hazards of heavy metals toxicities it is necessary to understand their mechanisms 
of toxicity. In this way, osmolytes such as proline is endogenous organic substance which regulates normal growth and 
development of plants, grown under metal contaminated urban and peri-urban areas. Therefore, application of proline 
and/or manipulation of gene(s) enhance the activity of enzyme(s) and their biosynthetic pathways have also been 
found to be much effective in mitigating heavy metal toxicity. In this review, impact of heavy metal toxicity on plants and 
adaptation strategies of plants with special role of proline have briefly been discussed.   
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Introduction
The ever increasing population, urbanization and industrialization 

have liberated massive volumes of waste water, which is increasingly 
utilized as a resource for irrigation in urban and peri-urban 
agricultural areas. Irrigation through this waste water carried a 
bulk amount of heavy metals and easily entered into the food chain 
through soil accumulation and subsequent plant uptake. Heavy metal 
contamination may severely inhibit the plant growth and productivity, 
and also increase the risk of damage in animal and human health via the 
biomagnification process [1-4]. Kidneys, bones and liver are the prone 
sites where heavy metals get stored due to the non-biodegradable and 
persistent in nature, leading to the malfunctioning of these vital organs 
and thus cause numerous serious health disorders [5]. A number of 
heavy metals such as Zn, Cu, Pb, Mn, Ni, Cr, Cd, As are wandering 
with the waste water and dispersed in the environment for the long 
time and cause serious threat to different level of food chains [3]. On 
the one hand, heavy metals cause different disorder in humans and 
plants while on the other hand among different heavy metals, some 
are essential for plant growth and development at their concentrations 
of acceptable limit [6]. The deleterious effects of heavy metals in plants 
are associated with the inhibition of basic physiological processes 
including photosynthesis, mineral nutrition and water relation [6-8] 
(Table 1) and also by the over production of different reactive oxygen 
species (ROS) [3,6,9]. In order to alleviate the heavy metals toxicities, 
chemical application and agronomical crop management practices 
have been used with a little bit of success. In the similar practices, 
exogenous application of osmolytes such as proline, glycine betaeins, 
polyamines etc. has emerged an alternative strategy to induce the 
capability within plants to face successfully the detrimental situation 
of heavy metals toxicities. Proline is a multifunctional amino acid, 
behaving like a signaling molecule and initiates the cascade of signaling 
processes [10]. It regulates the osmotic pressure inside the cell, prevents 
denaturation of proteins, membrane integrity, stabilization of enzymes, 
and quenching the toxic ROS [11] (Table 2 and Figure 1). Evidences 
showed that exogenous application of proline may improve the health 
of plants against cadmium [12] and selenium [13] (Table 2). Taking 
together previous studies, it appears that proline plays an important 
role in enhancing plant stress tolerance and may also help to reduce 

adverse effects caused by different heavy metals toxicities. Thus, heavy 
metals exert the adverse pressure from molecular to whole plant level 
and seriously limit growth and productivity. Therefore, investigation 
on heavy metals toxicities is remaining an area of scientific interest and 
further needed to understand their toxicity mechanisms as well as how 
to minimize health hazards by regulating their entry into crop plants. 
In this short review, we discuss adaptation strategies of plants with 
special reference of proline in combating heavy metals toxicities. We 
also examine recent advances in putative mechanisms whereby proline 
helps plants to deal with such environmental fluctuations. 

Sources and Levels of Heavy Metals Contamination in 
the Environment

A huge amount of heavy metals have been inserted into the 
environment through both natural as well as  anthropogenic activities 
including the geogenic process, weathering from the parental rocks, 
frequent irrigation, improper agricultural practices, industrial effluents, 
refuse burning, organic wastes, transport, combustion of fuels and 
power generation [14] (Table 3). Environmental contamination by 
heavy metals is a matter of global concern, which is directly related 
to anthropogenic actions (Table 3). Industrialization and urbanization 
have amplified the anthropogenic contribution of heavy metals 
pollution [2] and their increased level in the biosphere (Table 4).  An 
improper disposal technique of municipal solid waste is well thought-
out one of the major sources of heavy metals in soil [15]. Similar to 
the municipal solid waste, industrial discharge may also carry a huge 
amount of heavy metals that exerts pressure on aquatic as well as 
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Figure 1: A schematic representation of Cd2+ metal uptake and their translocation in root cell through  xylem loading, Cd2+ ions are apparently taken up into plant 
cells by Fe2+/Zn2+ transporters (belong to ZIP family transporters) and Ca2+ transporters/channels which present on root cell membrane. Cadmium ion transferred/
accumulates in vacuole from cytosol by Cd2+/H+ antiport channel. Metal-sequestering pathways in root cells likely play a key role in determining the rate of translocation 
to the aerial parts of the plant. At the same time, endogenous proline synthesized in cytosol, help in osmotic adjustment, redox balancing, signaling and synthesis of 
protein by translation which also detoxified Cd or metal toxicity (about proline adapted from Szabados and Savour) [11]. 

 

Heavy metal Plant Heavy metal induced disturbance in plants Reference

Arsenic
Carrot,

Lettuce, Spinach and  
Sun flower

Decline in growth, photosynthetic pigments, increased 
production of stress biomarkers [7,75]

Cadmium Tobacco An accumulation of Cd,  increased lipid peroxidation and 
decreased superoxide dismutase and catalase activity  [12]

Chromium Radish Disrupt the metabolic activity and translocations of nutrients  [16]

Nickel Triticum aestivum Disturbed the growth and nitrogen metabolism  [76]

Lead Brassica species Decline in growth due to hyper accumulation  [77]

Table 1: Effect of heavy metal on plants

Osmolyte  Plant Work Against heavy 
metal Reference

Proline

Microalgae, Tobacco, 
Chickpea, Brinjal

Protect membranes, enhance growth, reduce oxidative stress through antioxidant mechanism, 
provide molecular mechanisms of proline-mediated tolerance Cadmium

 [12,60]

  [9,46]

Bean signaling molecule, redox balancing reduces phytotoxic effects by minimising oxidative stress Selenium  [13]

Sunflower Protection by scavenging hydroxyl radical and reducing metal uptake As treatment increased 
endogenous proline Arsenic  [7]

Indian senna involved in stress-resistance mechanisms Lead  [78]

Ocimum tenuiflorum Detoxify by mechanism of improve antioxidant system chromium  [79]

Rice proline lower water potential and involved in the Hg2+ tolerance Mercury  [80]

Wheat Play osmoprotective role and  protect plants from Ni stress Nickel  [81]

Table 2: Significance of proline in plants under heavy metal stress
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terrestrial ecosystems including the agricultural fields in adjacent 
regions of industrial complexes [16]. 

Factors Influencing Heavy Metal Uptake
Anthropogenic activities may seriously influence the accessibility 

of heavy metals in the environment. Heavy metals may abruptly 
damage the vital physiological process of the cells including the gaseous 
exchange, CO2 fixation, respiration and nutrient absorption potential. 
A number of biotic as well as abiotic factors such as temperature, soil 
pH, soil aeration, moisture, type of plants their size and root systems, 
competition between the plants and the accessibility of elements in soil 
highly influence metals uptake rates in plants [2,17]. 

Mobilization of Heavy Metals in Plants
The acidification of rhizosphere and exudation of carboxylates are 

thought to be potential targets for enhancing metal accumulation in 
plants. In the process of heavy metal mobilization, primarily a metal 
has to be captured by root cells and got bound to the outer cell wall. 
Secondarily, various transporter proteins with their higher affinity to 
different binding sites help metals uptake across the plasma membrane. 
Furthermore, the secondary transporters such as channel proteins 
and/or H+ coupled carrier proteins accelerate the metals uptake and 
their accumulation. These secondary transporters get energy from the 
fluctuations of membrane potential of the plasma membrane and root 
epidermal cells [18]. It has been shown that metal transporters acting 
as foremost role for the maintaining of intracellular metal homeostasis 
[19]. At the same time, transporter proteins may also involved in metal 
detoxification via the regulation of metals uptake from root cells and 
their translocation from the cytosol to the vacuolar compartment [20] 
(Figure 1). Moreover, these proteins may also boost the antioxidant 
system, osmolytes concentration, genetic or ion homeostasis. Similarly, 
Verbruggen et al. [21] have also reported the influx of arsenate is driven 
by phosphate transporters while arsenite is taken up by the aquaporin 
nodulin 26-like intrinsic proteins. From the another point of view, 
heavy metals such as copper, manganese and zinc etc. act as essential 
micronutrients for a range of plant physiological processes via the 
action of Cu, Mn and Zn dependent enzymes. Thus plants have evolved 
a suite of mechanisms that control and respond to the uptake and 
accumulation of both essential and non-essential heavy metals [22]. 

Effects of Heavy Metal on plants
Heavy metal toxicity is considered one of the major abiotic 

stresses leading to reduced crop yield and productivity. The higher 
accumulation of these heavy metals such as As, Cd, Pb, Cr, Zn, Cu and 
Ni in cells have resulted in different alterations at the physiological, 
biochemical and cellular level leading to the severe damage to plant 
[6,9,12,23,24] (Table 1). Panda et al. [25] have reported Cr induced 
chlorosis in young leaves of wheat, damage to root cells, impaired 
photosynthesis, altered enzymatic function, stunted growth, and 
consequently plant death.  Similarly, Sangwan et al. [26] observed Cr 
induced decline in growth of cluster bean due to arrest in activities of 
nitrogenase, nitrate reductase, nitrite reductase, glutamine synthetase, 
and glutamate dehydrogenase enzymes. In another finding Yadav et al. 
[7] have observed the replacement of central atom (Mg) of chlorophyll 
molecule with As leading to the dismantle of chlorophyll resulting 
in the breakdown of photosynthesis and growth of the sunflower 
seedlings under As stress. It is also reported that, arsenic has great 
potential to block various metabolic processes in cell, and may interact 
with sulphydryl groups of the proteins, and also replace the phosphate 
group of ATP. Similar to As, Hg also interacts with the -SH groups 
and form the S-Hg-S bridge, disrupting the stability of the group and 
consequently affects seed’s germination and embryo’s growth [27]. 

Further, study showed that Cr stress declined biomass accumulation 
in barley plants by causing ultrastructure disorders in leaves such as 
uneven thickening and swelling of chloroplast, increased amount of 
plastoglobuli and disintegrated thylakoid membrane which resulted 
into decline in net stomatal conductance, cellular CO2 concentration, 
transpiration rate, photochemical efficiency and net photosynthetic 
rate [8]. In another finding, Hg reduces the plant growth due to its 
higher affinity to bind with-SH groups of proteins and causes uneven 
modification in protein structure [23]. It has been observed that 
brinjal plant when exposed to Cd showed restricted growth, leaf area, 
photosynthetic pigment and chlorophyll fluorescence [9]. Similarly, 
Shahid et al. [28] have reported that the growth and photosynthetic 
pigments of Vicia faba got inhibited under Pb stress. The decrease in 
growth was associated with the loss of photosynthetic pigments due 
to modification of chloroplast ultrastructure and higher affinity of 
Pb for S- and N-ligands of protein, restriction of plastoquinone and 

Heavy metal Sources Reference
Arsenic Volcanic eruptions, smelting operations, fossil-fuel combustion and  uses of pesticides and herbicides  [3,61]

Cadmium  by-product of zinc (occasionally lead) refining [2,62]

Nickel atmospheric fall out, biological cycles, dissolution of rocks and soil, industrial processes, diesel oil and fuel oil, dental or orthopaedic 
implants, stainless steel kitchen utensils  [63,64] 

Lead Industrial application,  fuel additive, paint, food, beverages, mining and smelting activities, automobile exhausts  [2,62,65]
Chromium mining and smelting, battery manufacturing, chrome plating, pigments, tanning of animal skins, dyes and wood [66,67]

Table 3: Sources of heavy metal in environment

Heavy metal Soil Fresh water Sea water Reference

Arsenic 50-15000 
(mg kg-1)

1-10
μg L−1. > 2 μg L−1  [68-70]

Cadmium 3-6 
(mg kg-1) 0.01 mg L−1 _  [71]

Nickel 3-1000 
(mg kg-1) > 10 µg L−1 0.1- 0.5

µg L−1  [63,64,72]

Lead 250-500 
(mg kg-1) 0.1 mg L−1 _ [71]

Cromium 0.05-125 
(g kg−1)

0.1-117
μg L−1

0.2-0.5
μg L−1  [73,74]

Table 4: Concentration of heavy metals in soil and water
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carotenoids synthesis pathway, impairment in electron transport 
chain and membrane permeability, insufficient supply of CO2 and 
inactivation of numerous enzymes [28,29]. 

The fate of cells functioning depends on the production of reactive 
oxygen species (ROS). Over production of ROS than acceptable limit 
in different compartment of cells and their accumulation may lead 
damage to various essential macromolecules including peroxidation of 
lipids and proteins, DNA damage and several other vital constituents 
of the plants cell (Table 1). Evidence shows that, ROS directly formed 
through Haber-Weiss reaction lead to the oxidative stress during 
heavy metal stress [30]. The foremost generation sites of ROS are 
the chloroplasts, mitochondrion and plasma membrane which are 
interconnected to electron transport system hence ROS are produced 
as by products during oxygen metabolism [31]. Keeping the biological 
significance of heavy metals in mind, they have been classified in two 
groups namely redox active and redox inactive element [32]. On the 
one hand, redox active elements may directly participate in redox 
reaction processes in cells and consequently lead to the formation 
of ROS such as superoxide radical (O2

•¯), hydrogen peroxide (H2O2) 
and after this most lethal hydroxyl radicals (•OH) via the combined 
Haber-Weiss and Fenton reactions [31] while on the other hand, redox 
inactive elements may disrupt the electron transport chains and also 
accelerated the ROS generation inside the cells [32,33]. Extensive 
studies have been performed on different heavy metals interaction with 
a wide variety of plants on oxidative stress biomarkers such as Cr in rice 
seedlings [26], Hg in alfalfa seedlings [23], Zn in wheat plants [6], Cd 
in brinjal seedlings [9], As in sunflower seedlings [7] and Ni in soybean 
seedlings [33] (Table 1).  

Effect of Heavy Metal on Human
In order to acquire vitamins, minerals and fibers, human beings 

are dependent on vegetables and fruits as they are the rich sources 
for them. At the same time, these plants also carry a good amount 
of toxic metals. It is well established that plants easily take up these 
metals by absorbing them from contaminated soils as well as from 
deposits on aerial parts of the plants exposed to the ambient air from 
polluted environments. Hyper accumulation of heavy metals in plants 
may cause serious complications in human beings especially of the 
cardiovascular, renal, nervous, skeletal systems and some other like 
carcinogenesis, mutagenesis and teratogenesis [34]. Moreover, it has 
been reported that inorganic form of arsenic (As) is most lethal as it 
is known as epigenetic carcinogen metalloid. In this way, trivalent 
arsenite (As+3) has more carcinogenic properties than the pentavalent 
arsenate (As+5). In humans, trivalent arsenite (As+3) induces the 
carcinogenesis in skin, lung, bladder, and kidney tissues by disrupting 
the multiple signaling pathway [35]. Similarly, the ionic forms of 
Ni2+ taken up by the cell have great affinity to bind with proteins and 
amino acids induce carcinogenesis through several processes including 
DNA hyper methylation (H3K9 mono and dimethylation), DNMT 
inhibition, DNA mutation, ROS generation, inhibiting histone H2A, 
H2B, H3 and H4 acetylation, modifying the tumor inhibitor genes to 
the heterochromatin, and substantial increase of the ubiquitination of 
H2A and H2B. Moreover, nickel ion also swaps essential metal ions that 
are generally required for the proper functioning of many enzymes, 
leading to their dysfunction [36]. 

Proline
Proline has been considered as one of the important osmoticum 

found in the cellular system exposed to water stress, saline stress, metal 
stress etc. In recent years, the role of proline has also been characterized 

as scavenger of ROS, generated during stress condition [37]. Proline 
synthesization takes place with glutamate involving two consecutive 
reductions catalyzed by pyrroline-5-carboxylate synthase (P5CS) 
and pyrroline-5-carboxylate reductase (P5CR), respectively. Another 
alternative precursor for proline biosynthesis is ornithine (Orn), which 
can be transaminated to P5C by Orn-d-aminotransferase (OAT), 
enzyme to be found in mitochondrion however, in animals proline 
can be synthesized from either arginine or glutamate [38]. The relative 
contributions of these two precursors to proline synthesis in various 
tissues have not been explored much and needs further investigation. 
Moreover, proline may also acts as molecular chaperon stabilizing the 
structures of protein and regulates the cytosolic pH which helps to 
balance the redox status of cell. In addition to its role as an osmolyte, 
proline also prevents the disruption of proteins and membranes by 
forming clusters with H2O molecules and stabilized their structures 
[37,39]. Furthermore, in Arabidopsis, the overexpression of an 
antisense proline dehydrogenase cDNA has been shown to accelerate 
the proline accumulation and that improves the resistance potential of 
plant against the freezing and hyper salinity condition [40]. Similarly, 
Su and Wu [41] showed that the over expression of P5CS gene from 
mothbean enhanced the accumulation of P5CS mRNA and proline 
level in transgenic rice which enhances the tolerance capacity of the 
plant against drought and salt stress. However, in case of human cells 
proline catabolism is implicated in mitochondria-dependent signaling 
that regulates the programmed cell death and apoptosis. Evidences 
showed that, proline application may efficiently remove the toxic ROS 
in fungi and yeast, thus preventing programmed cell death [42] and 
also protects human’s cell from carcinogenic oxidative stress [43]. 

Plant Defense Mechanisms against Heavy Metal 
Antioxidant defense system

Plants develop a number of strategies to overcome with the adverse 
impacts imposed by heavy metals. In plants, heavy metal toxicity 
may lead to the over production of ROS, resulting in peroxidation of 
many vital constituents of the cell. In this way, plants have an efficient 
defense system comprising a set of enzymatic as well as non-enzymatic 
antioxidants. A wide variety of enzymatic antioxidants consisting 
of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) 
and glutathione-s-transferase (GST) which may efficiently convert 
the superoxide radicals into hydrogen peroxide and subsequently 
water and oxygen whereas low molecular weight non-enzymatic 
antioxidants consisting the proline, ascorbic acid and glutathione may 
directly detoxify the ROS [7,9,44]. These two groups of antioxidants 
may professionally quench a wide range of toxic oxygen derivatives 
and prevent the cells from oxidative stress. Depending upon their 
localization at the different compartments of the cell their quenching 
mechanism also differs. In this way, SODs are a group of metalo-
enzymes that accelerate the conversion of superoxide radical (SOR, 
O2

•¯) into hydrogen peroxide (H2O2) whereas CAT, guaiacol peroxidase 
(GPX), and a variety of general PODs catalyze the breakdown of H2O2 
[31]. Similarly, GST is capable to catalyze the conjugation of different 
electrophilic substrates with reduced glutathione. Moreover, several 
studies report that under stress condition proline acts as an osmolyte 
and may increase antioxidant enzymes to minimize the adverse 
effect of oxidative stress [37,45] (Table 2 and Figure 1). In another 
finding, Islam et al. [12] reported that proline behaves like a plant 
growth regulators and maintains the osmotic adjustments, protects 
cells against ROS accumulation under Cd stress. In the similar way, 
exogenous application of proline reduces phytotoxic effects of selenium 
by minimizing oxidative stress and also improves growth in Phaseolus 
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vulgaris L. Seedlings [13]. Moreover, Hayat et al. [46] showed that the 
exogenous application of proline alleviates the damaging effects of Cd 
in plants and thereby enhances the growth and photosynthesis.  At the 
same time, heavy metal stress cause in a down regulating of leaf water 
potential on the other side it get recovered by the exogenous application 
of proline and enhanced the leaf water potential thereby protecting the 
membranes from metal induced injuries [46,47].

Cellular homeostasis

Proline may accumulate in cytosol under various biotic and 
abiotic stress conditions [37,45,48]. Hayat et al. [46] observed that the 
exogenous application of proline may enhance the endogenous proline 
level under heavy metal stress conditions which helps to maintain 
intracellular redox homeostasis potential [49] (Figure 1) protects 
enzymes [12], 3-D structure of proteins [50] and vital organelles 
including the cell membranes and also reducing the risk of peroxidation 
of lipids and proteins [47]. Proline may enhance the tolerance potential 
of plants by chelating heavy metals in the cytoplasm [51], regulating 
the water potential which is often impaired by heavy metals [52] 
maintain osmotic adjustment through cellular homeostasis and reduce 
metal uptake [53]. Wu et al. [54] also observed the minimum efflux 
of K ions in Anacystis nidulans after the application of proline under 
Cu stress suggesting the protective role of proline which protects the 
plasma membrane from Cu toxicity.

Role of genes in metal uptake and their transportation

a number of genes may express under the heavy metal stress which 
activate the specific enzymes to overcome with negative response. It 
has been reported that the genetically modified tobacco callus showed 
more resistance to methyl mercury (CH3Hg+) than the wild-type 
one. The merB gene encoded the MerB enzyme that dissociates the 
CH3Hg+ to Hg2+ which is less toxic and accumulated in the form of 
Hg-polyP complex in tobacco cells [55]. Moreover, the over expression 
of AtPCS1 and CePCS genes also enhanced the detoxification 
potential of tobacco plants under As and Cd stress with the increase 
in phytochelatins (PC) level [56,57]. In another study, Clemens [58] 
showed that Cd ions are apparently entered into the plant cell by Fe2+/
Zn2+ transporters of ZIP family and possibly by Ca2+ transporters or 
channels (Figure 1). Furthermore, there are also some genes which 
expressed in hyper accumulator phenotypes such as HMA4 gene under 
heavy metal stress. At the same time, some orthologous genes are also 
consistently over-expressed in Cd and Zn hypertolerant accessions in 
non-hyper accumulator metallophytes, e.g. SvHMA4 and SpHMA4 
in Silene vulgaris and S. paradoxa (Arnetoli and Schat unpublished 
data). Likewise, MT2b-orthologous genes are over-expressed in hyper 
accumulators, particularly in metallicolous accessions [59]. In this 
way, proline has recently been demonstrated to enhance the tolerance 
capacity of transgenic alga Chlamydomonas reinhardtii under hyper 
dose of cadmium [60]. In this study, a gene encoding moth bean 
D1-pyrroline-5-carboxylate synthetase (P5CS), initiates the proline 
synthesis, and introduced into the nuclear genome of green microalga 
Chlamydomonas reinhardtii. The transgenic alga produced 80% higher 
proline levels than the wild-type cells and grew more rapidly under 
higher Cd concentrations [60].

Conclusion and Future Perspective
The above study concludes that ROS are formed as by products 

during normal metabolic processes in aerobic life and involved in 
regulation of many physiological processes, however, their enhanced 
levels have been responsible for many complications in plants. This 

situation is further get more worsened with the increasing metal 
pollution due to the enhanced anthropogenic activities. The direct effect 
of heavy metal may be appeared as over generation of ROS in stressed 
plant which subsequently cause damage to essential macromolecules 
such as lipids, proteins, and nucleic acids, and thus, constrain crop 
productivity. Therefore, to engineer more metal tolerant plants, it is 
important to find out the key components of the plant metal tolerance 
network. These components include various genes, transcription 
factors, proteins and metabolites (osmolytes, phytohormones, lipids, 
etc.) which may be used to engineer plants for their increased metal 
tolerance. Despite the availability of ample literature, the understanding 
of relationship between metal stress and proline interaction at the 
physiological, biochemical as well as molecular level are still an area of 
scientific thrust. 
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