Liu et al., J Inform Tech Softw Eng 2016, 6:1

Journal of DOI: 10.4172/2165-7866.1000167

Information Technology & Software Engineering

Achieving Memory-saving Network Update

Jiyang Liu, Liang Zhu, Weigiang Sun* and Weisheng Hu
State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Software defined networking (SDN) offers opportunities to develop high-level abstractions forimplementing network
update, but current SDN controller platform lacks effect mechanisms for updating network configuration on the fly.
There exist two main challenges for implementing network update: 1) network is a distributed system and 2) network
controller can only update one network node at a time. Naively updating individual nodes may lead to incorrect network
behaviors. Elegant solution based on two-phase update can guarantee that traffic will be processed consistently during
network update, which means each packet can be routed based either on initial network configuration or target network
configuration, but never a mixture of the two. Implementing consistent network update is expensive based on previous
approach, and we present mechanisms for memory-saving two-phase network update. Our design addresses one
major problem: how to delete the initial configuration effectively from network nodes when controller enforces the target
configuration. We propose a hierarchical network metadata structure to accelerate the procedure of removing the initial
configuration. Finally, we describe the results of some experiments demonstrating the effectiveness of configuration

deletion and the effect of memory-saving for the network.

Keywords: Software defined networking; Network update; Network
metadata structure

Introduction

Software defined networking

The Software Defined Networking architecture, based on
separation of control and data plane in network elements, enables
network programmability. In today’s SDN solutions, controllers are
able to provide open APIs through service abstractions. For instance,
an application is able to invoke connectivity services across multiple
domains through a single controller. It gets underlying connectivity,
by deploying a series of flow table entries to physical network nodes
though the controller, at the cost of switch memory resources such as
ternary content-addressable memories (TCAM), which is expensive.

Network update

From network operators’ perspective, network configuration
need to be modified often in cases such as network topology changes,
unexpected network node or link failures, transitions in network
traffic and changes in network application’s policy. The emergence of
SDN allows transition of networks from initial state to target state by
invoking the northbound APIs of SDN platform, the control-plane
then issues a sequence of Open Flow commands to deploy the target
configuration to networks. The SDN platform enables a centralized
view of networks and forthright manner to perform network update
for network operators.

Configuration changes of network update are a common source
of instability in networks, it is error prone during a network update
even the initial and target configurations are correct [1]. Networks
are complex systems with many distributed network nodes, network
operators cannot change the whole networks in a flash because it is not
possible to modify numbers of network nodes at the very same time.
The total time for network nodes to accept network forwarding rules
differs. Hence, to perform a network update, network operators need to
do a sequence of intermediate modifications on network nodes. Owing
such sequence, it generates intermediate states for networks and may
exhibit unexpected behaviors that would not arise in the initial and
target configurations [2].

To address these problems, researchers have proposed a graceful
update mechanism called two-phase update, which guarantees that
each packet be routed based either on initial or target configuration.

More specifically, the idea is to pre-install the target configuration on
the internal nodes, leaving the old version in place. Then, on ingress
nodes, the controller sets idle timeouts, based on the Open Flow
protocol, on the rules for the initial configuration and installs the
target configuration at lower priority. When all flows matching a given
rule finish, the rule automatically expires and the rules for the target
configuration take effect [1]. However, to achieve such mechanism is
expensive, it maintains forwarding rules on network nodes for both
the initial and target network configurations simultaneously, and twice
network memory resources consumption, during the period till the
initial configuration has reached its timeout. Moreover, when multiple
flows match the same rule, the rule may be artificially kept alive even
though the “old” flows have all completed. If the old rules are too coarse
in terms of the definition of their matching fields, then they may never
die and keep consuming memory resources of the data-plane. In fact,
there lack compact mechanisms to fully support efficient network
update, especially in the SDN control-plane.

Our approach

From our perspective, we believe that, to achieve memory-
saving network update, there need compact mechanisms to perform
initial configurations deletion when networks have reached its target
configurations. In order to delete the network configuration, it is
necessary to locate the metadata such as network nodes and relevant
flow table entries of the configuration on the control-plane. Only
the relevant metadata on the control-plane get modified can the
physical data-plane actually get manipulated [3,4]. Owing these, we
have proposed an ideal hierarchical structure to organize metadata of
configurations on the control-plane, which can accelerate the procedure
of configuration retrieve and thus help to perform configuration

*Corresponding author: Weigiang Sun, State Key Laboratory of Advanced
Optical Communication Systems and Networks, Shanghai Jiao Tong University,
Shanghai 200240, China, Tel: +86 21 5474 0000; E-mail: sunwg@sjtu.edu.cn

Received December 17, 2015; Accepted December 22, 2015; Published January
09, 2016

Citation: Liu J, Zhu L, Sun W, Hu W (2016) Achieving Memory-saving Network
Update. J Inform Tech Softw Eng 6: 167. doi:10.4172/2165-7866.1000167

Copyright: © 2016 Liu J, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Volume 6 - Issue 1+ 1000167

Citation: Liu J, Zhu L, Sun W, Hu W (2016) Achieving Memory-saving Network Update. J Inform Tech Softw Eng 6: 167. doi:10.4172/2165-

7866.1000167

Page 2 of 7

deletion, which achieves memory-saving network update.

Related Work

Earlier research studied many distributed routing protocols [5-8]
to minimize network disruptions during network routing changes.
Kazemian et al. [9] proposed a graceful network abstraction model, and
Reitblatt et al. [1] extended that model to well formalize network update
problem. Research works in [1] introduce the notion of consistent
network updates. For a given packet, the network forwarding path
that a packet takes through networks, can only be in accordance with
the initial configuration or the target configuration, but not a mixture
of the two. It is not allowed that a packet be routed according to any
intermediate state of networks during a consistent network update. And
paper [1] also describes the Open Flow-compatible implementation
for consistent network updates, which is called two-phase update.
The basic idea of two-phase update is to explicitly tag packets upon
perimeter switches, according to the version of configurations, and
apply these tags as the matching fields of routing tables at each internal
hop of the forwarding paths.

In the “Frenetic” project proposed in [10], two-phase update
mechanisms are used to preserve consistency when performing
network updates.

Based on the observation that sometimes consistency of network
update can be achieved by choosing a correct order of switch updates,
McClurg et al. [2] worked on ordering updates to preserve consistency
during network updates. In the research, they proposed algorithms
and optimizations to identify a sequence of commands to transition
the network between different configurations without violating
consistency invariants. Their work introduces “wait” operation for
network control, to ensure that all in-flight packets of the forwarding
paths based on old network configurations have left the network while
the network reaches its new configurations.

Jin et al. [11] proposed a way to perform congestion-free network
update. Instead of selecting one correct rule order to update networks,
the paper [11] describes a new approach to dynamically select a rule
order based on the update speeds of switches. They use a dependency
graph to represent multiple valid orderings of rule updates, and propose
algorithms to schedule updates based on the dependency graph.

The two-phase update is not always practical because that, during
the transition, it consumes twice amount of switch memory resources,
and it is heavy-weight. We help to eliminate the hard time for two-
phase update, and we have proposed a well-defined hierarchical
structure to record the relevant metadata of networks, which enables
efficient transition between old and new network configurations.

This paper builds on our earlier conference paper [2], which did
not include the discussion of network update. In our previous work,
we proposed a network metadata structure which helps to retrieve
forwarding behavior efficiently for individual network applications. It
works in cases such as transitions in network traffic, changes in network
application’s policy, and unexpected network node or link failures. In
the current paper, we move one step further by introducing the notion
of network metadata into the network update problem in general.

Network Forwarding Model

To facilitate precise reasoning about network update and state our
motivation in ways of formalization, this section describes the model
of network forwarding behavior and the proposed metadata structure.

The network G consists of a set of nodes V and a set of links E. From

the perspective of SDN, the switching function behaves as follows: (1)
the first packet pk, of flow fis sent by the ingress node to the controller,
(2) the forwarding path fp for flow fis computed by the controller,
(3) the controller installs the appropriate flow table entries at each
node along the forwarding path, and (4) all subsequent packets{pk,
pk3,..., pkn} in flow for even different flows with matching attributes are
forwarded in the data plane along the path and do not need any control
plane action.

Definition 1 (Network forwarding path) As we can see from the
above switching procedure of SDN, given a network flow f of some
application, the network forwarding path fp, is the designed switching
tunnel chosen from the network topology by the controller and it
consists of a set of nodes and a set of links. Formally,

fp.f = {(lptin > Nm .ept,,)mg EREE) e (lptuut > N()ut »€Plyy,)} (1)

where N, and N are the ingress node andthe egress node of the
path respectively. When a packet is forwarded across a network node,
ipt and ept repesent the ingress port and the egress port of the node to
forward the packet. Three-tuple array such as (ipt,, N, ,ept,) is a flow
table entryfor incoming flows on a network node. The tag label on the
right side means the operation of pushing a tag on the headfield of
incoming packets, while the tag label on the left side means performing
packet matching based on the tag on packet’s head. Anorderedset of
such three-tuple arraysfor a network flow forms the forwarding path.

The switching funtion of SDN behaves in ways much like the
tunnel-based routing mechanisms such as MPLS. Forwarding pathsare
settledin advanceforflows to be routed. Fixed network topology has
limited number of forwarding elements, different forwarding paths
may overlap. We thus introduce the notion of network forwarding
route to represent physical forwarding tunnel for flows routed on the
same tunnel.

Definition 2 (Network forwarding route) A flow traverses
networks from ingress node to egress node, passing through a set of
internal nodes. We organize the ordered set of nodes through which
the flow passes, and define such ordered set as the forwarding route fr.
Formally,

Jr =N NG Ny Ny b)

As we can see from the definition, two or more forwarding paths
may be placed on the same forwarding route. The forwarding route is
actually a physical processing pipeline in the network.

Definition 3 (Consistent network update) In a network update,
the switching function of networks is updated with new rules. The
controller changes the forwarding rules by issuing commands to nodes.
Intuitively, once the forwarding behaviors of network nodes have been
changed, the network is actually updated. The forwarding path is the
granularity of updates in practice. The controller pushes forwarding
rules to network nodes to form forwarding paths and changes
forwarding paths by issuing commands according to Open Flow
protocol, which we write as 4”5 4. From the controller’s perspective,
the network state S is the whole set of all forwarding paths. Formally,

S={fp,|i=1,...k} (3)
S ={pli=1 kYU Pl i=k+1,..} (4)

and we write 5->5'to represent a network update u. Some fp’ in S
may be null according to thepath deletion command, and fp’in S’
represents a newly added path. We call S stable if all nodes along with
the forwarding paths are installed with new forwarding rules. And
both the initial state S and the target state S’ are stable. A consistent

J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Volume 6 - Issue 1+ 1000167

Citation: Liu J, Zhu L, Sun W, Hu W (2016) Achieving Memory-saving Network Update. J Inform Tech Softw Eng 6: 167. doi:10.4172/2165-

7866.1000167

network update regulates that flows can only be processed according
to forwarding paths either in the initial state S or in the target state
S’during a network update.

Definition 4 (Two-phase update) In terms of the two-phase
update, in the first phase, it populates the nodes in the middle of
the forwarding paths with new configurations which have the tags,
indicating the version of new configurations, in the matching fields. In
the second phase, it enables the new configurations by installing rules
at the ingress of networks and performs additional action that explicitly
stamps packets with tags according to the version of configurations.
Formally, suppose the initial forwarding path is

Touiia =4t N,y pty,)™, (it Ny €pty),y ™ (il Ny rpl)} (5)
On the first phase, the forwarding path has been changed as

0 paser = Uity N,y nept,) (ipt] N ept))..... ™ (ipty, . N, nept,,,)} (6)
On the second phase, it goes like

I ppasez = APt N, oept],) ™ ipt], Niept])s e, ™ (ipt}, o N, vept,,)y (7)

During the first phase, the intermediate nodes may have been
changed. The matching tag of flow table entries onboth the intermediate
nodes and the egress node may have been modified. The ingress port of
the egress node for coming packets may hasbeenshifted as well. When
it comes to the second phase, The controller modifies boththe egress
port of the ingress node for packets and the tags to push to packets’
head.

To release networks from the aforementioned memory pressure
during two-phase update, we perform fast process of forwarding path
retrieve and deletion during the transition. We think thecontroller
should remove the initialnetworkconfigurations in fp, .. imediately
after rules in fp . have been installed on network nodes during a
consistent network update.

Hierarchical Network Metadata Structure

To delete the initial network configurations after networks have
deployed the target configurations, the relevant network metadata need
to be located. For example, in the topology shown in Figure 1, a flow
of video on demand (VOD) [12] type requests connection from node 1
to node 4. Suppose the controller deploys a forwarding path as shown
below,

fpVOD = {(iptlaNl)eptl)mga e (ipleZ’eptZ)’ “ (lpl47N4’ept4)} (8)

for the VOD flow initially. Then, after a peroid of time, the
controller performs network update based on policy change, and the
new forwarding path of the VOD flow is

TN = =
(2) B (a (6)
/\’__/ / /\\-—//\ __//
w Vi \.
/ \
’fp}/, / \
. / \
; / \
ryd / \
Y / \
£ A J / \\
\ Z 3 \
N~ / fp x\
e / \
fp’ \\\ // \\
X / \
L/ 1 \ L
7N 7N \
(3\f 5 } \f/ 7))
NS __/" N
Figure 1: Network topology with 7 nodes.

Page 3 of 7
App
Route
Path
Figure 2: Tripartite graph of network forwarding metadata.
privo = {(lptl’Nl’eptl)tag” mg’(lptzsz»eptz), mg’(ipthuePtz;)} 9)

Ifthe controller wants to delete the configuration in fp, . it first
need to locate the target nodes and the corresponding flow table
entries that should be removed from the network. So it is necessary
for the controller to recored the information of fp which enables
locatingthe target network metadata. In both wide area and data center
networks, which deployed with many applications, the amount of
forwarding paths for network flows may be tremendous large and the
compact structure to organize the information of this many paths in
the control-plane is a major challenge for configuration deletion.

We have proposed a structure to record network metadata such
as forwarding paths and forwarding routes. In the SDN architecture,
APIs are provided on the north bound, applications such as VOD can
deploy policies such as bandwidth guarantee to the network control-
plane through the north bound APIs. When a VOD flow requests
routing through networks, the control-plane computes a forwarding
path for the flow, according to the bandwidth guarantee policy as well
as network conditions, and installs the forwarding path to the data-
plane. The flow of VOD application then travels from an ingress node
to an egress node along with the forwarding path settled by the control-
plane. On account of that every forwarding path serves for its flows and
each flow belongs to its network application, we introduce one more
metadata of network forwarding, i.e. the network application (Figure 2).

To retrieve and remove forwarding paths efficiently, we organize
forwarding paths in a hierarchical way. We abstract one potential
common attribute for different forwarding paths, which is the
forwarding route. Different forwarding paths may have the same
physical nodes pipeline. In other words, these paths may be placed on
the same forwarding route. There exists inner relation among network
application, forwarding route and forwarding path.

We denote the relationship among application, route and path by
tripartite graph G= (V,V®,V® ;E), as shown in Figure 2. We define
VW, V@ and V® and as three partition sets of G.

V(]) = {aPPn---aaPP/} "
V(3) = {pathl’""pathn} (12)

Vertices in V¥ , V@ and V® represent applications, routes and
paths respectively. There is no adjacent vertices between V® and V©.
Vertices in V® may have more than one adjacent vertices in V", while
vertices in V® can only get one adjacent vertices in V. One vertices in
V® may have multiple adjacent vertices in V. Two or more vertices
in V® can share the same one adjacent vertices in V? because that
one route can be shared with multiple applications. Vertices in V@
cannot have multiple adjacent vertices in V® because the path is the

J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Volume 6 - Issue 1+ 1000167

Citation: Liu J, Zhu L, Sun W, Hu W (2016) Achieving Memory-saving Network Update. J Inform Tech Softw Eng 6: 167. doi:10.4172/2165-

7866.1000167

Page 4 of 7

connection which only locate in one specific route.

Once the network trigges a network update, after the target
forwarding path get computed and deployed to the network, given the
app tag of the new forwarding path, we can provide our first level of
reference to the intial forwarding path, which is the app type of the
forwarding path. Based on the reality that the initial and the target
forwarding paths share the same ingress and egress nodes, given the
ingress and egress nodes of the new computed path, we can provide our
second level reference to the intial forwarding path to locate the route
on the structure. At the third level, we get a small set of our candidate
paths based on the first and second level references, and we can look
upthe initial forwarding path based on the matching field on the ingress
node, knowing that the intial and the target forwarding paths have the
same matching field on their ingress nodes. After we retrievethe initial
forwarding path, the controller can perform a sequence of Open Flow
commands to delete the corresponding flow table entries on the nodes
inthe data-planeaccording to the information of the initial forwarding
path. The above mechanism is listed in Figure 3.

The hierarchical structure of network metadata accelerates the
retrieve procedure for a specific forwarding path. Based on the multi
level of references, we can locate the candidate set of forwarding paths
quickly. And the amount of the candidatesis reduced enormously.
After the procedure of multi level reference, we only need to check
the matching field of the candidates to retrieve the desired initial
forwarding path.

From our study, Onix [13] and PANE [14] matain the network
metadata as the network information base (NIB), which is a database
storing hosts, switches, ports queues, forwarding tables, links and
their capabilities. NIB is responsble for holding network information
and translating logcial actions of control to physical configurations.
Modern SDN platform, such as Open Daylight [15], uses the concept of

NIB to build its service abstration layer (SAL), which is the backbone of
its architecture. We argue that the forwarding path of different network
applications should be maintained as a meta element in NIB. Network
update, which is one of the major events of SDN environment, deals
with the forwarding paths. When network condition or applicationstate
changes, the actionsfor forwaring paths need to be translated to
network configurations. And a hirarchical way to maintain forwarding
path would actually accerlerate network update operation and reduce
overhead.

Implementation and Evaluation

In order to investigate the performance of forwarding path retrieve
and the effect of reducing network memory overhead, both real
network testbed experiments and simulations have been conducted.

Testbed experiments

We have built a prototype implementation of the hirarchical
metadata structure. Open Day light is used as the controller software
and we implement the proposed hierarchical structure as a plug in of
Open Day light. The plugin maintains data of the structure and provides
APIs to manipulate. The Mini net [2] environment is used to build the
test bed network topology. A HP ProLiant ML350 Gen9 server is used
as the controller host and is also connected to a set of DELL Inspiron
560 pcs running Mininet. We have designed two test cases. In both
cases, a client connection reaching one of the pre-installed application
servers is built randomly. We retrieve all the flow table entries of the
corresponding forwarding paths in situations with and without the
plugin respectively. The corresponding time cost is recorded.

In case 1, we build a test network topology with 100 network
devices initially. There are 20 network applications deployed in the
network. Each network node may have flow table entries related to the
application’s flow. We differentiate the application information of flow

Procedure: CONFIGURATIONDELETE (fjvm,,g” ,T)

Input:forwarding path ﬁ7,a,.ge, , hierarchical metadatatree structure T’

Output:Remove fp,,., from the network and return fp,.,

1: app = getApp(ﬁ%mge,) /Iget the application type of the flow on ﬁ?,a,ge,

2: s7¢ = getngress(fp,,,.,) //get the ingress node of /7,
3: dst = getEgress(fp,,..) /lget the egress node of P,

4: mf,,,,, = getMatchField(fp,,,.) //get the matching field on the ingress node of /P,

5: T, = getSubtree(T,app) //return a sub tree with the root node of app
6: Set ., = gelLayel‘(T;ﬂp,Z) /lget all the elements on the second layer of the sub tree
7: for all r € Set,,,, do
8: sre, = getlngress(r)
9: dst, = getEgress(r)
10: if src = src, and dst = dst then
11: T, = getLayer(T,,,.r)
12: Set;, = getLayer(T},2) //get all the forwarding paths on the route r
13: for all fp € Set, do
14: mf = getMatchField(fp)
15: ifmf =mf,,,, then
16: Suiia = JP
17: delete(fp,) /lremove fp, .. from the data-plane
18: return fp,..,

Figure 3: Configuration delete procedure.

J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Volume 6 - Issue 1+ 1000167

Citation: Liu J, Zhu L, Sun W, Hu W (2016) Achieving Memory-saving Network Update. J Inform Tech Softw Eng 6: 167. doi:10.4172/2165-

7866.1000167

Page 5 of 7

table entries by their destination IP in the matching fields on the ingress
nodes. We initially assign 10 nodes along the forwarding path carrying
the randomly built connection. Consequently, there are 10 flow table
entries constructing such a connection. Then we increase the total
number of network nodes and also the number of nodes in each path,
to observe the time cost under different network scales. In situation
with the plugin, we locate all the flow table entries in a forwarding path
by iterating the structure from the top layer to the bottom layer. In
situation without the plugin, we have to look up all the network nodes
to find the desired flow table entries. As shown in Figure 4, situations
with and without the plugin differ more than one order of magnitude
in time cost.

In case 2, 20 applications are deployed in the network. We change
the number of network nodes both in a path and in the whole test
network to observe the time cost. The increasing number of network
nodes in a path would bring more flow table entries on the path. It
takes more time to retrieve a specific path consequently. On the other
hand, in situation without the plugin, the time cost is affected mostly
by the network scale, as listed in Figure 5. We traverse all the network
nodes to find the desired flow table entries in such situation. Therefore,

05 4

Time cost for retrieving all flow table entries along a path / log10(s)
o

©&— without plugin
) =— with plugin
5L L L ! ! L
100/10 200/20 300/30 400/40 500/50 600/60 700/70 800/80 900/90 1k/100
Total number of nodes / Number of nodes in each path

Figure 4: Time cost of retrieving flow table entries under different network
scale.

A A&

05| < — 3

Time cost for retrieving all flow table entries along a path / log10(s)

-1.5¢ £— 500 nodes with plugin 1
300 nodes without plugin
A— 400 nodes without plugin
& 500 nodes without plugin

10 20 30 40 50 60 70 80 90 100
Number of nodes in each path

Figure 5: Time cost of retrieving flow table entries for fixed network scale with
changing scale of path.

350 T T T T T

using idle timeout
retrieve and remove

| S m———

300

I
@
=}

A
I

w
o
3
T
L

Data-plane Memory Overhead
z
1

=)
3

L L L L L
0 10 20 30 40 50 60 70 80 90 100
Time(s)

Figure 6: Data-plane memory overhead with 10 paths updated in a network
update cycle.

it takes more time to locate flow table entries of an application in a
larger scale of network.

Simulations

In the simulation, we use random substrate topology. According to
investigations of Albert et al. [4], given two arbitrary nodes, the number
of intermediate nodes are generated by using the equation below:

In (N)
rand ln (k)

In Eq. (13), parameters N and k represent the whole number
of nodes in a network and the average degree of network nodes
respectively. In the simulation, we set K=2.66 according to [16]. The
average number of nodes in a path, connecting two randomly selected
nodes, is approximately equate to the right part of Eq. (13). In the
simulated network topology, it is interconnected between each node.
Periodically, the simulated network receives a fresh flow per 0.1 second.
The idle timeout of a flow table entry is 5 second. We observe network
behavior during time period of 100 seconds under different conditions.

(13)

We firstly set the scale of substrate network as 100 nodes and the
average node number of forwarding paths is five, according to Eq.(13).
During the time interval between the 40" second and the 60' second, we
update the simulated network at each second. In Figure 6, we update 10
forwarding paths in an update cycle and record the data-plane memory
overhead at different time points. Data-plane memory overhead is
understood as the total amount of flow table entries in the substrate
network. It is observed that the two-phase update, using idle timeout to
uninstall configurations, leads to a sharp increase of memory overhead,
while our proposed mechanism to remove configurations performs
a stationary update process. In Figure 7, we increase the number of
forwarding paths to be transformed to 20 in an update cycle. As we can
see between Figures 6 and 7, the data-plane memory overhead rises as
the scale of network update increases under the condition using idle
timeout. While in situation with our mechanism, the update process
keeps stationary at a coarse granularity. With the increasing scale of
network update, mechanism of idle timeout for two-phase update
brings more and more pressure to data-plane memory. Network traffic
behavior differs a lot between day and night, and at some points of
time, the network need to deploy large scale update to meet traffic

J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Volume 6 - Issue 1+ 1000167

Citation: Liu J, Zhu L, Sun W, Hu W (2016) Achieving Memory-saving Network Update. J Inform Tech Softw Eng 6: 167. doi:10.4172/2165-

7866.1000167

Page 6 of 7

400 T T T T T T T

using idle timeout
retrieve and remove

350

200 B

]

=1

=3
T

Data-plane Memory Overhead
@
(=]
T
|

2
8

50 1 1

oL 1 1 L L 1 1 L 1 1
0 10 20 30 40 50 60 70 80 20 100
Time(s)

Figure 7: Data-plane overhead with 20 paths updated in a network update
cycle.

usmg \d\e timeout

25}

Number of Times Reaching Upper Bound of Memory Capacity
@

o

90 100

T\me(s

Figure 8: Number of times reaching upper bound of memory capacity of a node
in two-phase update case using idle timeout.

characteristic. The two-phase update with our proposed mechanism
can apply well to such scenario.

Next, we investigate the memory overhead of key nodes under a
fixed topology as shown in Figure 1. There are 7 nodes totally and node
4 has the highest degree. In the simulation, since each node has the same
probability to receive new flows, we think node 4 holds more traffic
than others. We update the network at each second during the time
period between the 40" second and the 60" second, and 10 forwarding
paths are changed in every update process. We set the upper bound
capacity of memory for each node to hold flow table entries as 25 and
record the number of times for a specific node to reach its memory
capacity in the span of one second. It is obvious from Figures 8 and
9 that our mechanism can help to ease off the memory overhead of
network key node.

Now that we investigate the impact of network scales. We observe
the memory overhead under different network scales with 100, 200 and
300 nodes respectively, and the corresponding number of nodes along
a forwarding path is set as 5, 6 and 7. The simulation process updates
the network at each second between time period from the 10* second

to the 30™ second for the 300 nodes network, from the 40" second to
the 60" second for the 200 nodes network, and from the 70" second
to the 90™ second for the 100 nodes network. 20 paths, 40 paths and
60 paths are updated in an update process for network scales of 100
nodes, 200 nodes and 300 nodes, respectively. The results in Figures
10 and 11 show that the memory overhead increases as the network
scale grows, during the update process using idle timeout mechanism.
In contrast, with the increasing network scale, the retrieve and remove
mechanism using a hierarchical structure brings little impact to the
memory overhead during the network update (Table 1).

Conclusion

In this work, we are interested in the memory overheadduringthe
two-phase network update process. We provide a solution based on
configuration deletion. We argue that the challenge is to realize efficient
configuration retrieve, and we show that a network metadata structure
to organize information of forwarding path in a hirarchical way which
could accelrate the retrieve process, and should be designed as a meta

2 T T T T

I retrieve and remove

S @)
T T T
1 !

o

Number of Times Reaching Upper Bound of Memory Capacity
= =4 o
- [=2] =] -
T T T
| L

e
LY
T
1

L L L L
0 10 20 30 40 50 60 70 80 920 100
Time(s)

o

Figure 9: Number of times reaching upper bound of memory capacity of a node
in two-phase update case using proposedmechanism.

900 T T T T T T T

300 Nodes
——— 200 Nodes
100 Nodes | -{

700 - —
600 -~ —

‘\u I VLIS

o

=1

=]
T

Mrw n

a0 |f ""'"\“ ’P-.W‘Mm 1""#""“%""}* i

] mmw nn‘nqu M‘,, [

Ry ot

Data-plane Memory Qverhead

200 [f

100 Hf

ol i 1 . L 1 . L L 1
0 10 20 30 40 50 60 70 80 90 100
Time(s)

Figure 10: Data-plane memory overhead under different network scale in two-

phase update case using idle timeout.

J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Volume 6 - Issue 1+ 1000167

Citation: Liu J, Zhu L, Sun W, Hu W (2016) Achieving Memory-saving Network Update. J Inform Tech Softw Eng 6: 167. doi:10.4172/2165-

7866.1000167

Page 7 of 7

450 T T T T T T

300 Nodes
200 Nodes
100 ches -

400 -

‘ “ll\ p,l ,ﬂ

T Reand u
‘.‘u"“ * Wty

.,ﬂl;www. ‘MW"W i "»f } 'm\ w,urwwwww

[*‘"'“N My

350 -

w
=1
=)

n

@

o
T

Data-plane Memory Overhead
8
(=]

50 ¢

1 L L L L L
o 10 20 30 40 50 60 70 80 90 100
Time(s)

Figure 11: Data-plane memory overhead under different network scale in two-
phase update case using proposed mechanism.

Symbol Meaning

G Physical network

v Set of network nodes

E Set of network links
pk Packet

f Flow

fo Forwarding path

fr Forwarding route

N Network node

ipt Ingress port of nodes for a packet
ept Egress port of nodes for a packet
S Network state

Table 1: Network forwarding Notations.

component in the network information base. We investigate the
performance in both simulation and testbed environments [17]. The
results show that the proposed mechanism outperforms the original
one and brings performance enhancementin time cost for retrieving
a forwarding path and in memory overhead under different scenarios.

Acknowledgement

This work is supported by NSFC (61433009, 61431009,61271217), and
Ministry of Education (20110073130006).

References

1. Reitblatt M, Foster N, Rexford J, Schlesinger C, Walker D (2012) Abstractions
for network update. In Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer
communication. USA.

2. McClurg J, Hojjat H, Cerny P, Foster N (2014) Efficient synthesis of network
updates. arXiv preprint arXiv.

3. www.mininet.org

4. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks.
Reviews of modern physics, Indiana.

5. Liu J, Zhu L, Sun W, Hu W (2015) Scalable application-aware resource
management in software defined networking. In Transparent Optical Networks
(ICTON), 2015 17th International Conference on, Budapest.

6. Francois P, Shand M, Bonaventure O (2007) Disruption free topology
reconfiguration in OSPF networks. In INFOCOM 2007, 26th IEEE International
Conference on Computer Communications,Anchorage, AK.

7. Francois P, Bonaventure O, Decraene B, Coste P A (2007) Avoiding disruptions
during maintenance operations on BGP sessions. Network and Service
Management, IEEE Transactions on.

8. Raza S, Zhu Y, Chuah CN (2011) Graceful network state migrations. IEEE/
ACM Transactions on Networking (TON), USA.

9. Kazemian P, Varghese G, McKeown N (2012) Header Space Analysis: Static
Checking for Networks. In Networked Systems Design and Implementation
(NSDI), USA.

10. Vanbever L, Vissicchio S, Pelsser C, Francois P, Bonaventure O (2011)
Seamless network-wide IGP migrations. ACM SIGCOMM Computer
Communication Review, USA.

11.Jin X, Liu HH, Gandhi R, Kandula S, Mahajan R, et al. (2014) Dynamic
scheduling of network updates. In Proceedings of the 2014 ACM conference
on SIGCOMM, USA.

12. Foster N, Guha A, Reitblatt M, Story A, Freedman MJ, et al. (2013) Languages
for software-defined networks. Communications Magazine, IEEE 51: 128-134.

13. Koponen T, Casado M, Gude N, Stribling J, Poutievski L, et al. (2010) Onix: A
Distributed Control Platform for Large-scale Production Networks. InOperating
Systems Design and Implementation (OSDI), USA.

14. Ferguson AD, Guha A, Liang C, Fonseca R, Krishnamurthi S (2013)
Participatory networking: An API for application control of SDNs. In ACM
SIGCOMM Computer Communication Review, USA.

15. Jarschel M, Wamser F, Hohn T, Zinner T, Tran-Gia P (2013) Sdn-based
application-aware networking on the example of youtube video streaming. In
Software Defined Networks (EWSDN), 2013 Second European Workshop on,
Berlin.

16. www.opendaylight.org

17. Govindan R, Tangmunarunkit H (2000) Heuristics for Internet map discovery.
In INFOCOM 2000,19th Annual Joint Conference of the IEEE Computer and
Communications Societies, USA.

J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Volume 6 - Issue 1+ 1000167

http://dl.acm.org/citation.cfm?id=2342427
http://dl.acm.org/citation.cfm?id=2342427
http://dl.acm.org/citation.cfm?id=2342427
http://dl.acm.org/citation.cfm?id=2342427
http://arxiv.org/abs/1403.5843
http://arxiv.org/abs/1403.5843
http://www.mininet.org
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiS4vvR8pTKAhVDjo4KHdWADKMQFggcMAA&url=http%3A%2F%2Fwww.barabasilab.com%2Fpubs%2FCCNR-ALB_Publications%2F200201-30_RevModernPhys-StatisticalMech%2F200201-30_RevModernPhys-StatisticalMech.pdf&usg=AFQjCNEyBJwsBAC1e19YnnxvnxNauExbaQ
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiS4vvR8pTKAhVDjo4KHdWADKMQFggcMAA&url=http%3A%2F%2Fwww.barabasilab.com%2Fpubs%2FCCNR-ALB_Publications%2F200201-30_RevModernPhys-StatisticalMech%2F200201-30_RevModernPhys-StatisticalMech.pdf&usg=AFQjCNEyBJwsBAC1e19YnnxvnxNauExbaQ
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7193522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7193522
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7193522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7193522
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7193522&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7193522
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4215601
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4215601
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4215601
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4489643&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4489643
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4489643&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4489643
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4489643&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4489643
http://dl.acm.org/citation.cfm?id=2043010
http://dl.acm.org/citation.cfm?id=2043010
http://dl.acm.org/citation.cfm?id=2228311
http://dl.acm.org/citation.cfm?id=2228311
http://dl.acm.org/citation.cfm?id=2228311
http://dl.acm.org/citation.cfm?id=2018473
http://dl.acm.org/citation.cfm?id=2018473
http://dl.acm.org/citation.cfm?id=2018473
http://dl.acm.org/citation.cfm?id=2626307
http://dl.acm.org/citation.cfm?id=2626307
http://dl.acm.org/citation.cfm?id=2626307
http://dl.acm.org/citation.cfm?id=1924968
http://dl.acm.org/citation.cfm?id=1924968
http://dl.acm.org/citation.cfm?id=1924968
http://dl.acm.org/citation.cfm?id=2486003
http://dl.acm.org/citation.cfm?id=2486003
http://dl.acm.org/citation.cfm?id=2486003
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6680564&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6680564
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6680564&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6680564
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6680564&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6680564
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6680564&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6680564
http://www.opendaylight.org
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiSm-WO9JTKAhUOcI4KHe2GAjEQFggcMAA&url=http%3A%2F%2Fwww.isi.edu%2Fdiv7%2Fpublication_files%2Fheuristics.pdf&usg=AFQjCNHrsrDRq55doQ2SYFtDclHQCR9K8w
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiSm-WO9JTKAhUOcI4KHe2GAjEQFggcMAA&url=http%3A%2F%2Fwww.isi.edu%2Fdiv7%2Fpublication_files%2Fheuristics.pdf&usg=AFQjCNHrsrDRq55doQ2SYFtDclHQCR9K8w
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiSm-WO9JTKAhUOcI4KHe2GAjEQFggcMAA&url=http%3A%2F%2Fwww.isi.edu%2Fdiv7%2Fpublication_files%2Fheuristics.pdf&usg=AFQjCNHrsrDRq55doQ2SYFtDclHQCR9K8w

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Software defined networking
	Network update
	Our approach

	Related Work
	Network Forwarding Model
	Hierarchical Network Metadata Structure
	Implementation and Evaluation
	Testbed experiments
	Simulations

	Conclusion
	Acknowledgement
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	References

