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Introduction
Software defined networking

The Software Defined Networking architecture, based on 
separation of control and data plane in network elements, enables 
network programmability. In today’s SDN solutions, controllers are 
able to provide open APIs through service abstractions. For instance, 
an application is able to invoke connectivity services across multiple 
domains through a single controller. It gets underlying connectivity, 
by deploying a series of flow table entries to physical network nodes 
though the controller, at the cost of switch memory resources such as 
ternary content-addressable memories (TCAM), which is expensive.

Network update

From network operators’ perspective, network configuration 
need to be modified often in cases such as network topology changes, 
unexpected network node or link failures, transitions in network 
traffic and changes in network application’s policy. The emergence of 
SDN allows transition of networks from initial state to target state by 
invoking the northbound APIs of SDN platform, the control-plane 
then issues a sequence of Open Flow commands to deploy the target 
configuration to networks. The SDN platform enables a centralized 
view of networks and forthright manner to perform network update 
for network operators.

Configuration changes of network update are a common source 
of instability in networks, it is error prone during a network update 
even the initial and target configurations are correct [1]. Networks 
are complex systems with many distributed network nodes, network 
operators cannot change the whole networks in a flash because it is not 
possible to modify numbers of network nodes at the very same time. 
The total time for network nodes to accept network forwarding rules 
differs. Hence, to perform a network update, network operators need to 
do a sequence of intermediate modifications on network nodes. Owing 
such sequence, it generates intermediate states for networks and may 
exhibit unexpected behaviors that would not arise in the initial and 
target configurations [2].

To address these problems, researchers have proposed a graceful 
update mechanism called two-phase update, which guarantees that 
each packet be routed based either on initial or target configuration. 

More specifically, the idea is to pre-install the target configuration on 
the internal nodes, leaving the old version in place. Then, on ingress 
nodes, the controller sets idle timeouts, based on the Open Flow 
protocol, on the rules for the initial configuration and installs the 
target configuration at lower priority. When all flows matching a given 
rule finish, the rule automatically expires and the rules for the target 
configuration take effect [1]. However, to achieve such mechanism is 
expensive, it maintains forwarding rules on network nodes for both 
the initial and target network configurations simultaneously, and twice 
network memory resources consumption, during the period till the 
initial configuration has reached its timeout. Moreover, when multiple 
flows match the same rule, the rule may be artificially kept alive even 
though the “old” flows have all completed. If the old rules are too coarse 
in terms of the definition of their matching fields, then they may never 
die and keep consuming memory resources of the data-plane. In fact, 
there lack compact mechanisms to fully support efficient network 
update, especially in the SDN control-plane.

Our approach

From our perspective, we believe that, to achieve memory-
saving network update, there need compact mechanisms to perform 
initial configurations deletion when networks have reached its target 
configurations. In order to delete the network configuration, it is 
necessary to locate the metadata such as network nodes and relevant 
flow table entries of the configuration on the control-plane. Only 
the relevant metadata on the control-plane get modified can the 
physical data-plane actually get manipulated [3,4]. Owing these, we 
have proposed an ideal hierarchical structure to organize metadata of 
configurations on the control-plane, which can accelerate the procedure 
of configuration retrieve and thus help to perform configuration 
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the perspective of SDN, the switching function behaves as follows: (1) 
the first packet pk1 of flow f is sent by the ingress node to the controller, 
(2) the forwarding path  fp for flow f is computed by the controller, 
(3) the controller installs the appropriate flow table entries at each 
node along the forwarding path, and (4) all subsequent packets{pk2, 
pk3,…,pkn} in flow for even different flows with matching attributes are 
forwarded in the data plane along the path and do not need any control 
plane action.

Definition 1 (Network forwarding path) As we can see from the 
above switching procedure of SDN, given a network flow f of some 
application, the network forwarding path  fpf  is the designed switching 
tunnel chosen from the network topology by the controller and it 
consists of a set of nodes and a set of links. Formally,

{( , , ) ,..., ( , , )}tag tag
f in in in out out outfp ipt N ept ipt N ept=                  (1)

where Nin and Nout  are the ingress node andthe egress node of the 
path respectively. When a packet is forwarded across a network node, 
ipt and ept repesent the ingress port and the egress port of the node to 
forward the packet. Three-tuple array such as ( , , )tag

in in inipt N ept is a flow 
table entryfor incoming flows on a network node. The tag label on the 
right side means the operation of pushing a tag on the headfield of 
incoming packets, while the tag label on the left side means performing 
packet matching based on the tag on packet’s head. Anorderedset of 
such three-tuple arraysfor a network flow forms the forwarding path.

The switching funtion of SDN behaves in ways much like the 
tunnel-based routing mechanisms such as MPLS. Forwarding pathsare 
settledin advanceforflows to be routed. Fixed network topology has 
limited number of forwarding elements, different forwarding paths 
may overlap. We thus introduce the notion of network forwarding 
route to represent physical forwarding tunnel for flows routed on the 
same tunnel.

Definition 2 (Network forwarding route) A flow traverses 
networks from ingress node to egress node, passing through a set of 
internal nodes. We organize the ordered set of nodes through which 
the flow passes, and define such ordered set as the forwarding route fr. 
Formally, 

1 2{ , , ,..., }in outfr N N N N=                     (2)

As we can see from the definition, two or more forwarding paths 
may be placed on the same forwarding route. The forwarding route is 
actually a physical processing pipeline in the network.

Definition 3 (Consistent network update) In a network update, 
the switching function of networks is updated with new rules. The 
controller changes the forwarding rules by issuing commands to nodes. 
Intuitively, once the forwarding behaviors of network nodes have been 
changed, the network is actually updated. The forwarding path is the 
granularity of updates in practice. The controller pushes forwarding 
rules to network nodes to form forwarding paths and changes 
forwarding paths by issuing commands according to Open Flow 
protocol, which we write as cmds

fp fp′→ . From the controller’s perspective, 
the network state S is the whole set of all forwarding paths. Formally,

{ | 1,..., }iS fp i k= =                       (3)

{ | 1,..., } { | 1,...}i iS fp i k fp i k′ ′ ′′= = = +                  (4)

and we write 
u

S S′→ to represent a network update u. Some fp’ in S 
may be null according to thepath deletion command, and  fp’ in S’ 
represents a newly added path. We call S stable if all nodes along with 
the forwarding paths are installed with new forwarding rules. And 
both the initial state S and the target state S’ are stable. A consistent 

deletion, which achieves memory-saving network update. 

Related Work
Earlier research studied many distributed routing protocols [5-8] 

to minimize network disruptions during network routing changes. 
Kazemian et al. [9] proposed a graceful network abstraction model, and 
Reitblatt et al. [1] extended that model to well formalize network update 
problem. Research works in [1] introduce the notion of consistent 
network updates. For a given packet, the network forwarding path 
that a packet takes through networks, can only be in accordance with 
the initial configuration or the target configuration, but not a mixture 
of the two. It is not allowed that a packet be routed according to any 
intermediate state of networks during a consistent network update. And 
paper [1] also describes the Open Flow-compatible implementation 
for consistent network updates, which is called two-phase update. 
The basic idea of two-phase update is to explicitly tag packets upon 
perimeter switches, according to the version of configurations, and 
apply these tags as the matching fields of routing tables at each internal 
hop of the forwarding paths.

In the “Frenetic” project proposed in [10], two-phase update 
mechanisms are used to preserve consistency when performing 
network updates.

Based on the observation that sometimes consistency of network 
update can be achieved by choosing a correct order of switch updates, 
McClurg et al. [2] worked on ordering updates to preserve consistency 
during network updates. In the research, they proposed algorithms 
and optimizations to identify a sequence of commands to transition 
the network between different configurations without violating 
consistency invariants. Their work introduces “wait” operation for 
network control, to ensure that all in-flight packets of the forwarding 
paths based on old network configurations have left the network while 
the network reaches its new configurations.

Jin et al. [11] proposed a way to perform congestion-free network 
update. Instead of selecting one correct rule order to update networks, 
the paper [11] describes a new approach to dynamically select a rule 
order based on the update speeds of switches. They use a dependency 
graph to represent multiple valid orderings of rule updates, and propose 
algorithms to schedule updates based on the dependency graph.

The two-phase update is not always practical because that, during 
the transition, it consumes twice amount of switch memory resources, 
and it is heavy-weight. We help to eliminate the hard time for two-
phase update, and we have proposed a well-defined hierarchical 
structure to record the relevant metadata of networks, which enables 
efficient transition between old and new network configurations.

This paper builds on our earlier conference paper [2], which did 
not include the discussion of network update. In our previous work, 
we proposed a network metadata structure which helps to retrieve 
forwarding behavior efficiently for individual network applications. It 
works in cases such as transitions in network traffic, changes in network 
application’s policy, and unexpected network node or link failures. In 
the current paper, we move one step further by introducing the notion 
of network metadata into the network update problem in general. 

Network Forwarding Model
To facilitate precise reasoning about network update and state our 

motivation in ways of formalization, this section describes the model 
of network forwarding behavior and the proposed metadata structure.

The network G consists of a set of nodes V and a set of links E. From 
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network update regulates that flows can only be processed according 
to forwarding paths either in the initial state S or in the target state 
S’during a network update.

Definition 4 (Two-phase update) In terms of the two-phase 
update, in the first phase, it populates the nodes in the middle of 
the forwarding paths with new configurations which have the tags, 
indicating the version of new configurations, in the matching fields. In 
the second phase, it enables the new configurations by installing rules 
at the ingress of networks and performs additional action that explicitly 
stamps packets with tags according to the version of configurations. 
Formally, suppose the initial forwarding path is

1 1 1{( , , ) , ( , , ),..., ( , , )}tag tag tag
initial in in in out out outfp ipt N ept ipt N ept ipt N ept=  (5)

On the first phase, the forwarding path has been changed as

1 1 1 1{( , , ) , ( , , ),..., ( , , )}tag tag tag
phase in in in out out outfp ipt N ept ipt N ept ipt N ept′ ′′ ′ ′ ′=  (6)

On the second phase, it goes like

2 1 1 1{( , , ) , ( , , ),..., ( , , )}tag tag tag
phase in in in out out outfp ipt N ept ipt N ept ipt N ept′ ′ ′′ ′ ′ ′ ′=  (7)

During the first phase, the intermediate nodes may have been 
changed. The matching tag of flow table entries onboth the intermediate 
nodes and the egress node may have been modified. The ingress port of 
the egress node for coming packets may hasbeenshifted as well. When 
it comes to the second phase, The controller modifies boththe egress 
port of the ingress node for packets and the tags to push to packets’ 
head.

To release networks from the aforementioned memory pressure 
during two-phase update, we perform fast process of forwarding path 
retrieve and deletion during the transition. We think thecontroller 
should remove the initialnetworkconfigurations in  fpinitial  imediately 
after rules in  fpphase2 have been installed on network nodes during a 
consistent network update. 

Hierarchical Network Metadata Structure
To delete the initial network configurations after networks have 

deployed the target configurations, the relevant network metadata need 
to be located. For example, in the topology shown in Figure 1, a flow 
of video on demand (VOD) [12] type requests connection from node 1 
to node 4. Suppose the controller deploys a forwarding path as shown 
below,

1 1 1 2 2 2 4 4 4{( , , ) , ( , , ), ( , , )}tag tag tag
VODfp ipt N ept ipt N ept ipt N ept=                   (8)

for the VOD flow initially. Then, after a peroid of time, the 
controller performs network update based on policy change, and the 
new forwarding path of the VOD flow is

1 1 1 3 3 3 4 4 4{( , , ) , ( , , ), ( , , )}tag tag tag
VODfp ipt N ept ipt N ept ipt N ept′ ′ ′′ =               (9)

Ifthe controller wants to delete the configuration in fpVOD, it first 
need to locate the target nodes and the corresponding flow table 
entries that should be removed from the network. So it is necessary 
for the controller to recored the information of fpVOD which enables 
locatingthe target network metadata. In both wide area and data center 
networks, which deployed with many applications, the amount of 
forwarding paths for network flows may be tremendous large and the 
compact structure to organize the information of this many paths in 
the control-plane is a major challenge for configuration deletion.

We have proposed a structure to record network metadata such 
as forwarding paths and forwarding routes. In the SDN architecture, 
APIs are provided on the north bound, applications such as VOD can 
deploy policies such as bandwidth guarantee to the network control-
plane through the north bound APIs. When a VOD flow requests 
routing through networks, the control-plane computes a forwarding 
path for the flow, according to the bandwidth guarantee policy as well 
as network conditions, and installs the forwarding path to the data-
plane. The flow of VOD application then travels from an ingress node 
to an egress node along with the forwarding path settled by the control-
plane. On account of that every forwarding path serves for its flows and 
each flow belongs to its network application, we introduce one more 
metadata of network forwarding, i.e. the network application (Figure 2).

To retrieve and remove forwarding paths efficiently, we organize 
forwarding paths in a hierarchical way. We abstract one potential 
common attribute for different forwarding paths, which is the 
forwarding route. Different forwarding paths may have the same 
physical nodes pipeline. In other words, these paths may be placed on 
the same forwarding route. There exists inner relation among network 
application, forwarding route and forwarding path.

We denote the relationship among application, route and path by 
tripartite graph G= (V(1),V(2),V(3) ;E), as shown in Figure 2. We define 
V(1) , V(2) and  V(3) and as three partition sets of G.

(1)
1{ ,..., }lV app app=                   (10)

(2)
1{ ,..., }mV route route=                   (11)

(3)
1{ ,..., }nV path path=                    (12)

Vertices in V(1) , V(2) and  V(3) represent applications, routes and 
paths respectively. There is no adjacent vertices between V(1) and V(3). 
Vertices in V(2) may have more than one adjacent vertices in V(1), while 
vertices in V(3) can only get one adjacent vertices in  V(2). One vertices in 
V(1) may have multiple adjacent vertices in  V(2). Two or more vertices 
in V(1) can share the same one adjacent vertices in V(2) because that 
one route can be shared with multiple applications. Vertices in V(2) 
cannot have multiple adjacent vertices in  V(3) because the path is the 

  

 
Figure 1: Network topology with 7 nodes.
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Figure 2: Tripartite graph of network forwarding metadata.
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connection which only locate in one specific route.

Once the network trigges a network update, after the target 
forwarding path get computed and deployed to the network, given the 
app tag of the new forwarding path, we can provide our first level of 
reference to the intial forwarding path, which is the app type of the 
forwarding path. Based on the reality that the initial and the target 
forwarding paths share the same ingress and egress nodes, given the 
ingress and egress nodes of the new computed path, we can provide our 
second level reference to the intial forwarding path to locate the route 
on the structure. At the third level, we get a small set of our candidate 
paths based on the first and second level references, and we can look 
upthe initial forwarding path based on the matching field on the ingress 
node, knowing that the intial and the target forwarding paths have the 
same matching field on their ingress nodes. After we retrievethe initial 
forwarding path, the controller can perform a sequence of Open Flow 
commands to delete the corresponding flow table entries on the nodes 
inthe data-planeaccording to the information of the initial forwarding 
path. The above mechanism is listed in Figure 3.

The hierarchical structure of network metadata accelerates the 
retrieve procedure for a specific forwarding path. Based on the multi 
level of references, we can locate the candidate set of forwarding paths 
quickly. And the amount of the candidatesis reduced enormously. 
After the procedure of multi level reference, we only need to check 
the matching field of the candidates to retrieve the desired initial 
forwarding path.

From our study, Onix [13] and PANE [14] matain the network 
metadata as the network information base (NIB), which is a database 
storing hosts, switches, ports queues, forwarding tables, links and 
their capabilities. NIB is responsble for holding network information 
and translating logcial actions of control to physical configurations. 
Modern SDN platform, such as Open Daylight [15], uses the concept of 

NIB to build its service abstration layer (SAL), which is the backbone of 
its architecture. We argue that the forwarding path of different network 
applications should be maintained as a meta element in NIB. Network 
update, which is one of the major events of SDN environment, deals 
with the forwarding paths. When network condition or applicationstate 
changes, the actionsfor forwaring paths need to be translated to 
network configurations. And a hirarchical way to maintain forwarding 
path would actually accerlerate network update operation and reduce 
overhead. 

Implementation and Evaluation
In order to investigate the performance of forwarding path retrieve 

and the effect of reducing network memory overhead, both real 
network testbed experiments and simulations have been conducted.

Testbed experiments

We have built a prototype implementation of the hirarchical 
metadata structure. Open Day light is used as the controller software 
and we implement the proposed hierarchical structure as a plug in of 
Open Day light. The plugin maintains data of the structure and provides 
APIs to manipulate. The Mini net [2] environment is used to build the 
test bed network topology. A HP ProLiant ML350 Gen9 server is used 
as the controller host and is also connected to a set of DELL Inspiron 
560 pcs running Mininet. We have designed two test cases. In both 
cases, a client connection reaching one of the pre-installed application 
servers is built randomly. We retrieve all the flow table entries of the 
corresponding forwarding paths in situations with and without the 
plugin respectively. The corresponding time cost is recorded.

In case 1, we build a test network topology with 100 network 
devices initially. There are 20 network applications deployed in the 
network. Each network node may have flow table entries related to the 
application’s flow. We differentiate the application information of flow 

  
 Procedure: CONFIGURATIONDELETE ( targetfp , T ) 

Input:forwarding path targetfp , hierarchical metadatatree structureT  
Output:Remove initialfp  from the network and return initialfp  

  1: ( )targetapp getApp fp=  //get the application type of the flow on targetfp  

  2: ( )targetsrc getIngress fp= //get the ingress node of targetfp  

  3: ( )targetdst getEgress fp= //get the egress node of targetfp  

  4: ( )target targetmf getMatchField fp=  //get the matching field on the ingress node of targetfp  

  5: ( , )appT getSubtree T app=  //return a sub tree with the root node of app  

  6: ( ,2)route appSet getLayer T=  //get all the elements on the second layer of the sub tree 
  7: for all router Set∈ do 
  8:  ( )rsrc getIngress r=  
  9:  ( )rdst getEgress r=  
10:  if rsrc src= and rdst dst= then 

11:    ( , )r appT getLayer T r=  

12:    ( ,2)fp rSet getLayer T=  //get all the forwarding paths on the route r  

13:    for all fpfp Set∈ do 
14:      ( )mf getMatchField fp=  
15:      if targetmf mf= then 
16:        initialfp fp=  
17:        ( )initialdelete fp  //remove initialfp  from the data-plane 
18:        return initialfp  

 
 

Figure 3: Configuration delete procedure.
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table entries by their destination IP in the matching fields on the ingress 
nodes. We initially assign 10 nodes along the forwarding path carrying 
the randomly built connection. Consequently, there are 10 flow table 
entries constructing such a connection. Then we increase the total 
number of network nodes and also the number of nodes in each path, 
to observe the time cost under different network scales. In situation 
with the plugin, we locate all the flow table entries in a forwarding path 
by iterating the structure from the top layer to the bottom layer. In 
situation without the plugin, we have to look up all the network nodes 
to find the desired flow table entries. As shown in Figure 4, situations 
with and without the plugin differ more than one order of magnitude 
in time cost.

In case 2, 20 applications are deployed in the network. We change 
the number of network nodes both in a path and in the whole test 
network to observe the time cost. The increasing number of network 
nodes in a path would bring more flow table entries on the path. It 
takes more time to retrieve a specific path consequently. On the other 
hand, in situation without the plugin, the time cost is affected mostly 
by the network scale, as listed in Figure 5. We traverse all the network 
nodes to find the desired flow table entries in such situation. Therefore, 

it takes more time to locate flow table entries of an application in a 
larger scale of network.

Simulations

In the simulation, we use random substrate topology. According to 
investigations of Albert et al. [4], given two arbitrary nodes, the number 
of intermediate nodes are generated by using the equation below:

( )
( )

ln
lnrand

N
l

k
~                  (13)

In Eq. (13), parameters N and k represent the whole number 
of nodes in a network and the average degree of network nodes 
respectively. In the simulation, we set K=2.66 according to [16]. The 
average number of nodes in a path, connecting two randomly selected 
nodes, is approximately equate to the right part of Eq. (13). In the 
simulated network topology, it is interconnected between each node. 
Periodically, the simulated network receives a fresh flow per 0.1 second. 
The idle timeout of a flow table entry is 5 second. We observe network 
behavior during time period of 100 seconds under different conditions.

We firstly set the scale of substrate network as 100 nodes and the 
average node number of forwarding paths is five, according to Eq.(13). 
During the time interval between the 40th second and the 60th second, we 
update the simulated network at each second. In Figure 6, we update 10 
forwarding paths in an update cycle and record the data-plane memory 
overhead at different time points. Data-plane memory overhead is 
understood as the total amount of flow table entries in the substrate 
network. It is observed that the two-phase update, using idle timeout to 
uninstall configurations, leads to a sharp increase of memory overhead, 
while our proposed mechanism to remove configurations performs 
a stationary update process. In Figure 7, we increase the number of 
forwarding paths to be transformed to 20 in an update cycle. As we can 
see between Figures 6 and 7, the data-plane memory overhead rises as 
the scale of network update increases under the condition using idle 
timeout. While in situation with our mechanism, the update process 
keeps stationary at a coarse granularity. With the increasing scale of 
network update, mechanism of idle timeout for two-phase update 
brings more and more pressure to data-plane memory. Network traffic 
behavior differs a lot between day and night, and at some points of 
time, the network need to deploy large scale update to meet traffic 

  

Figure 6: Data-plane memory overhead with 10 paths updated in a network 
update cycle.

  

 

Figure 4: Time cost of retrieving flow table entries under different network 
scale.

  

 
Figure 5: Time cost of retrieving flow table entries for fixed network scale with 
changing scale of path.
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characteristic. The two-phase update with our proposed mechanism 
can apply well to such scenario.

Next, we investigate the memory overhead of key nodes under a 
fixed topology as shown in Figure 1. There are 7 nodes totally and node 
4 has the highest degree. In the simulation, since each node has the same 
probability to receive new flows, we think node 4 holds more traffic 
than others. We update the network at each second during the time 
period between the 40th second and the 60th second, and 10 forwarding 
paths are changed in every update process. We set the upper bound 
capacity of memory for each node to hold flow table entries as 25 and 
record the number of times for a specific node to reach its memory 
capacity in the span of one second. It is obvious from Figures 8 and 
9 that our mechanism can help to ease off the memory overhead of 
network key node.

Now that we investigate the impact of network scales. We observe 
the memory overhead under different network scales with 100, 200 and 
300 nodes respectively, and the corresponding number of nodes along 
a forwarding path is set as 5, 6 and 7. The simulation process updates 
the network at each second between time period from the 10th second 

to the 30th second for the 300 nodes network, from the 40th second to 
the 60th second for the 200 nodes network, and from the 70th second 
to the 90th second for the 100 nodes network. 20 paths, 40 paths and 
60 paths are updated in an update process for network scales of 100 
nodes, 200 nodes and 300 nodes, respectively. The results in Figures 
10 and 11 show that the memory overhead increases as the network 
scale grows, during the update process using idle timeout mechanism. 
In contrast, with the increasing network scale, the retrieve and remove 
mechanism using a hierarchical structure brings little impact to the 
memory overhead during the network update (Table 1).

Conclusion
In this work, we are interested in the memory overheadduringthe 

two-phase network update process. We provide a solution based on 
configuration deletion. We argue that the challenge is to realize efficient 
configuration retrieve, and we show that a network metadata structure 
to organize information of forwarding path in a hirarchical way which 
could accelrate the retrieve process, and should be designed as a meta 

  

Figure 7: Data-plane overhead with 20 paths updated in a network update 
cycle.

  

Figure 8: Number of times reaching upper bound of memory capacity of a node 
in two-phase update case using idle timeout.

  

Figure 9: Number of times reaching upper bound of memory capacity of a node 
in two-phase update case using proposedmechanism.

  

Figure 10: Data-plane memory overhead under different network scale in two-
phase update case using idle timeout.
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Figure 11: Data-plane memory overhead under different network scale in two-
phase update case using proposed mechanism.

Symbol Meaning
G Physical network
V Set of network nodes 
E Set of network links
pk Packet
f Flow
fp Forwarding path
fr Forwarding route
N Network node
ipt Ingress port of nodes for a packet
ept Egress port of nodes for a packet
S Network state

Table 1: Network forwarding Notations.

component in the network information base. We investigate the 
performance in both simulation and testbed environments [17]. The 
results show that the proposed mechanism outperforms the original 
one and brings performance enhancementin time cost for retrieving 
a forwarding path and in memory overhead under different scenarios. 
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