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The Forkhead Box O1 (FoxO1) Transcription Factor

It is the purpose of this review to support the hypothetical 
concept that the nuclear transcription factor FoxO1, a member of 
the class O subfamily of forkhead box (FoxO) transcription factors 
may be involved in the pathogenesis of acne vulgaris and other acne 
variants. It has been suggested that FoxO1 is the key to understand 
the relationship between genetic, metabolic and environmental 
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Abstract

The complex multifactorial pathogenesis of acne vulgaris, the most common skin disease, may be explained at the 
level of genomic regulation. A recent hypothesis suggested that a relative nuclear defi ciency of the metabolic sensor 
and nuclear transcription factor FoxO1 appears to play a key role in the pathogenesis of acne vulgaris. FoxO1 has 
been identifi ed as an important regulator of androgen receptor, cell proliferation, apoptosis, lipogenesis, oxidative stress 
regulation, innate and acquired immunity, all important aspects involved in the pathogenesis of acne. It is the intention 
of this review article to provide further evidence for the potential function of the PI3K/Akt/FoxO1 signaling pathway 
for other types of acne and acne-like eruptions. Apparently unrelated acneigenic stimuli like hyperglycemic food, 
insulinotropic milk and dairy product consumption, smoking, psychological stress, fi broblast growth factor receptor-2 
mutations in Apert syndrome and acneiform nevus, chloracne, and antidepressant-induced acne are all associated with 
upregulated PI3K/Akt-signaling known to result in a nuclear defi ciency of FoxO1. Reduced nuclear levels of FoxO1 may 
increase the expression of important acne target genes and derepress nuclear receptors, suggested to be involved in 
the clinical manifestation of acne. Accumulating indirect evidence supports the role of growth factor- and growth factor-
like acneigenic stimuli in posttranslational modifi cation of nuclear FoxO1 and strenghtens the hypothesis of a nuclear 
FoxO1 defi ciency as the possible underlying cause of acne vulgaris and clinical acne variants. This review intends to 
stimulate future research activities on the promising PI3K/Akt/FoxO1 signaling pathway which may be most helpful to 
unravel the pathogenesis of acne.

factors leading to acne [1]. It will be shown that various growth 
factor- and growth factor-like signals like insulin and insulin-like 
growth factor-1 (IGF-1) which are perceived by distinct cell membrane 
receptors are intergrated at the level of phosphoinositol-3 kinase 
(PI3K)/Akt activation (Figure 1). The activated kinase Akt (protein 
kinase B) translocates into the nucleus where Akt phosphorylates the 
nuclear FoxO1 protein. Phosphorylated FoxO1 is exported from the 
nucleus into the cytoplasm thereby derepressing target genes and 
activating nuclear receptors involved in acne pathogenesis (Figure 1) 
[1-3].        

Nuclear FoxO1 export has an effect on the activity of androgen 
receptor (AR), peroxisome proliferator-activated receptors 
(PPARs), liver X receptors (LXRs), the expression of key genes of 
cell cycle control (cyclin D1, D2, p21, p27), matrix modulation by 
matrix metalloproteinases (MMPs), the promoter activity of sterol 
regulatory element binding proteins (SREBPs) as the most important 
transcription factors of lipogenesis, the insulin sensitivity regulating 
glucose transporter protein-4 (GLUT4), the innate and acquired 
immune responses regulating antimicrobial peptide synthesis, toll-
like receptor-2 (TLR2) expression and T cell proliferation. It has 
also been demonstrated that retinoids are potent inducers of FoxO 
proteins, and FoxO1 mediates retinoid-induced adverse effects like 
isotretinoin-induced hypertriglyceridemia [1]. The similar clinical 
appearance of acne vulgaris and acne variants and isotretinoin´s mode 

of action on all pathogenical aspects of acne implies the existence of 
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Figure 1: Various growth factors and acneigenic stimuli activate PI3K/Akt 
signal transduction. Phosphorylated (black hexagons) FoxO1 is exported out 
of the nucleus into the cytoplasm. The resulting derepression and activation of 
acne target genes as well as the derepression of inhibitory nuclear receptors 
induce androgen receptor (AR) transactivation, comedogenesis, lipogenesis 
and follicular infl ammation and T-cell proliferation. PI3K: Phosphoinositol-3 
kinase; Akt: Akt kinase; IR: Insulin Receptor; IGF1R: IGF1-Receptor; FGFR2: 
Fibroblast Growth Factor Receptor-2; CRHR: Corticotropin Releasing 
Hormone Receptor; MC5R: Melanocortin-5-Receptor; IL1R: Interleukin-1 
Receptor; PGs: Peptidoglykanes; TLR2: Toll-like-Receptor-2; 5HTR: 
Serotonin Receptor; nAChR: Nicotine Receptor; APN: Aminopeptidase N, 
DP IV: Dipeptidylpeptidase IV; AhR/ARNT: Arylhydrocarbon Receptor/aryl 
Hydrocarbon Nuclear Translocator.
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a common signaling pathway. In this paper, the effect of acneigenic 
stimuli on the PI3K/Akt/FoxO1 signal transduction pathway and its 
contribution to the pathogenesis of clinical acne variants is dissected 
in further detail.

The Impact of Nutrition on the Metabolic Sensor FoxO1

FoxO1 and aggravation of acne by milk consumption

After nearly half a century, the role of diet in the pathogenesis of 

acne has regained recent scientific interest [4-10].Western diet has 

been associated with a high prevalence of acne [4-10]. Western life 

style nutrition in industrialized countries is associated with increased 

insulin/ IGF-1 signaling, which is superimposed on the physiological 

growth factor signaling of puberty, a mechanism which may well 

explain the high and increasing prevalence of acne in industrialized 

countries. Milk consumption induces high serum levels of IGF-1 [11-

15]. Milk consumption has been associated with linear growth and 

the manifestation of acne [16-18]. It is the biologic principle of milk 

to promote growth by increased insulin/IGF-1 signaling and induction 

of insulin resistance [11,12,15,19-23]. The relation between milk-

induced insulin/IGF-1 signaling and the pathogenesis of acne and 

chronic diseases of Western civilization has recently been presented 

[7,10,24-27]. The insulinotropic effect of milk resides within the 

hydrophilic whey protein fraction [28]. Both insulin and IGF-1 reduce 

nulear levels of FoxO1 [2,3].

FoxO1 and aggravation of acne by hyperglycemic carbohydrates

Nutrients rich in carbohydrates with a high glycemic index (GI) 

induce hyperglycemia, reactive hyperinsulinemia, and increased IGF-

1 serum levels. In contrast, a diet with a low glycemic load decreased 

serum IGF-1 levels and significantly improved acne following a 12-

week diet [29]. A diet with a low glycemic load versus a diet with 

a high glycemic load in 12 male acne patients showed a significant 

increase of IGF binding protein-1 (IGFBP-1) and IGFBP-3 in the low 

glycemic load group, suggesting that a diet with a low glycemic load 

reduces free IGF-1 activity and bioavailablity [30]. Intriguingly, the 

genes of IGFBP-1 and IGFBP-3 are FoxO-controled [3]. Improvement 

of acne has also been reported during the carbohydrate-restricted 

South Beach Florida diet [31,32]. A population-based cross-sectional 

study in Oslo of 3775 late adolescents (age 18 and 19 years) revealed 

a statistically significant association between acne and frequent 

consumption of chocolate, sweets and potato chips [33]. Restriction 

of carbohydrates and consumption of carbohydrates with a low GI 

will reduce insulin secretion of pancreatic -cells and lowers basal 

insulin levels thereby improving the nuclear content of the nutritional 

sensor and transcription factor FoxO1.

FoxO1 and acne-related endocrine disorders

The polycystic ovary syndrome (PCOS) is a common endocrine 

disorder affecting 5-20 % of women depending on their ethical 

background [34]. Hyperandrogenemia, altered gonadotropin 

secretion as well as insulin resistance are involved in the 

pathogenesis of PCOS. PCOS is frequently associated with acne and 

hirsutism. Insulin resistance of adipose tissue and muscle in PCOS 

leads to increased insulin/IGF-1 signaling to epithelial targets like 

the pilosebaceous units which are not insulin resistant [34-36]. 

Other endocrine disorders with increased levels of insulin and/

or IGF-1 and insulin resistance are often associated with acne like 

HAIR-AN (hyperandrogenism, insulin resistance, acanthosis nigricans) 

syndrome [37]. An increased incidence of acne is observed in 

acromegaly [38], Laron syndrome overdosed with recombinant IGF-

1 [39,40], premature adrenarche and precocious pubarche [41-44]. 

All these endocrine disorders with increased insulin/IGF-1 levels are 
expected to be associated with reduced nuclear concentrations of 
FoxO1, thus promoting the development of acne.

FoxO1 and smoker´s acne

Recent evidence supports the association between smoking and 

persistence of postpubertal acne [45,46]. There is evidence that 

smokers are insulin resistant and hyperinsulinemic, as compared with 

non-smokers [47]. Hyperinsulinemia, dyslipidemia and exaggerated 

adrenal androgen response to ACTH have been observed in male 

smokers [48]. Smoking is associated with increased free testosterone 

and fasting insulin levels in women with PCOS, resulting in aggravated 

insulin resistance [49]. Thus, smoking is associated with increased 

insulin/PI3K/Akt signaling of the pilosebaceous unit which may drive 

FoxO1 out of the nucleus.

Nicotine binds to acetylcholine receptors (AChRs). Undifferentiated 

sebocytes expressed 3, 9, 4, m3-m5 AChRs, whereas 7, 2, 

4, m2, and m4 were found in mature sebocytes [50]. Presence of 

AChRs and nicotinic activity are also found in the infundibulum of 

the pilosebaceous unit and can promote infundibular epithelial 

hyperplasia and follicular plugging, suggesting an important role for 

the cholinergic system in acne vulgaris and acne inversa (hidradenitis 

suppurativa) [51]. Activation of Akt in human airway epithelial cells 

by nicotine and a tobacco-specific carcinogen (NNK) has been shown 

[52]. Activation of Akt by nicotine or NNK occurred within minutes 

at concentrations achievable by smokers and depended upon 3-/

4-containing or 7-containing nicotinic AChRs, respectively [52]. In 

neuronal cells, 7 nicotinic AchRs have been shown to activate the 

PI3K/Akt pathway [53]. A time-dependent increase in phosphorylated 

Akt in oral keratinocytes and other epithelial cell lines has been 

observed with 100 M nicotine treatment [54]. Thus, insulin, nicotine 

and other components of tobacco smoke may converge in the 

activation of the PI3K/Akt pathway as demonstrated in various cell 

systems. Activation of PI3K/Akt by smoking acts like growth factor 

signaling which most likely reduces the nuclear content of FoxO1. 

FoxO1 and stress-induced acne

The sebaceous gland is not only a passive endocrine target 

organ that reacts to sex hormones but also plays an active part of 

various neuroendocrine/ neuromediator axes involving corticotropin 

releasing hormone (CRH) and melanocortin peptides [55,56].

Most growth factors signal via tyrosine kinase receptors which 

activate the PI3K/Akt pathway. A further mechanism of PI3K activation 

by G-protein coupled receptors (GPCRs) involves a direct binding of 

G subunits and the GTPase Ras [57]. The human sebaceous gland 

has been shown to express GPCRs for neuropeptides, such as CRH and 

melanocortins, -endorphin, vasoactive intestinal polypeptide, NP Y 

and calcitonin gene-related peptide. These receptors modulate the 

production of inflammatory cytokines, proliferation, differentiation, 

lipogenesis and androgen metabolism in human sebocytes [58-61].  

The hypothalamic-pituitary-adrenal (HPA) axis mediates 

neuroendocrine responses of sebaceous glands to stress [62]. CRH is 

the principal neuroregulator of the HPA-axis and plays an important 

role in coordinating the endocrine, autonomic and immune responses 

to stress [63]. The presence of CRH and its receptors CRHR1 and 

CRHR2 have been demonstrated in human sebaceous glands and 

SZ95 sebocytes [60,64-66]. CRH can induce synthesis of neutral lipids 

in SZ95 sebocytes, whereas antalarmin, a CRHR1 specific inhibitor, 
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reduced sebaceous neutral lipid synthesis [66]. A significant increase 
in CRHR expression has been observed in sebaceous glands in acne-
involved skin compared with sebaceous glands not involved with acne 
[60]. Thus, substantial evidence points to the important role of CRH/
CRHR signaling in the induction of lipogenesis and inflammation in 
acne [67]. In human monocytic cells, CRH has been demonstrated to 
activate the PI3K/Akt pathway [68]. These data imply that acneigenic 
effects of stress might reduce nuclear levels of FoxO1 via CRH/CRHR-
induced upregulation of PI3K/Akt in sebaceous glands (Figure 1).

The proopiomelanocortin system also plays an important role 
as a neuromediator system in controling the sebaceous gland. The 
-melanocyte-stimulating hormone (-MSH) can stimulate sebocyte 
differentiation and lipogenesis [69,70]. Human sebocytes express 
melanocortin-1 receptor (MC1R) and MC5R [67,71,72]. MC1R was 
expressed in both undifferentiated and differentiated sebocytes. In 
acne-involved sebaceous glands a higher expression of MC1R could 
be detected in comparison with sebocytes of normal skin [73]. 

MC5R, only expressed in differentiated sebocytes and apparently 
stimulates lipogenesis [72]. MC5R function also seems to be related 
to stress response. Upregulation of MC5R was detected in the rat 
adrenal cortex as a consequence of a chronic stress [74]. MC5R has a 
preferential affinity for -MSH, followed by ACTH and -MSH [75]. By 
this mechanism stress-induced ACTH release may stimulate sebaceous 
glands via MC5R. Targeted deletion of MC5R resulted in deficient 

induced a 10- or 16-fold rise of cAMP levels and activated ERK1/2 
which was abolished by PI3K inhibiton. These data demonstrate that 
MC5R signals through a PI3K-regulated pathway [77]. In analogy to 
other GPCR-signals, MC5R-mediate activation of the PI3K/Akt pathway 
may contribute to further downregulation of the nuclear content of 
FoxO1, thereby promoting sebaceous lipogenesis. 

FoxO1 and ectopeptidase inhibitor-mediated effects on acne 
and immune function

Ectopeptidases are important functional transmembrane 
proteins which are able to modulate bioactive peptide responses and 
influence growth, apoptosis and differentiation, as well as adhesion 
and motility of cells [78]. Ectopeptidase-mediated signal transduction 
frequently involves tyrosine phosphorylation [78]. Ectopeptidases 
possess a short intracytoplasmic domain with no obvious motifs 
[78]. Recently, the ectopeptidases dipeptidylpeptidase IV (DP IV) and 
aminopeptidase N (APN) have been associated with the initiation of 
acne [79]. It could be demonstrated that inhibitors of DP IV and APN 
have potent immunosuppressive and anti-inflammatory effects in 
various disease models [79]. Interleukin-1 (IL-1) is a known cytokine 
involved in the initation of acne [80]. Intriguingly, inhibitors of DP 
IV and APN have been demonstrated to stimulate the expression of 
IL-1 receptor antagonist which may counteract the acne-promoting 
effect of IL-1 [79]. In SZ95 sebocytes, DP IV- and APN-inhibitors 
suppressed proliferation, enhanced terminal differentiation and 
slightly decreased total neutral lipid production [79]. Thus, inhibitors 
of DP IV and APN may be able to reduce comedogenesis, lipogenesis 
and inflammation [79]. 

It has recently been shown in Drosophila that the induction of 
antimicrobial peptides (AMPs) can be achieved independently of toll-
like receptor (TLR) pathways by FoxO-dependent gene regulation 
[81]. AMP genes are activated in response to nuclear FoxO activity 
[81]. Increased growth factor signaling of puberty and insulinotropic 
Western diet may reduce nuclear levels of FoxO1 and AMP activity 
thus promoting P. acnes growth and biofilm formation. P. acnes-

mediated TLR2-stimulation may then initiate T-cell infiltration as 

observed in early acne lesions [80]. Indeed, around uninvolved 

follicles of early acne lesions large numbers of CD4+ T cells over and 

above the constitutive level of surveillance T cells in normal skin have 

been detected. Within the CD4+ T cell population, the majority were 

memory/effectors, with a similar proportion exhibiting a skin homing 

phenotype suggesting the start of a specific inflammatory response 

from the adaptive immune system [80].

DP IV and DP IV-like enzymes, such as dipeptidyl peptidase II, 

dipeptidyl peptidase VIII, and dipeptidyl peptidase IX, have been 

recognized to regulate T lymphocyte activation [82,83], whereas DP 

IV- and APN-inhibitors suppressed proliferation of P. acnes-stimulated 

T cells ex vivo and induced an anti-inflammatory cytokine profile 

[84]. Remarkably, FoxO1 plays not only a role in the regulation of 

innate immunity but is of great importance in the regulation of T-cell 

function and T-cell homeostasis [85]. In resting T-cells, FoxO proteins 

reside in the nucleus. Akt activation via the stimulation of the T-cell 

receptor (TcR), CD28, and cytokine signaling pathways inactivates 

nuclear FoxO proteins which is associated with the induction of T cell 

proliferation [85-87]. Indeed, ectopic expression of an Akt-insensitive 

FoxO1 mutant suppresses T-cell proliferation, suggesting that 

inactivation of FoxO1,i.e.nuclear extrusion of FoxO1, is an obligatory 

step for T-cells to enter the cell cycle [87]. 

An interaction between DP IV and IGF-2 receptor (IGF2R)-

mediated T-cell activation has been described [88]. Internalization of 

DP IV is associated with cross-linking with IGF2R. In T-cells, triggering 

of DP IV by antibody is associated with calcium mobilization and 

activation of cellular proteins involved in TcR/CD3-mediated signal 

transduction [89]. At present, the mechanisms of growth factor-like 

signaling of ectopeptidases is not completely understood but the 

enzymatic activity of APN and DP IV does not appear to be essential 

for signal transduction [89,90]. Anti-CD3-mediated activation of 

human lymphocytes increased the expression of Akt. Akt activation 

could significantly be suppressed by a DP IV inhibitor [91]. Thus, 

ectopeptidase inhibitor treatment may have beneficial anti-

inflammatory effects on acne by downregulation of IL-1 signaling as 

well as downregulation of Akt-mediated T-cell proliferation by rising 

the nuclear levels of FoxO1 in T-cells [85,92]. 

FoxO1 and acne in Apert syndrome and acneiform nevus

Severe acne of early onset is a hallmark of Apert syndrome, a 
rare craniosynostosis syndrome [93]. Apert syndrome is associated 
with a gain-of-function mutation (either Ser252Trp or Pro253Arg) 
of fibroblast growth factor receptor-2 (FGFR2) [94-96]. Epidermal 

mosaicism producing an acneiform nevus has been observed in 
two boys exhibiting a somatic mutation of FGFR2 with a Ser252Trp 
substitution within the acneiform nevus [97,98].

FGFR2, another important tyrosine kinase receptor involved in 
growth factor signaling, plays an important role in the regulation 
of pilosebaceous homeostasis and appears to be involved in the 
pathogenesis of acne [99,100]. Androgen-mediated mesenchymal-
epithelial signaling to keratinocytes and sebocytes is a fundamental 
process for development and homeostasis of the pilosebaceous unit 

and involves AR-dependent FGF/FGFR2 signaling [99,100]. Anti-acne 
agents have been suggested to attenuate FGFR2 signal transduction 
in acne [101].

Remarkably, activated FGFRs significantly contribute to PI3K/Akt 
signaling [102]. The mutant FGFR2s of Apert syndrome exhibited a 
markedly upregulated downstream signaling compared to normal 

secretion of sebaceous glands [76]. MC5R stimulation by -MSH 
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FGFR2 [103]. Delayed endocytosis and proteasomal degradation of the 
mutant FGFR2s appear to be the cause of increased downstream signal 
transduction including elevated PI3K/Akt activity [103]. The gain-of-
function mutations of FGFR2 with increased PI3K/Akt activity might 
reduce the nuclear level of FoxO1, thus explaining the development 
of acne in Apert syndrome and acneiform nevus. Constistent with 
these data is the observation that acne in Apert syndrome and 
acneiform nevus is responsive to oral isotretinoin treatment [98,104-
106]. Isotretinoin-induced upregulation of decreased nuclear FoxO1 
levels would compensate for the signaling defect of the FGFR2 gain-
of-function mutations. Thus, Apert syndrome and acneiform nevus 
are two acne model diseases with increased growth factor signaling 
which result in PI3K/Akt activation with decreased nuclear levels of 
FoxO1.

FoxO1 and chloracne

Environmental pollutants can result in a variant of acne called 
chloracne by systemic exposure to certain halogenated aromatic 
hydrocarbons [107]. Chloracne is clinically characterized by a 
multitude of acne-like eruption of comedones, pustules and later on 
cysts, and squamous metaplasia of epithelial cells within the duct 
of the sebaceous gland [108]. Chloracne is regarded as a reliable 
indicator of dioxin exposure and is a persistent process that remains 
years after exposure [109,110]. The most biologically active isomer is 
2,3,7,8-tetra-chlorodibenzo-p -dioxin (TCDD). 

The pleiotropic effects caused by dioxins are mediated by the aryl 
hydrocarbon receptor (AhR), which is a ligand-activated transcription 
factor essential for inducing a battery of xenobiotic metabolizing 
enzymes [111]. AhR is considered to play not only a role in the 
regulation of xenobiotic metabolism but also in the regulation of 
growth and differentiation [112].The binding of dioxins to AhR leads 
to receptor dimerization with aryl hydrocarbon nuclear translocator 
(ARNT) followed by subsequent binding of this heterodimer to the 
dioxin response elements located in the promoter region of certain 
genes. The high level of AhR expression in epidermis, the finding that 
AhR was expressed in epidermal keratinocytes in a differentiation-
associated manner and the essential role of many AhR/ARNT-
dependent genes in the maintenance of skin homeostasis supported 
the possible involvement of AhR/ARNT signaling in chloracne 
pathogenesis [113-116]. 

Benzo[a]pyrene (BaP) and TCDD modulate signal transduction 
pathways in various cells. BaP produced a mitogenic signal in human 
mammary epithelial cells. Both BaP and TCDD activated IGF-1 
signaling pathways in a human mammary epithelial cell line under 
insulin-deficient conditions [117]. Increased signaling through IGF1R 
activated PI3K [117]. In contrast, the PI3K inhibitor LY294002 was 
found to inhibit the growth-promoting effects of TCDD seen under 
insulin-deficient conditions. Thus, aromatic hydrocarbons like TCDD 
and BaP activate IGF1R signaling and increase the activity of PI3K 
which will reduce nulear concentrations of FoxO1, a mechanism most 
likely involved in the pathogenesis of chloracne. 

BaP is a component found in tobacco smoke and tar and has been 
shown to activate Akt in osteoblasts [118]. Activation of the PI3K/
Akt oncogenic pathway is known to inhibit apoptosis. In a mammary 
epithelial cell line, TCDD stimulated PI3K and inhibited growth factor 
withdrawal-induced apoptosis [119]. Intriguingly, ozone, one of the 
main components of photochemical smog of urban environment, 
has been shown to activate the PI3K in epidermal keratinocytes 

[120]. Thus, PI3K/Akt activation by environmental acneigens like 
polyaromatic hydrocarbons and ozone might be involved in the 

pathogenesis of tar acne, smoker´s acne, pollutant-induced acne and 
chloracne.

FoxO1, antidepressant-induced acne and isotretinoin-induced 
depression

Severe acne and acneiform eruptions have been observed with 
high doses of tricyclic antidepressants like amineptine and lithium 
therapy [121-124]. In brain of mice, lithium significantly decreased 
the transcriptional activity and protein levels of FoxO3 [125], the 
most important activator of the FoxO1 promoter [126]. In mice, 
elevated serotonergic activity due to D-fenfluramine administration 
increased PI3K/Akt-mediated phosphorylation of FoxO1 and FoxO3a 
in various regions of the brain resulting in nuclear deficieny of FoxO1 
and FoxO3a content [127]. Long-term treatment with imipramine 
increased phosphorylation of FoxO1 and FoxO3 as well [127]. FoxOs 
in neuronal cells of rodents have been shown to be of functional 
importance in the regulation of behavioral manifestation [127,128]. 
Various cells of the skin express functionally active membrane-bound 
receptors for serotonin (5-hydroxytryptamine) [129]. It has been 
observed that ligand binding to serotonin receptors resulted in Akt 
activation [130-133]. Upregulated serotonin levels by antidepressants 
reduce nuclear concentrations of FoxO1 and FoxO3 in neuronal cells, 
mechanisms which appears to be associated with improved mood 
and reduced anxiety. Indeed, FoxO3-deficient mice presented with a 
significant anti-depressant-like behavior [127]. A nuclear increase of 
FoxO1 by oral isotretinoin treatment could be associated with mood 
disturbances and depression reported during isotretinoin therapy 
[134].

Modification of serotonin receptor signaling by antidepressants 
might thus be associated with PI3K/Akt activation and reduced 
nuclear levels of FoxO1 which may mediate antidepressant-induced 
acne.

Conclusion

All major factors in acne pathogenesis, i.e., AR-mediated signal 

transduction, increased proliferation of keratinocytes, augmented 

lipogenesis, upregulation of TLR2 signaling with local activation 

of innate and adaptive immune responses has been linked to a 

nuclear deficiency of  FoxO1 [1]. By means of translational medicine, 

all studied acneigenic stimuli and their receptor-mediated signal 

transductions appear to converge at the integration level of PI3K/Akt. 

The net activation of PI3K/Akt could finally determine the nuclear 

content of FoxO1 and its gene regulatory impact. Acnegenic stimuli 

which have to be regarded as growth factor- or growth factor-like 

signals appear to focus on a common convergence point, the nuclear 

content of transcription factor FoxO1. 

The hypothetical concept of a nuclear FoxO1 deficiency in acne 

vulgaris and related acne variants for the first time offers a unified 

explanation for the acne-aggravating consumption of insulinotropic 

dairy products, carbohydrates with high GI, acne-promoting effects 

of smoking, psychological stress, acneigenic effects of polyaromatic 

hydrocarbons, the effect of mutant FGFR2s in Apert syndrome 

and acneiform nevus and IL-1 -induced acne in PAPA syndrome. 

Furthermore, the presented hypothesis sheds a new light on the 

therapeutic and adverse effects of oral isotretinoin. Increased nuclear 

FoxO1 concentrations by systemic isotretinoin treatment have been 

proposed as isotretinoin´s major mode of action (Figure 2) [135].

The presented hypothesis offers new therapeutic and dietary 

treatment strategies for acne. These include especially the reduction 
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of insulinotropic and IGF-1 rising dairy products, the restriction 

of carbohydrates with high GI, cessation of smoking, avoidance of 

occupational exposition with acneigenic polyaromatic hydrocarbons, 

the consideration of drug-induced imbalances of nuclear content 

of FoxO1 and the control of psychological stress factors. As most 

of these factors are associated with Western life style [24-26], 

acne could be regarded as a condition with up-regulated growth 

factor signaling primarily due to environmental effectors. Various 

apparently unrelatated acneigenic stimuli either environmental 

(smoking, aromatic hydrocarbons, ozone), dietary (hyperglycemic 

carbohydrates and hyperinsulinotropic milk and dairy products), 

drug-induced (antidepressants, lithium) or genetic (FGFR2-mutations, 

AR polymorphism with short N-terminal CAG repeats) appear to be 

integrated at the level of PI3K/Akt activation. These promote the 

nuclear extrusion of the transcription factor FoxO1. Thus, evidence 

from translational medicine supports the potential function of the 

PI3K/Akt/FoxO1 signaling pathway in acne and its variants. Future 

studies in acne research should focus on growth factor signaling, 

especially on the role of nutrigenomic regulation of insulinotropic 

Western diet, to understand acne pathogenesis at the level of 

gene regulation and the precise role of FoxO transcription factors 

in the clinical manifestation of the most common skin disease of 

industrialized countries (Table 1).
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Research target Research question Predicted results

Sebocyte 

Regulatory role of  FoxO1 in sebaceous lipogenesis; 

FoxO1-mediated co-regulation of androgen receptor, 

PPARγ, LXR, RAR, RXR;
mechanism of isotretinoin-induced sebocyte apoptosis

Decreased levels of nuclear FoxO1 in sebocytes in acne may stimulate 
sebaceous lipogenesis;
isotretinoin may induce sebocyte apoptosis by upregulation of nuclear FoxO1 

and FoxO1-dependent apoptosis genes like IGFBP-3 and neutrophil gelatinase-

associated lipocalin

Keratinocyte 
Investigation of the role of FoxO1 in keratincyte proliferation 
in the pilosebaceous unit (PSU)

Decreased nuclear levels of FoxO1 in acro-infundibular keratinocytes in acne 
may be associated with decreased cyclin D1, D2 and increased p21 and p27

Oxidative stress
Clarifi cation of the role of FoxO1 in oxidative stress 
responses of the PSU; 

antioxidative mechanisms of isotretinoin action

Downregulated nuclear FoxO1 in acne may result in increased oxidative stress 
with suppressed expression of FoxO1-regulated catalase and superoxide 

dismutase

Innate immunity
Role of FoxO1 in the regulation of innate immunity of the 
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Downregulated nuclear FoxO1 in acne may decrease local innate immunity of 
the sebaceous follicle allowing P. acnes overgrowth and biofi lm formation 

Acquired immunity

Infl uence of FoxO1 in T-cell regulation of the PSU;

Infl uence of isotretinoin on FoxO1-mediated   T-cell 
regulation 

Reduced levels of nuclear FoxO1 in T-cells in PSU of acne patients; anti-
infl ammatory effect of isotretinoin or ectopeptidase inhibitors by upregulation of 

nuclear FoxO1 in T-cells

Dermal response
Role of FoxO1 in matrix metalloproteinase  (MMP) 

regulation and dermal remodeling 

Downregulated nuclear FoxO1 in acne may increase the activity of  MMPs 

promoting increased dermal tissue destruction 

Mode of retinoid action 
Adverse drug effects of 

isotretinoin

Clarifi cation of the role of FoxO1 in isotretinoin´s mode of 

action;

Role of retinoids in FoxO-regulation; isotretinoin-induced 
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Table 1: Proposed FoxO1-related topics for future acne research.

Figure 2:  Acneigenic growth factor signaling integrated at PI3K/Akt/FoxO1.
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