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mizoramensis, O.vespulae, O. bidoupensis, O. hydrangea, O. buquetii, O. 
laotii and O. puluongensis [3-9]. Recent changes in the nomenclature 
and modification in classifications of Cordyceps and related genera 
has been discussed by Shrestha, et al. [10].

Among these medicinal fungi, the most valued one in Chinese 
medicine is O. sinensis (formerly Cordyceps sinensis), O. sinensis mainly 
infects pupae but sometime larvae of insects. The healing powers 
of O. sinensis are documented in Chinese herbal books that are up 
to 2,000 years old. Another less explored Cordyceps species similar 
to O. sinensis, C. militaris and C. nutans is found in Japan, Taiwan 
and China. C. nutans is entomoparasitic ascomycete of hemipteran 
insects [11]. One more medicinal mushroom Paecilomyces is an 
anamorph of Cordyceps [12]. P. tenuipes had been used traditionally as 
an effective, nutritious health food and medicine in China [13,14].
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INTRODUCTION

Cordyceps Fr. (L.) is a large and diverse genus of the family 
Cordycipitaceae (Hypocreales, Ascomycota) comprising more than 625 
species according to Myco Bank [1]. They are parasitic fungi, mostly 
endoparasitoids of insects and other arthropods, while some of 
them are parasitic on other fungi [2]. Cordyceps genus includes many 
insect parasites and fungal parasites such as the tongue core club 
(Cordyceps ophioglossoides) which lives on deer truffles (Elaphomyces 
spp.) and plant parasites such as the grass kernel fungus (Epichloë 
typhina). The ergot fungus (Claviceps purpurea), Cordyceps  militaris, 
Ophiocordyceps sinensis (O. sinensis, caterpillar fungus), Cordyceps nutans 
and Paecilomyces tenuipes are related species. Recently, several new 
Ophiocordyceps species parasitizing on a range of insect hosts have 
been identified, e.g., O. asiana and O. tessaratomidarum, O. flavida, O. 
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There are many other Cordyceps species that grow on different kind of 
insects, infect their bodies and the ascomata emerges out from their 
body especially head to spread the spores. These species mostly infect 
only on host species thus widespread damage to different species is 
not possible by one fungus. It is a mechanism in nature that controls 
the unregulated growth of any species in check since the abundant 
species has higher chance of getting infected by a parasitic Cordyceps 
spore. Some of the Cordyceps species also show mind control 
behavior on their host e.g., Ophioglassus unilateralis after infecting 
host rainforest carpenter ant, Camponotus leonardi leads it to climb on 
a tree and bite the midrib on the lower side of a leaf to remain stuck 
in that position even after its death. This facilitates the dispersal of 
spores and infection of ants travelling on the ground.

O. sinensis (known as Dong-Chong Xia-Cao in Chinese means ‘worm 
in winter and grass in summer’) grows better in alpine areas (3000 to 
5000 meters high) of Tibet, Chinese and Indian territory which are 
covered with snow in winter and become grassy in summer. It infects 
a range of host insects especially Hepialus/Thitarodes (Lepidoptera) 
[15,16]. Cattle dig and eat it up during summers in the grassy 
lands to become energetic. Overharvesting of O. sinensis has led to 
its categorization as endangered species in China (State Order of 
Chinese Government). O. sinensis fruiting body has been cultivated 
commercially recently (some patents filed by companies). Mycelial 
forms have also been cultivated in vitro [17,18].

Cordyceps species are not only recommended as an aphrodisiac (called 
Himalayan Viagra), but also for strengthening the lungs, kidneys 
and sperm production, against cough, cold and bleeding. Infected 
pupae and caterpillars are in great demand as medicines but are 
not so common in nature, thus the pupae of the silkworm (Bombyx 
mori) are artificially infected with the fungi to meet the demand. 
The fruiting bodies harvested in nature may contain high amounts 
of Arsenic and other heavy metals therefore their sale is stringently 
regulated by Chinese government since 2016 [19]. The fungus 
germinates in the living larva, kills and mummifies it. Sometimes, 
many species including O. sinensis simultaneously infect the insect 
body. A dark brown stalk-like fruiting body, ascus which is 1-8 cm 
long, club-shaped orange/red and cylindrical, emerges from the head 
of insect corpse and stands upright. The clubs are whitish to pale 
orange inside. Shape and size of ascomata vary widely based on the 
size of the host, number of stromata formed and on the substrate of 
mycelial growth [20]. The perithecia are present inside clubs which is 
covered with the stroma. Its spores are long, filiform, smooth, hyaline 
and often septate that disintegrate later into smaller 3-7 μm × 1-1.2 
μm subspores. 

C. militaris is considered as a cheaper substitute for the rare fungus 
O. sinensis and ranks top among the commercialized Cordyceps 
species, followed by O. sinensis [21]. C. militaris have higher content of 
cordycepin as compared to O. sinensis. The consumption of C. militaris 
have a more potent anti-tumor effect than O. sinensis at the same 
dose level [22] (Figure 1). Fruiting bodies obtained from cultured C. 
militaris are sold as health food product and drug material across South 
East Asia and China [23]. C. militaris is widely distributed in Europe, 
North and South America and Asia and have multiple medicinal 
properties [24-26]. Many bioactive compounds have been isolated 
from it such as cordycepin 3’-deoxyadenosine Monophosphate 
(3’-dAMP), Cordyceps polysaccharides, ergosterol, ergothioneine 
trehalose, mannitol etc., [27-29] (Figure 2). Its nutraceuticals are 
consumed either as culinary mushrooms or in several other forms, 
e.g., extracts, fermented powder and tinctures. C. militaris have 

antioxidant, antimicrobial, anti-inflammatory, hypolipidemic, 
hypoglycemic, antiviral, antimalarial, prosexual, neuroprotective 
and immuno-protective and anti-tumorigenic [30-32] (Figure 1). In 
diabetic rat models (induced with Streptozotocin (STZ)), C. militaris 
treatment improved the sexual parameters e.g. serum testosteron 
levels, copulatory behaviour, epididymal sperm count and mobility 
[33]. Aqueous extracts of C. militaris show hypoglycemic activity i.e. 
anti-Protein Tyrosine Phosphatase 1B (PTP 1B) activity due to the 
presence of four cerebrosides including cordycerebroside B and 
a disaccharide [34]. It is also used for stopping bleeding, reducing 
phlegm, hypnotizing, calming, benefiting liver and kidney, tonifying 
deficiency, relieving asthma and skin cosmetics [35-39].

LITERATURE REVIEW

Active ingredients

Many components have been found from natural and cultured 
Cordyceps by Liquid Chromatography (LC), Gas Chromatography 

Figure 1: Beneficial properties of Cordyceps.

Figure 2: Constituents of Cordyceps.
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(GC), Nuclear Magnetic Resonance (NMR) spectrometry and 
Capillary Electrophoresis (CE) combined with Mass Spectrometry 
(MS) and UV-visible spectrophotometry such as cordycepin, 
adenosine, proteins, amino acids, carbohydrates, carboxylic acids, 
lipids, glycosides and minerals [40,41]. Among them, cordycepin 
is considered as the most valuable and economically important 
compound produced by this fungus (Figure 3). It is used to inhibit 
the growth of bacterial, fungal and viral pathogens including 
Clostridium paraputrificum and Clostridium perfringens, Bacillus subtilis, 
Candida, human poliovirus, tobacco mosaic virus and hepatitis C 
virus etc., [42-47]. In addition to this, cordycepin exhibits insecticidal 
effects. Cordycepin can induce cell death in pests, including 
Plutella xylostella, Trypanosoma brucei and Trypanosoma evansi [48-50]. 
Cordycepin induces programmed cell death in-vivo in P. xylostella. In 
T. evansi infected mice, a combination of cordycepin (2 mg/kg) and 
pentostatin (0.2 mg/kg) showed significant therapeutic potential 
and decreased toxicity. In addition, cordycepin also exhibited 
antifungal activity e.g. against different Candida isolates (Figure 
3). Cordycepin has normally been detected by High-Performance 
Liquid Chromatography (HPLC), but a new method developed 
recently used Matrix-Assisted Laser Desorption Ionization-Mass 
Spectrometry (MALDI-MS) to detect its concentration [51]. From 
another species, O. sinensis identified 8,541 putative antioxidant 
peptides using a high-throughput method [52]. 

Mechanism of action of active ingredients 

Cordycepin is supposed to enter the cells via the human Equilibrative 
Nucleoside Transporters 1 (hENT1) and phosphorylated by 
Adenosine Kinase (AK) to 3’-deoxyadenosine Monophosphate (3’-
dAMP). After being phosphorylated twice, 3’-dAMP is converted 
to the active 3’-deoxyadenosine Triphosphate (3’-dATP) by the 
concerted action of Adenosine Monophosphate Kinase (AMPK) 
and Nucleoside Diphosphate Kinase (NDPK) enzymes [53,54]. 
Cordycepin achieves its function by: 

•  Forming cordycepin triphosphate through phosphorylation 
which is erroneously recognized as ATP by target enzymes [55].

•  Abnormal purine metabolism through erroneous reading of 
cordycepin as adenosine. 

•  Cordycepin and/or cordycepin-triphosphate directly activate 
some protein kinases, e.g. AMPK probably due to an increase in 
the AMP/ATP ratio. 

•  Cordycepin and/or cordycepin-triphosphate inhibit targets 
kinases by replacing ATP binding with the highly structurally 
similar cordycepin-triphosphate binding and/or the activation 
of protein phosphatases [56,57]. 

• Cordycepin and/or cordycepin-triphosphate interrupt mRNA 
polyadenylation because of the erroneous recognition of 
cordycepin-triphosphate as ATP by poly A polymerase [58].

•  Cordycepin can specifically inhibit transcription efficiency and 
thus RNA elongation and also has the potential to act as a 
ligand. Recently diastereoisomers of ProTide, a modified form 
of cordycepin named NUC-7738, was synthesized artificially, 
which have up to 40 times greater potency for killing cancer 
cells than the cordycepin [59-61]. 

Total extracts with water or 50% ethyl alcohol and polysaccharides 
from C. militaris tend to promote type 1 immunity, whereas that with 
70-80% ethyl alcohol promote type 2 immunity. Cordycepin also 
promotes type 2 immunity. Different immunomodulatory effects of 
C. militaris extracts obtained using different solvents might be due to 
the different polarities of the final products.

C. militaris is not only rich in proteins (39.37%; 1.8, 1.5 and 1.9 
times of the protein content of pork, beef and mutton) and amino 
acids, but also in more than 30 trace elements required by human 
body. The content of Phosphorus (P), Zinc (Zn), Copper (Cu) and 
Iron (Fe) are respectively 1.8, 2.1, 8.8 and 3.5 times of that of O. 
sinensis. Additionally, the content of Selenium (Se) is equivalent to 
that of Astragalus. It contains an 18-kDa protein Cordyceps  militaris 
Protein-18 (CMP18), which induces apoptosis and might be toxic 
when the fungi are eaten fresh but gets destroyed upon cooking [62]. 
CMP18 induces apoptosis via mitochondria-dependent pathway.

Artificial cultivation and enhancement of active ingredients

Cost-effective, cheap, suitable and abundant resources such as by-
products of the agricultural and agro-industrial activities are being 
explored for the development of commercial cultivation of C. 
militaris and other edible and medicinal mushrooms [63,64]. A lot 
of literature is available for media optimization and enhancing the 
active ingredients content.

A wide range of methodologies are used to produce fruiting bodies 
and mycelia of C. militaris viz. submerged static fermentation, solid-
state fermentation, cultivation following larval or pupal infection 
and one-step non-static or repeated batch fermentation in liquid 
media [65-72]. There are many media on which C. militaris can be 
grown. One of the C. militaris culture medium comprises 40-50 g of 
glucose, 20-30 g of maltose, 5-15 g of beef extract, 5-15 g of peptone, 
25-35 g of calcium nitrate, 0.2-0.6 g of magnesium sulfate, 0.2-2.0 g 
of dipotassium hydrogen phosphate, 0.2-0.6 g of calcium chloride, 
30-60 g of silkworm chrysalis powder and 20-50 g of agar per 1000 
ml of distilled water. 0.2-1.0 g of common salt per liter is also added 
(Chinese Patent #132542158). The content of three pharmaceutically 
important products of C. militaris viz. polysaccharides, cordecepin 
and adenosine varies with time in fruiting bodies. The use of corn 
cobs or cottonseed shells to wheat bran and rice at ratios of 8:1:1 
(w/w/w) resulted in higher yields of fruit bodies compared to the 
conventional rice media, while corn cobs produced fruit bodies 
with the highest cordycepin content. Addition of vegetable oils 
such as rapeseed, olive, palm, peanut, corn, soybean and sunflower 
seeds in the static cultures of C. militaris promoted mycelium 
growth. Moreover, the addition of peanut oil significantly increased 

Figure 3: Uses of Cordyceps.
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militaris [79]. The efficient cordycepin production was explored 
using six edible insects as substrates. Highest yield of cordycepin was 
produced by the cultivation on Allomyrina dichotoma which was 34 
times that on Bombyx mori pupae. Fat content of insects was found to 
be important for cordycepin production. A positive correlation was 
observed between oleic acid content and cordycepin production. The 
transcriptional levels of cns1 and cns2, genes involved in cordycepin. 
biosynthesis, were higher in cordyceps grown on A. dichotoma than on 
other five tested insects [80].

It is important that cultured fungus should replace the natural one 
to decrease the burden on natural resources. Wild, O. sinensis takes 
1-2 years to complete its life cycle, while cultured, C. militaris takes 
only 4-6 weeks for fruiting in artificial culture. Artificial cultivation 
of O. sinensis was difficult but it has been achieved recently [81-
84]. In vitro-cultured mycelia of O. sinensis showed only 5% genetic 
variability from natural counterparts and indicated almost similar 
D-mannitol content, supporting replacement of the natural fungus 
with the cultured one [85]. Tang, et al. [86], achieved the successful 
cultivation of O. sinensis fruiting body with high mycelial protein 
content of 2.11% by media optimization. Some companies (e.g. 
Aloha Medicinals, USA) have filed patents for O. sinensis cultivation 
methods. However, there are conflicting reports-whether these have 
optimized the process. Kaushik, et al. [87], reported higher amount 
of cordycepin with growth supplements: nucleosides hypoxanthine 
and adenosine; amino acids-glycine and glutamine; plant hormones-
1-Naphthaleneacetic Acid (NAA) and 3-Indoleacetic Acid (IAA); 
vitamin-thiamine (B1) in O. sinensis. 

Biosynthesis pathway of C. militaris contains four genes cns1, cns2, 
cns3 and cns4 (Figure 4). Genes cns1, cns2 and cns3 for cordycepin 
synthesis are present on adjacent loci. Functional verification of 
the cns1 and cns2, genes essential for cordycepin production was 
confirmed by generating Aspergillus nidulans knockout mutants and 
the heterologous gene expression in Saccharomyces cerevisiae and 
Metarhizium robertsii. Similarly, functional verification of the cns3 
for pentostatin production was achieved through heterologous 
expression of cns3 in M. robertsii and C. bassiana. Cns1 and Cns2 protein 
interaction was also proved by yeast two-hybrid and co-localisation-
studies. Agrobacterium tumefaciens mediated transformation protocol 
for O. sinensis was standardized by co-cultivation of fungal recipient 
strains [88]. Pathways in C. cicadae, C. kyushensis and alternative 
pathway in C. militaris have also been deciphered recently [89-92].

cordycepin content. Optimized media formulation for C. militaris 
contained 20% beef broth, 0.10% peptone, 2% glucose, 0.15% yeast 
extract, 0.20% KH

2
PO

4
 and 0.02% MgSO

4
. Zhu, et al. [73], found 

that in C. militaris strain CM-H0810 which grows in the surrounding 
areas of Shanghai and Guangdong province, the polysaccharide 
content was highest at 45 d (3.46%), cordycepin at 60 d (3.57 μg/mg) 
and adenosine at 35 d (1.86 μg/mg). Liang, et al. [74], studied two 
C. militaris strains, “H” and “L” and obtained the highest yield and 
biological efficiency with Pearl Barley (PB) substrate for C. militaris H 
strain and with brown rice+peptone substrate for C. militaris strain 
L. Furthermore, they observed the highest cordycepin content on 
Wheat (W)+Monosodium Glutamate (MG) substrate, mannitol 
content on Plumule Rice (PR)+MG and adenosine content on 
PR+Yeast Extract (YE) substrates in the C. militaris H fruiting 
bodies. In C. militaris L, highest cordycepin was reported with 
W+MG substrate, mannitol with PB substrate and adenosine with 
PB+YE substrate. In another study, the concentration of bioactive 
compounds was compared between C. militaris and (i) Fruiting 
bodies on wheat; (ii) Fruiting bodies on pupae; (iii) Sclerotium (the 
pupae portion) and (iv) Sclerotium with fruiting bodies (stroma). 
The amounts of cordycepin, carotenoids and superoxide dismutase 
were found to be higher in the fruiting bodies on pupae than that 
in the fruiting bodies on wheat, whereas the amounts of adenosine, 
polysaccharides and mannitol were higher in the fruiting bodies 
on wheat than in the fruiting bodies on pupae. The adenosine, 
polysaccharide and mannitol contents in the sclerotium (the pupae 
portion) with fruiting bodies were significantly lower than those of 
the fruiting bodies on wheat.

Light and heat stress also influences cordycepin biosynthesis in 
C. militaris. It was suggested that during the late maturation stage 
of ascomata, heat and light stresses led to a significant increase in 
cordycepin biosynthesis without affecting biological efficiency 
and heat stress significantly promotes carotenoid production [75]. 
Moreover, it was observed that the optimal growth temperature 
for C. militaris is 20°C on agar medium, while growth at 25°C is 
compromised.

Mycelium growth of C. militaris also proved suitable for starch-
processing-industry waste under solid-state and submerged culture 
conditions. High level production of adenosine was reported by 
Lim, et al. [76], using millet as solid substrate under dark for the 
first 7 days and harvested on day 40, which decreased till day 50. 
High cordycepin level was produced by using soybean solid substrate 
and keeping in the dark for the first 14 days and harvesting on 50th 
day. In these conditions, Cordycepin increased from day 40 to day 
50. Authors also reported a high level of D-mannitol using millet 
as solid substrate and keeping the culture in dark for first 7 days 
and harvesting on 50th day. Tao, et al. [77], studied cultivation of 
six strains of C. militaris on different substrates e.g. rice, wheat and 
tussah (Antheraea pernyi) pupae and found that different strains grew 
better on different substrates e.g. strain CM3 showed best efficiency 
on rice and wheat (62.26% and 54.48% respectively), strain CM9 
on tussah pupae (biological efficiency of 291.70%). Further they 
observed highest adenosine (2.62 mg g-1) content in fruiting bodies 
of strain CM9 cultivated on tussah pupae and highest cordycepin 
(5.68 mg g-1) in strain CM4 cultivated on wheat. A high amount 
of Cordycepin may be itself harmful for the C. militaris, therefore 
a feedback mechanism to produce pentostatin, an adenosine 
deaminase inhibitor exists in C. militaris [78]. Hypoxia adaptation 
by introduction of Vitreoscilla haemoglobin in media, improved 
the growth, biomass and crude polysaccharides’ content in C. 

Figure 4: Cordycepin biosynthesis pathway.
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On the basis of these findings, authors proposed that the strain 
degeneration mechanism in C. militaris was associated with genes 
involved in Deoxyribonucleic Acid (DNA) methylation, toxin 
biosynthesis, energy metabolism and chromosome remodeling.

DISCUSSION

Transcriptomics, metabolics and lipidomics

Recent Omics studies have significantly improved our understanding 
of various aspects of Cordyceps fungi [121-125]. Transcriptomics 
of wild type and cultivated O. sinensis showed that the fatty acid 
metabolism was more active in wild O. sinensis compared to cultivated 
O. sinensis, evidenced by downregulation of genes encoding various 
enzymes involved in fatty acids metabolism e.g. acyl Coenzyme A 
(acyl- CoA) dehydrogenase, enoyl-CoA hydratase, 3-ketoacyl-CoA 
thiolase and acetyl-CoA acetyltransferase in cultivated O. sinensis. 
Liquid Chromatography Mass Spectroscopy (LC-MS)/MS-based 
metabolomics analysis in O. sinensis from Naqu (NCs) and Yushu 
(YCs), infected-stiff worm and their substituents i.e. artificially 
Cultivated Cordyceps species (CCs) and mycelia, identified 901 
metabolites. The contents of adenosine and cordycepin were 
significantly higher in cultivated O. sinensis than in the natural types 
whereas the levels of mannitol and polysaccharides were lower. 
However, the contents in the stiff worms were not significantly 
different from those in natural ones. Mannitol was present maximally 
in natural types followed by cultivated types and stiff worm. An 
integrated metabolomics and transcriptomics analysis of O. sinensis 
suggested the involvement of Inosine 5'-Monophosphate Dehydrogenase 
(IMPDH), Adenyl Succinate Synthetase (ADSS), Adenosine Kinase (AK), 
Guanylate Kinase (GUK) and guanosine Monophosphate Synthetase 
(guaA) genes in the synthesis of purine nucleotides and nucleosides.

Transcript analysis of C. militaris cultivation on germinated soyabean 
seeds showed that the gene expression in the early stages of 
fungus development is important for cordycepin biosynthesis and 
isoflavone modification metabolic pathways. It further revealed that 
transcription profile changed after two weeks of incubation. Based on 
a transcriptomics study in C. militaris, Zhang, et al. [126], proposed that 
sclerotium showed increased oxidative stress and energy metabolism 
and mitogen-activated protein kinase signaling might induce the 
formation of fruiting body. Furthermore, n_os_milR16, n_os_
milR21, n_os_milR34 and n_os_milR90 milRNAs could regulate 
the induction of fruiting body in it. In a lipidomics study, 435 lipids 
were detected from O. sinensis (Naqu, NCs and Yushu, YCs) and its 
substituents i.e. artificially CCs and mycelia from bailing capsules 
(BLs; fermented Cordyceps). There were less differences among 
bioactive lipids such as Sphingolipids (SLs), Glycolipids (GPs) and 
Fatty Acids (e.g., unsaturated Free Fatty Acids (FFA) and eicosanoid) 
between CCs and wild cordyceps while significant differences existed 
between BLs and wild Cordyceps. Majority of differentially expressed 
GPs and SLs were higher in BLs whereas most of differential Free 
Fatty Acids (FFAs) and eicosanoids were lower in BLs [127]. Li, et 
al. [128], carried out a transcriptomics study at six developmental 
stages i.e. Hyphae (HY), Sclerotium (ST), Primordium (PRm), 
Young Fruiting body (YF), Developed Fruiting body (DF) and 
Mature Fruiting body (MF) in O. sinensis, PR and MF stages grouped 
together, suggesting that primordium differentiation and sexual 
maturation had similar gene expression patterns. However, the ST 
and HY stages were far apart developmentally evidenced by more 
Diethylene Glycols (DEGs) between them, covering 47.5% of the 
genome. A recent study showed the cultivated O. sinensis contained 

Phenotypic degeneration during artificial cultivation

Phenotypic degeneration is a significant problem for mushroom 
growers. Usually fungi lose their virulence and their morphology 
is altered when they are repeatedly sub-cultured on artificial 
media. Morphological changes include colour and growth form 
modifications and reduced sporulation [93]. Various terms have 
been used to describe this phenomenon including phenotypic 
phenotypic degeneration, instability or deterioration, dual 
phenomenon, saltation and attenuation [94,95]. Particularly in 
C. militaris, degenerated cultures demonstrate longer growth cycle, 
slower mycelial growth, a lighter colour of hyphae (probably due to 
decrease in pigment content), reduced (or no) ability to produce fruit 
bodies, abnormal fruit body formation, decrease in the number of 
primordia, decrease in conidia production, decrease in secondary 
metabolites content, lower dehydrogenase activity and reduced 
cellulase and amylase activities, as well as lower extracellular and 
higher intracellular polysaccharides content [96-101]. It becomes 
more evident after fourth or fifth generations. Several factors that 
are either intrinsic/genetic or cultivation-related are involved in 
C. militaris degeneration. Developing suitable methodologies and 
interventions to avoid (or minimize) culture degeneration, improving 
ascomata and mycelia production and/or on enhancing cordycepin 
output by adopting various approaches and the use of both solid and 
liquid substrates are important research problems currently pursued 
in this field [102-111]. Beside this, use of breakthrough technologies 
such as genetic engineering can considerably improve C. militaris 
biomass content and various metabolites, including cordycepin 
[112-114]. A recent study standardized the Clustered Regularly 
Interspaced Short Palindromic Repeats-Cas9 (CRISPR-Cas9) gene 
editing technique for C. militaris [115].

He, et al. [116], determined that the mineral elements K+, Ca2+ 
and Zn2+ (at concentrations of 1.0 g L−1, 0.02 gL−1 and 250-375 μgL−1 
respectively) delayed the degeneration of different types of C. militaris 
and whereas Mn2+ and Mg2+ (at trace concentrations) promoted 
the degeneration. Degeneration of C. militaris was also affected by 
oxidative stress. Furthermore, homokaryosis promoted degeneration 
of C. militaris. The degenerated strains could be rejuvenated by cross-
mating of their single ascospore isolates.

Molecular mechanisms of phenotypic degeneration

Molecular mechanisms that affect C. militaris culture degeneration 
are not much understood. Continuous culture induced Mating-
Type (MAT) loci allele segregation is proposed to be one mechanism 
responsible for culture degeneration [117-120]. DNA methylation 
and gene mutation are also considered to be responsible for strain 
degeneration. A transcriptome-wide study during C. militaris sub 
culturing found that the genes involved in stress response such 
as the production of streptothricin acetyltransferase, glutathione 
S-transferase, gamma-glutamyl transpeptidase, alcohol dehydrogenase, 
the 30 kDa heat shock protein, Major Facilitator Superfamily 
(MFS) multidrug transporter and detoxification were up-regulated 
during strain degeneration. Similarly, expression of genes involved 
the metabolism of proteins, amino acids, carbohydrates, lipids, 
nucleic acids and nucleotides were significantly up-regulated e.g. 
mitochondrial co-chaperone GrpE, metalloprotease 1, trypsin-like 
serine protease, Suppressor of G2 allele of SKP1 (SGT1) and Cysteine 
and Histidine-Rich Domains (CHORD)-containing Proteins (CS), 
acetate transporter, formyl tetrahydrofolate deformylase, nucleoside 
triphosphate hydrolases and uracil phosphoribosyl transferase. 
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more of amino acids and derivatives, carbohydrates and derivatives 
and phenolic acids than wild O. sinensis, but lesser contents of most 
nucleosides and nucleotides. There are other studies also that shed 
a light on the pathways and active ingredient contents in correlation 
with different treatments [129-131]. 

CONCLUSIONS

Cordyceps fungus has many species which have proven and potential 
therapeutic activities. O. sinensis is the most sought after of these, 
found only in the Himalayas. It is dug by the native people to sell 
in the high demand market. This process has created a threat to the 
survival of this valuable species. Therefore, alternative species C. 
militaris were discovered that could be easily cultivated on the artificial 
substrates. The active principles in natural and cultivated Cordyceps, 
responsible for various therapeutic potentials have been compared 
and being further increased with the help of elicitation. Media 
manipulations were performed to achieve high bioactive compounds 
such as cordycepin, mannitol, adenosine, polysaccharides, ergosterol 
and Superoxide Dismutase (SOD) in C. militaris. Recently cultivation 
of O. sinensis has also been achieved on artificial media but with 
good scope for improvement. The action mechanisms of bioactive 
compounds are intensively being investigated and newer mechanisms 
are being unfolded. Many companies have intensified their efforts 
for its commercial exploitation as drug candidate for several diseases 
for which comprehensive data need to be generated before getting 
regulatory approvals. Higher accumulation of cordycepin and other 
active ingredients and cheaper cultivation methods of Cordyceps 
spp., are the needs of the hour for its commercial exploitation and 
availability to the larger population.
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