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Abstract

In the last decade, experimental research has intensely focused on metabolic reprogramming of tumor cells,
which contributes to cancer cell adaptation and survival in different and hostile microenvironments. Metabolic
reprogramming consists of the switch of tumor cells from aerobic or anaerobic glycolysis to oxidative
phosphorylation. A comprehensive vision of the metabolic scenario involving functionally different tumor cell
subpopulations was proposed as a necessary premise to the design of new strategies of diagnosis and therapy.
Special focus has been put on the role of acidosis of certain tumor regions, a very important although frequently
neglected aspect.

Despite the progresses in cancer therapy, the escaping of tumor cancer cells from host defense and relapse of
disease still represent main issues in tumor-bearing patients. Indeed, malignant cells are provided with a
tremendous plasticity that they exploit to survive, replicate and invade in stressed microenvironments. Such plasticity
allows cancer cells to easily modify their properties, including metabolism, switching back and forth from aerobic or
anaerobic glycolysis to oxidative phosphorylation (OxPhos). It is well ascertained that a suitable metabolic profile of
cancer cells is necessary to sustain tumor growth, local invasion and distant colonization. Thus, cancer metabolism
needs to be considered in view of the design of new strategies to control tumor progression.
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Warburg effect
Proliferating tumor cells have been largely shown to adopt “aerobic

glycolysis” as the main metabolic profile, the so-called “Warburg
effect” [1]. Indeed, most cancer cells use huge amounts of glucose even
when oxygen tension is high enough to sustain mitochondrial
respiration in normal cells. A link between oncogenesis and glucose
metabolism is the activating mutations in phosphoinositide 3-kinase
(PI3K) or overexpression of the AKT oncogenes, promoting expression
and localization of the high affinity glucose transporters on the plasma
membrane [2]. This is followed by lactic acid fermentation in the
cytosol and lactate export from the cell [3]. This alteration of glucose
metabolism acquired practical importance in clinical settings following
the development of 18-fluorodeoxyglucose-positron emission
tomography imaging [4,5]. Furthermore, it is well recognized that a
high serum level of lactate dehydrogenase (LDH) represents a
biomarker of poor prognosis in different cancers [6].

When Warburg metabolism is favored, a relatively low level of
pyruvate is metabolized in the mitochondria and the energy gain is
only 2 ATP per molecule of glucose. Thus, fermentation of glucose to
lactic acid is an inefficient pathway, but, very important, it is a fast
energy supplier (about 100 folds faster than OxPhos). Moreover, the

aerobic glycolytic phenotype confers a significant proliferative
advantage as it ensures biomass formation and DNA duplication,
crucial aspects of proliferation [7]. Indeed, the glycolytic breakdown of
glucose generates a number of substrates which turn into “anabolic”
precursors for the synthesis of different compounds, such as glucose-6-
phosphate for glycogen and ribose 5-phosphate, dihydroxyacetone
phosphate for triacylglyceride and phospholipids, and pyruvate for
alanine and malate [8]. Nucleotides, amino acids and lipids are indeed
synthesized during anabolic reactions [9]. Cancer cells try to reduce
the last step of glycolysis that is catalyzed by pyruvate kinase (PK) by
up regulating the low-activity dimeric isoform M2 of PK, and thereby
facilitating the accumulation of metabolites upstream of pyruvate [10].
In this respect, intermediate components of the glycolytic pathway
appear to be more significant than its final product, e.g. pyruvate. To
replenish the TCA cycle, due to the limited supply of pyruvate, cancer
cells increase the consumption of glutamine [11]. The particular
attitude of proliferating cancer cells to use aerobic glycolysis favors the
development of a microenvironment in which lactate produced by
tumor cells can be taken up by normal stroma cells to regenerate
pyruvate, which can be extruded to refuel cancer cells [12].

Therefore, dividing cancer cells, usually exposed to a relatively high
oxygen tension, adopt a glycolytic metabolism, followed by increased
glucose uptake and lactic acid production.

Hypoxia
Although the use of aerobic glycolysis leads to a lower oxygen usage,

promoting oxygen availability for tumor cells located more distant
from blood vessels [13], tumor growth within a disorganized
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vasculature generates an hypoxic microenvironment. Experimental
studies have demonstrated that partial pressure of oxygen is near zero
between 100 to 200 µm from a vessel (Figure 1), at the variance of
glucose exhaustion which is longer, due to the higher diffusion rate of
glucose [14]. Tumor cells need to adapt to the above change and this
adaptation partly relies on the induction of hypoxia-inducible factor
(HIF)-1α, a transcription factor finely regulated at a protein level in an
oxygen-sensitive manner [15]. HIF-1α-related genes are critical in
inducing reduction of cell proliferation combined with the
development of a more aggressive and resistant phenotype, particularly
potentiated by an elicited epithelial-to-mesenchymal transition (EMT)
program [16]. Indeed, HIF-1α promotion causes loss of E-cadherin
[16] and the expression of the met proto-oncogene and TWIST
transcription factor [17]. HIF-1α also acts as a central player in tumor
metabolism to support hypoxic tumor cell energy supply, driving an
anaerobic glycolysis by upregulating glucose transporter isoform 1
(GLUT1), hexokinase (HK1 and HK2, which catalyze the initial and
fundamental step of glycolysis), lactate dehydrogenase A (LDHA), and
the lactate-extruding monocarboxylate transporter 4 (MCT4) [16,18].
Besides, carbonic anhydrase IX (CAIX) under the influence of HIF-1α
prevents the acidification of intracellular pH of cells under hypoxia
[19]. HIF-1α blocks pyruvate conversion into acetyl-CoA triggered by
pyruvate dehydrogenase (PDH), by upregulating the PDH inhibitor
PDH kinase 1 (PDK1) [20,21]. Thus, inhibiting PDH, HIF-1α
compromises the entrance into the oxidative metabolism. HIF-1α can
also be activated under normoxic conditions by oncogenic signaling
pathways, including PI3K, and by mutations in tumor suppressor
proteins, such as VHL (von Hippel Lindau), succinate dehydrogenase,
fumarate hydratase [22]. c-Myc also cooperates with HIF-1α in the
promotion of glycolysis inducing HK2 and PDK1 [23].

The result of this metabolic change is that tumor microenvironment
is enriched with H+ and lactate generated by hypoxic cancer cells [24].

Figure 1: Metabolic reprogramming of tumor cells prompted by
variability of tumor microenvironment. Data in part from
Helmlinger et al. [72].

Acidosis of tumor microenvironment
Both aerobic and anaerobic glycolysis used by proliferating and

hypoxic tumor cells cooperate in the generation of an acidic
extracellular pH [25], now considered an important hallmark of cancer
to be investigated. The use of a new pH-sensitive positron emission
tomography (PET) radiotracer allows in vivo determination of tumor

pH, which has been showed to be in the range of 6.4-7.0 for the most
solid tumors [26]. We cannot exclude that a chaotic vasculature, low
lymphatic drainage and high interstitial pressure contribute to the
lowering of extracellular pH (pHe). It has been demonstrated that
tumor cells are tolerant to a broad range of acidic pHe, while
acidification of the microenvironment is toxic for adjacent normal cells
[25].

Acidosis and lactic acidosis, generated by protons and lactate
extrusion in the extracellular milieu, correlates with a poorer clinical
prognosis [27,28]. We have demonstrated that acidity reduces
proliferation together with stimulation of apoptosis resistance and an
EMT profile in melanoma cells [29]. The EMT phenotype acquired by
acidic melanoma cells was characterized by an increased invasiveness
and the ability to promote lung colonization of non-acidic counterpart
of cells, disclosing a new cooperation among different tumor cell
subpopulations [30]. Robey et al. reported that orally-administered
bicarbonate to tumor-bearing mice reduces cell dissemination,
providing the evidence that increasing tumor pHe to a physiological
level is crucial to abrogate progression to metastasis [30]. The acidic
tumor microenvironment also represents a major driving force of
resistant phenotype to chemo- and radio-therapy [31,32]. Indeed, both
the uptake and efficacy of weak base drugs are reduced in low pH
environment [33]. Moreover, lactate by itself has been found to induce
motility, angiogenesis, radio-resistance and immune escaping, all
features contributing to disease progression [34]. Beyond the
aggressive features that acidosis confers to cancer cells, recent
discoveries show that local acidity, either generated by high proton
level or lactic acid, plays a role in tumor metabolic reprogramming,
driving cancer cells from glycolysis to OxPhos [35]. Thanks to aerobic
and anaerobic glycolytic pathways adopted by proliferating and
hypoxic tumor cells, a residual oxygen tension in tissues may sustain
an OxPhos metabolism, possibly at a “reduced rate”. It is known that a
residual 3.5 mmHg tension of O2 may permit mitochondrial activity
(Figure 1) [36]. OxPhos is considered a major sink for protons able to
control internal pH, quite different from protons generated during
ATP hydrolysis produced by glycolysis, which are not consumed and
generate acidosis. A low pHe generates a low pH of intracellular milieu
able to contribute to the metabolic switch to OxPhos, inhibiting the
HIF-1α-dependent program through a PI3K/Akt/mTOR signal
transduction pathway [37]. In accordance with this finding, it has been
recently found that pHe influences hypoxia-related gene expression to
a large extent [38,39]. Low pHe suppresses the hypoxia induced up-
regulation of PDK1, the effector of PDH inhibition and entry into
mitochondrial respiration [40,41]. Breast cancer cells, grown in an
acidic medium, also express a reduced glycolysis and lactate
production and an increased respiratory metabolism [42]. More
recently, we proved that both acidosis and lactic acidosis induce
OxPhos metabolism in melanoma cells and, importantly, metformin, a
mitochondrial complex I inhibitor, selectively targets and kills acidic
cancer cells in a dose-dependent manner [35]. Further, glucose
exhaustion caused by glycolytic cells and accumulation of AMP-
activated protein-kinase favor the metabolic shift of acidic cells toward
OxPhos. When low-pH-adapted cells were grown in a high glucose
medium, they maintain a higher pyruvate oxidation, indicating that
Crabtree effect is not applicable to acidic cells [43]. To sustain
resistance to apoptosis, migration and distant dissemination, all
energy-demanding processes, and in the absence of a sufficient glucose
supply (already used by proliferating and hypoxic cells), acidic cells use
alternative substrates such as lactate, free fatty acids and amino acids.
Accordingly, acidosis increases both glutaminolysis and fatty acid β-
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oxidation in oxidative tumor cells contributing to the entry of
metabolic intermediates into the TCA cycle and ATP generation [42].
Lactate also promotes glutamine uptake and metabolism in oxidative
cancer cells [44].

LeBleu et al. [45] demonstrated that the bioenergetic phenotype of
circulating tumor cells, endowed with a high migratory ability and
EMT profile, uses OxPhos. This is of the utmost importance in view of
our finding that acidic melanoma cells using an OxPhos metabolism
are able to promote lung colonization of non-acidic/glycolytic
melanoma cells intravenously injected into immunodeficient mice
[29]. We may speculate that, when tumor cells reach their target organ
thanks to the ability of acidic subpopulations to lodge and resist to new
stressors, non-acidic/glycolytic cell subpopulations start to proliferate
leading to a new colony. It is also possible that acidic/OxPhos cells,
influenced by an adequate blood supply, which may remove protons
and lactate from the microenvironment, reprogram their metabolic
profile back to aerobic glycolysis, a key to proliferation. EMT plays a
fundamental role during development as well as tumor metastasis. Liu
et al., studying head and neck squamous cell carcinoma (HNSCC),
found that histone H3K9 methyltransferase G9a is essential for the
EMT-mediated metastasis [46]. Actually, G9a forms a complex with
Snail and mediates Snail-induced transcriptional repression of E-
cadherin and EMT [47]. G9a is also essential for the induction of EMT
and cancer stem cells (CSC)-like properties in HNSCC [48]. Since
recent observation indicates that apart from establishment and
maintenance of H3K9me2, G9a also plays a critical role in the
maintenance of DNA methylation at certain loci [49], both the
epigenetic mechanisms that associated with histone and DNA
methylation might be involved in the maintenance of the EMT-
mediated metastasis ability in tumor cells. Therefore, G9a might be a
promising target for identifying a subset of cancer cells that display
CSC-like profile and it might be of interest investigating the expression
levels of G9a in cancer cells undergoing the metabolic reprogramming.

To add complexity to the metabolic reprogramming of tumor cells, a
metabolic symbiosis among different tumor cell subpopulations,
generating and using lactate, may also take place and contribute to
tumor cell dissemination [50]. A metabolic cross-talk has been
demonstrated, called “reverse Warburg effect”, among cancer-
associated fibroblasts (CAF) and prostate or breast cancer cells,
identifying a scenario in which lactate generated by glycolytic CAF is
used by tumor cells using a respiratory metabolism [51,52]. In
addition, we have identified a possible metabolic cross-talk between
acidic mesenchymal stem cells (MSC) and melanoma cells. We
demonstrated that acidic MSC undergo a metabolic reprogramming to
OxPhos, which in turn may favor the removal of lactate produced by
glycolytic melanoma cells [53]. Lactate taken up by acidic stromal cells
may work reducing acidification of tumor microenvironment and
supporting tumor growth.

Overall, whereas the Warburg effect confers growth advantage to
cancer cells when oxygen and glucose supply is sufficient, the OxPhos
phenotype promoted by lactic acidosis prompts the use of alternative
substrates and renders cancer cells more resistant and competent to
progress locally and at a distance.

Perspective in diagnosis and therapy of acidic tumor
microenvironment

Several findings indicate that measuring pHe in tumors might
acquire a great importance for the characterization of tumor

aggressiveness. Indeed, the influence that acidic microenvironment
exerts on tumor progression and relapse, due to the reduced sensitivity
of acidic cancer cells to radio- and chemotherapy [13], led to test
several non-invasive optical imaging methods to monitor in vivo
tumor pHe. Positron emission tomography was used for the imaging of
acidic prostate tumors [54]. Experience was also made using electron
paramagnetic resonance spectroscopy [55] and magnetic resonance
(MR) spectroscopy [56]. Quite recently, Chen described a method,
termed acido-CEST (chemical exchange saturation transfer) MR
imaging, to provide information of tumor pHe in preclinical settings of
breast carcinoma [57].

On the meantime, many efforts were put in developing combined
therapeutic strategies to target the acidic subpopulations of tumors.
Among these, are the alkalization of tumor microenvironment with the
use of systemic buffers, such as sodium bicarbonate (NaHCO3)
[30,58], or use of proton pump inhibitors, such as esomeprazole, which
leads to the normalization of pHe [59]. A comprehensive review of pH
regulation in tumors is reported by Neri and Supuran [60]. An
additional attractive target of acidic cancer cells is CAIX, which is
overexpressed in acidic cancer cells in a HIF-1α-independent manner
[61]. Several inhibitors have been developed, such as sulfonamides,
sulfamates, and sulfamides, that bind to Zn2+ ion-containing catalytic
site of the enzyme, thus blocking its function [62]. These compounds
are currently under investigation to test in vivo efficacy. Treatment of
mice transplanted with CAIX-positive mammary tumor cells with
novel CAIX specific inhibitors resulted in a significant reduction of
tumor growth and metastatic dissemination [63]. Further, weakly-
acidic drugs are designed to reach solid tumors in order to release
toxins within the acidic microenvironment [64]. Additional delivery
systems to selectively reach and target the acidic core of cancers have
been developed. Among them, pH- sensitive liposomes, that release
chemotherapeutical substances at an acidic pH [65], and the pH low
insertion peptides (pHLIP), that consist of soluble peptides able to
bind cell membrane in a pH-dependent way [66]. Another interesting
strategy is to target the plasticity of cancer metabolic reprogramming
with anti-metabolic drugs. Recently, different therapeutic approaches
have been developed based on the targeting of OxPhos metabolism of
cancer cells by inhibiting tumour-specific alterations of mitochondrial
metabolism or by stimulating mitochondrial membrane
permeabilization [67,68]. Among the several drugs tested, metformin,
one of the most widely used antidiabetic agents, was found to be
efficient in various cancers, such as prostate, breast, lung and pancreas
[69]. Its anticancer effect is mediated through the activation of LKB1-
AMPK pathway, resulting in the inhibition of the mammalian target of
rapamycin (mTOR), that is associated with resistance to anticancer
drugs [70]. Also, acidic tumor cells, including melanoma cells, seem to
be responsive to metformin treatment [35]. Using osteosarcoma as a
cancer model, Quattrini et al. [71] found that metformin amplifies the
effects of cisplatin, pointing to a novel approach to therapy of tumors
that is the combination of conventional therapy with metabolic
inhibitors.

Conclusions
In order to block local and distant dissemination of tumor cells, it is

of critical importance to target the acidic regions of tumors to revert
the aggressive phenotype that acidity confers to cancer cells. In view of
the growing knowledge on tumor metabolism and its reprogramming
stimulated by an acidic microenvironment, metabolism of acidic
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cancer cells may represent an interesting target to improve diagnosis
and therapy of tumors.
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