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them cope with these damaging species. Antioxidants can also 
be divided in endogenous and exogenous. Many endogenous 
antioxidants are enzymes (for example, superoxide dismutase); 
albumin and bilirubin are examples of non-enzymatic endogenous 
antioxidants. Organisms can use exogenous AOx obtained from 
nutrition to compensate for possible deficits in the ratio of AOx 
and FR, although today, we also have supplements and other 
pharmaceutical applications. The most common exogenous 
AOx are phenolic compounds [1,2]. Predicting the antioxidant 
activity is also extremely valuable for medicinal chemists and 
pharmaceutics, as many drugs have their therapeutic effects via 
antioxidant activity. This has been known for many years in the 
industry and the scientific community [3].

It is known that phenolic compounds tend to undergo one 
of two reaction mechanisms for quenching FR. Here ArOH 

It is important to note that both mechanisms result in the same 
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INTRODUCTION

An imbalance between the production of Free Radicals (FR) and 
the ability of an organism to quench and eliminate those species 
leads to a series of, most often, unwanted effects (aging, cancer, 
peptic ulcers, and others). This process is called Oxidative Stress, 
which can be caused by a series of factors when endogenous 
and exogenous chemicals are the most recurrent ones. Most of 
the endogenous and exogenous FR humans are exposed to are 
Reactive Oxygen Species (ROS, mostly small inorganic or organic 
molecules derived from oxygen, very common examples are 

−

small inorganic or organic molecules containing nitrogen). 
As is to be expected, ROS are much more reactive than other 
species; hence the study of Oxidative Stress and related topics 
is usually focused on those oxygen-containing species. Biological 
systems usually present Antioxidant (AOx) mechanisms to help 

ABSTRACT
In this study, we developed various Quantitative Structure-Activity Relationship (QSAR) models for the 1,1-diphenyl-
2-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) experimental values of 55 
phenolic antioxidants based on Conceptual DFT descriptors calculated with the Density Functional Tight Binding 
(DFTB) GFN1-xľB. Machine learning algorithms were used for feature selection and regression analysis, and Leave-
One-Out Cross-Validation was used for both multiple linear regression (MLR) and sequential minimal optimization 
regression (SMOreg). For ABTS activity, two models were obtained with a correlation coefficient of 0.94 (MLR) and 
0.92 (SMOreg). For DPPH activity, two models were obtained with a Correlation Coefficient of 0.93 (MLR) and 0.91 
(SMOreg). The number of phenolic groups in the molecule, Bond Dissociation Enthalpy and radical Fukui of the 
most active phenolic oxygen were enough to properly predict the Radical Scavenging Activity (RSA) of phenols. Both 
developed QSAR models were carried out following the Organisation for Economic Co-operation and Development 
(OECD) recommendations on QSAR models. Considering the importance of antioxidant activities in medicine, 
pharma, and food industries, this study proposes a highly valuable and cheap method. It is also extremely easy to 
understand as we need only three descriptors that are directly related to the known chemistry of the substances
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The present work presents a QSAR study to develop predictive 
models for the RSA of phenolic compounds. The QSAR endpoints 
of this study are the ABTS and DPPH tests results reported by [7] 
for 55 phenolic compounds isolated from a Chinese herb see 
(Table 1) for experimental data and (Supplementary Figure 1) for 
molecular structures. Density Functional Tight Binding (DFTB) 
approach was used to calculate physico-chemical properties of the 
compounds. Both global and local reactivity descriptors based 
on Conceptual DFT (CDFT) [8] and some reaction enthalpies 
were calculated. The number of phenolic groups in the structure 
was also considered as a structural descriptor (more details 
in Materials and Methods). Hydrogen Transfer for the HAT 
mechanism was approached by calculating the Bond Dissociation 
Enthalpy (BDE) of the compound’s phenolic hydrogens. The 
SET mechanism was approached by calculating the energies of 
the Frontier Molecular Orbitals and some CDFT descriptors 
described below related to electronic charge and movement. 
The energy of frontier molecular orbitales HOMO and LUMO, 
and some of their derivated descriptors, were also taken into 
consideration.

products. One mechanism will be preferred over the other 
depending on the structure of the AOx compound, pH, and 
polarity of the solvation media [4,5].

1. →
2. Single Electron Transfer -Proton Transfer (SET-PT): 

→
→

Please note that the Rate-Determining Step (RDS) of the HAT 
mechanism corresponds to the homolytic rupture of the O-H 
bond, while for the SET mechanism, the RDS is the single transfer 

on these two RDSs for the in silico prediction of the Radical 
Scavenging Activity (RSA). 2, 2’-azino-bis-3-ethylbenzthiazoline-6- 
sulphonic acid (ABTS) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) 
are RSA tests very commonly used in the scientific community 
to assess the AOx activity. Even though both studied RSA tests 
were initially developed to test the HAT mechanism, it has been 
shown that both ABTS and DPPH may incur in HAT and SET 
mechanisms [6].

Table 1: Experimental data for the phenolic antioxidant molecules studied. The DPPH and ABTS values are reported in relative TEAC (mM).

N° CAS ABTS (mM) DPPH (mM) N° CAS ABTS (mM) DPPH (mM)

1 327-97-9 1.560 1.750 29 7770-78-7 0.104 0.085

2 583-17-5 0.930 0.840 30 528-43-8 0.209 0.197

3 588-30-7 0.820 0.750 31 81-54-9 1.930 2.000

4 69-72-7 0.037 0.052 32 72-48-0 1.070 1.050

5 99-06-9 0.025 0.069 33 81-64-1 0.548 0.035

6 99-96-7 0.028 0.059 34 478-43-3 0.076 0.056

7 121-34-6 0.092 0.056 35 481-74-3 0.069 0.042

8 1257-08-5 5.290 5.260 36 521-61-9 0.068 0.073

9 970-74-1 3.710 3.560 37 481-72-1 0.077 0.044

10 154-23-4 3.040 2.950 38 117-12-4 0.076 0.073

11 482-35-9 2.390 2.160 39 84-60-6 0.072 0.076

12 153-18-4 2.020 2.330 40 481-39-0 0.105 0.088

13 522-12-3 2.180 2.570 41 331-39-5 1.310 1.240

14 30311-61-6 1.560 1.630 42 99-50-3 1.150 1.290

15 487-52-5 2.420 2.270 43 989-51-5 5.950 6.090

16 94344-54-4 1.930 1.820 44 480-16-0 2.680 2.750

17 36338-96-2 1.430 1.360 45 520-18-3 1.590 1.320

18 491-70-3 2.180 2.240 46 548-83-4 1.120 0.705

19 480-40-0 0.081 0.053 47 60-82-2 1.790 1.240

20 5373-11-5 1.470 1.390 48 40957-83-3 0.097 0.020

21 578-74-5 0.083 0.050 49 529-59-9 0.077 0.026

22 10236-47-2 0.098 0.077 50 10083-24-6 2.530 2.350

23 520-26-3 0.104 0.075 51 92-61-5 0.383 0.210

24 486-66-8 0.101 0.033 52 29388-59-8 0.308 0.183

25 552-66-9 0.072 0.035 53 476-41-5 1.620 1.700

26 501-36-0 2.140 1.710 54 117-10-2 0.068 0.057

27 33171-05-0 1.180 1.020 55 152-84-1 0.073 0.070

28 580-72-3 0.253 0.207

Hydrogen Atom Transfer (HAT): R  + ArOH  RH + ArO

R ArOH R- + ArOH

 RH + ArO   R- + ArOH

of one electron from the ArOH to the R . Hence, we will focus 

• •

• + +•

+• •

•
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MATERIALS AND METHODS

Theoretical calculations of descriptors
As it is reported in [6], all the experimental values obtained are in 
form of Trolox Equivalent Antioxidant Capacity (TEAC) units. 
All 3D structures used for calculations were obtained directly 
from Chemspider as SDF files. The 3D phenolic structure was 
then uploaded to EntosAI and optimized along with the DFTB 
calculations. Global reactivity descriptors were obtained from 
DFT calculations [9-11]. ELUMO and EHOMO corresponded 
to the energies of the Lowest Unoccupied Molecular Orbital and 
the Highest Occupied Molecular Orbital, respectively. Properties 
like the Hardness (η, the resistance of the system to a change of 
charge, Equation 1), the Softness (S, the inverse of the hardness, 
Equation 2), the Chemical Potential (µ, measurement of the 
intrinsic strength of a Lewis acid or base, Equation 3) and the 
Absolute Electrophilicity Index (ω, the energy stabilization for 
an electron transfer, Equation 4) were calculated [12,13]. We also 
included the BDE × f*(O) as the multiplication of the BDE times 
the Radical Fukui Value of the most active phenolic oxygen. All 
structures were singlets having two electrons on their HOMO 
orbital.

                                                  ......(1)

                                                  .......(2) 

                                                         ........(3)

                                                   .......(4)        

All theoretical results were calculated at the DFTB [14] level 
of theory with the GFN1-xľB method [15] available on the 
EntosAI software package at the default configuration. The 
BDE energy obtained from EntosAI is the lowest BDE [kJ/
mol] energy corresponding to an O-H bonding in the molecule. 
The oxygen atom corresponding to that bond was used as the 
basis for the f-(O), f+(O), and f*(O) descriptors, corresponding 
to electrophilic, nucleophilic, and radical Fukui reactivity values 
for that oxygen atom. The f-(M), f+(M), and f*(M) correspond 
to the highest absolute value of the electrophilic, nucleophilic, 
and radical Fukui values in the whole molecule. The absolute 
energy of the molecule was also calculated. The HOMO [eV] and 
LUMO [eV] values were extracted from the Orbital calculations 
in EntosAI. From those HOMO and LUMO values, the η [eV], 
µ [eV], 𝜔 [eV], and S [eV] were calculated using Equations 1-4. 
The total number of OH groups n(OH) in the molecule was also 
considered. We also included the multiplication of the BDE 
times the Radical Fukui Value of the most active phenolic oxygen 
(BDE     f*(O)) as a descriptor.

QSAR and machine learning
Since the pharmaceutical industry set the best practice standard 
for using predictive models, with companies like Pfizer investing 
heavily into predictive research and saving several billion dollars 
a year from virtual screening techniques, quantitative structure-
property relationship has become valuable assets for both research 
and industrial use [16]. QSAR is a well-known computational 
approach for chemical data sciences. QSAR is used to develop 
predictive models for a vast array of chemical activities based 
on the study of empirical data coupled with computational 
calculations and data science techniques [17]. The present work 
is a QSAR study for the predictive calculation of the ABTS and 

DPPH RSA values of phenolic compounds, based on theoretical 
calculations performed and statistically treated with almost zero 
cost. In the past, many theoretical studies have tried to predict 
antioxidant activities, with various degrees of success [18,19].

Machine learning is a field of artificial Intelligence and data science, 
where computational algorithms and complex mathematical 
models are used for data classification, clustering, and regression. 
Supervised machine learning algorithms have to meet a balance 
between the error induced by bias present in the data, as well 
as the variance of the model. Proper statistical validation is 
required to maximize the derived models' trustworthiness. 
Cross-Validation is commonly recognized as a very efficient and 
reliable method for statistical validation of machine learning 
and QSAR models [20]. The WEKA software [21,22] is a suite 
dedicated to implementing various machine learning methods 
(and other data science applications) for predictive classification 
or regression problems. As the goal of this study is to predict a 
certain RSA value, we used the WEKA tool for Feature Selection 
(dimensionality reduction) and the regression implementation. 
For this, we used the methods: Multiple Linear Regression 
(Linear Regression) and Support Vector Machine (SMOreg), 
together with feature reduction attributes.

Feature selection was carried out using the Principal component 
analysis (PCA) and Correlation-based Feature Selection (CFS) 
Subset evaluator options in the WEKA software wrapped over 
each of the endpoints ABTS and DPPH values individually. All 
feature selections were carried with the default configuration. 
For the CFS reductions, the conservative forward selection was 
preferred.

The final QSAR regression models were obtained for each 
endpoint by applying the Linear Regression and the SMOreg 
methods available in WEKA. The regression equation results and 
the corresponding statistical metrics for validation are described 
in the results section. All Regression models were validated with 
Leave-One-Out Cross Validation (LOOCV).

RESULTS AND DISCUSSION

In this work, we performed a theoretical approach to study 
the relationship between the RSA and the electronic and 
thermodynamic properties of the systems. Theoretical and 
computational chemistry is a way of approaching molecules and 
their reactivities through computerized calculation methods. 
Many advantages arise from using these methods for predictions, 
including their low costs, high efficiency, and remarkable precision 
when studying the properties of electronic or thermodynamic 
systems. Computational chemistry is broadly used in areas such 
as pharmacy, inorganic chemistry, material sciences, spectroscopy, 
and many others as an alternative or previous step to performing 
expensive lab experiments [23-25].

Feature Selection
Principal components analysis: The PCA feature selection 
for both ABTS and DPPH endpoints yielded the following 
descriptors as results: ω, f+(O), f*(O), f-(O), f+(M), BDE, f-(M), 
f*(M) and BDE × f*(O). The n(OH) descriptor was manually added 
based on our chemical knowledge of the reaction mechanisms 
discussed above.

Interestingly, the Electrophilicity Index followed by the Fukui 
values for the oxygen atom involved in the active OH bond were 
selected as the most important descriptors. The electrophilicity 
was also considered in this feature selection, which could be 

              LUMO HOMOE Eη = −
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referring to an electron transfer process. This makes sense from a 
chemical perspective, as the flow of electrons is directly addressed 
by ω. The Fukui functions, associated with the oxygen of the most 
active phenolic moiety, described the reactivity of that part of the 
molecule towards electrophilic, nucleophilic, and radical attacks. 
Both CDFT descriptors explain the HAT and SET mechanism, 
while the BDE energy gives insights into the HAT mechanism.

CFS subset evaluator: The CFS Subset feature selection for both 
endpoints ABTS and DPPH yielded the following descriptors 

as results: n(OH), BDE, BDE × f*(O), f*(M), S, and f-(M). It is 
important to note that the n(OH) and the BDE were selected as 
the most important descriptors for the RSA. These descriptors 
are directly related to the phenol moiety in the AOx molecule. 
It is known from the literature that some correlation could 
exist between the number of phenolic OH bonds and the RSA 
of certain molecules. At the same time, the BDE has been 
widely studied and found to be correlated to the AOx activity 
of certain compounds, especially under vacuum or non-polar 
phase conditions [26], because of the HAT mechanism. The 
radical susceptibility to electron transfer in molecular active 
sites has been studied before via the radical Fukui function [27]. 
All the electronic descriptors obtained here seem to be related 
to the electron transfer process; hence they are related to the 
SET Aox mechanism. BDE, n(OH), and BDE × f*(O) appear to 
be the most important descriptors across both feature selection 

procedures. This makes sense from a mechanistic perspective. It 
is important to note that the descriptors appearing to bear more 
information about the RSA of the compounds are all descriptors 
that can be directly linked to the HAT or SET action mechanism 
of antioxidants discussed in the introduction.

Both PCA and CFS data were manually mixed and successfully 
reduced further without losing information. A final universal 
pruned dataset consisting of n(OH) and BDE × f*(O), will be used 
for the model regression for both DPPH and ABTS experimental 
values.

REGRESSION RESULTS

Below are the regression equations obtained for the predictive 
calculation of the ABTS and DPPH values with their 
corresponding error metrics. Both algorithms were used with 
standard configuration, without normalizing data, and LOOCV 
was used for all models. Calculated and experimental comparisons 
were evaluated with regression through the origin.

As we can see from (Table 2), the ABTS endpoint was approached 
with effectiveness and accuracy. The Multiple Linear Regression 
approach seems slightly more reliable for this response and 
dataset with a Q2=0.94, even though SMOreg also provided 
a Q2=0.91. In (Figure 1) the graphical relationship between 
experimental and calculated ABTS values is provided for both 
MLR and SMOreg algorithms.

Table 2: ABTS endpoint regression results of the LinearRegression and the SMOreg algorithms.

ABTS

LinearRegression

Correlation Coefficient (Q2) 0.9429

Mean absolute error 0.3673

Root mean squared error 0.433

Relative absolute error 35.64%

Root relative squared error 32.70%

SMOreg

Correlation Coefficient (Q2) 0.9275

Mean absolute error 0.4181

Root mean squared error 0.492

Relative absolute error 40.57%

Root relative squared error 37.16%

Figure 1: Flowchart of the modelling procedure.

ABTS=0.8453 × n(OH)-0.0238 × BDE × f*(O)  -1.5735

ABTS=0.8165 × n(OH)-0.0281 × BDE × f*(O)-1.6226
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As we can see, (Figure 2) the experimental and predicted values 
have a very high correlation with experimental data, presenting 
both models for the ABTS activity with a Q2 ≥ 0.91. Thus, these 
QSAR models are remarkably successful.

As we can take from (Table 3), the DPPH endpoint was 
approached with effectiveness and accuracy. The Multiple Linear 
Regression approach seems to be slightly more reliable for this 
type of response and dataset with a Q2=0.936, even though 
SMOreg algorithm proved to be extremely efficient too with a 
Q2=0.9273. In (Figure 3) the graphical relationship between 
experimental and calculated DPPH values is provided for both 
MLR and SMO algorithms.

The final equations for both algorithms, when targeting the 
ABTS and DPPH values, include n(OH), which is known from 
the literature to be related to the activity of certain compounds, 
as a major number of phenolic sites could potentially make 
the electronic and charge accommodation after a HAT or SET 
mechanism easier, by giving more means to the molecule to 
delocalize charge or an unpaired electron. Finally, the other key 

descriptor for describing our problem was [BDE × f*(O)], related 
to the reactivity and susceptibility of the phenolic oxygen atom 
in the molecule to radical attacks. It makes mechanistic sense 

to include this descriptor in the predictive regression equation, 
as we are literally studying the reaction between phenolic 
compounds and free radicals, which we also already know from 
literature undergoes via radical hydrogen atom transfers (HAT 
mechanism). It is important to note that all presented Q2 ≥ 0.90, 
making our models extremely efficient.

The Linear Regression algorithms in WEKA seem to be 
more effective for both endpoints, showing better correlation 
coefficients (Q2) and better error metrics than the SMOreg 
algorithm across all models.

Another important point to discuss is the fact that this QSAR 
work and its results all comply with the OECD principles for the 
validation, for regulatory purposes, of (quantitative) structure-
activity relationship models [28] as it has a defined endpoint 
(ABTS and DPPH), applies an unambiguous algorithm (as 
described in the methodology of this work), has a defined domain 
of applicability (phenolic compounds), present appropriate 
measures of goodness-of-fit and robustness (Q2, R2 and error 
metrics, obtained with Leave-One-Out Cross Validation) and we 
have also presented a mechanistic interpretation for the obtained 
models (as it was made clear in the previous discussion) [29].

Figure 2: MLR and SMOreg results fitting between calculated and experimental ABTS values.

Table 3: DPPH endpoint regression results of the LinearRegression and the SMOreg algorithms.

DPPH

LinearRegression

Correlation Coefficient (Q2) 0.936

Mean absolute error 0.3827

Root mean squared error 0.4627

Relative absolute error 36.74%

Root relative squared error 34.55%

SMOreg

Correlation Coefficient (Q2) 0.9273

Mean absolute error 0.4217

Root mean squared error 0.4981

Relative absolute error 40.49%

Root relative squared error 37.20%

DPPH=0.8508 × n(OH)-0.0265 × BDE × f*(O)-1.6973

DPPH=0.86 × n(OH)+0.0332 × BDE × f*(O)-1.8887
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CONCLUSIONS

The obtained results have been satisfactory for achieving our goal 
of producing a regression QSAR of the RSA (measured by ABTS 
and DPPH separately) of phenolic compounds based on CDFT 
descriptors obtained via the Density-Functional Tight-Binding 
method. Two precise models were developed for the ABTS and 
the DPPH antioxidant capacity tests, with Q2 ≥ 90% and robust 
error metrics.

We have fulfilled all these work objectives, with highly potent, 
fast, and cheap models being developed for the RSA. Alongside 
this, we have proven that DFTB provides a very efficient and 
approachable calculation framework for this type of study. 
It would be interesting in future studies to compare models 
generated with traditional DFT and models generated via DFTB, 
comparing total time expended and other metrics.

The n(OH) and [BDE × f*(O)] have proven to be effective 
descriptors for theoretically approaching the RSA of phenols 
via the mechanisms of HAT expected to be involved in the 
ABTS and DPPH tests. Our QSAR model makes mechanistic 
sense and comes accompanied by a clear, reasonable, and logical 
mechanistic interpretation.

Lastly, this study poses extra value to the current body of 
knowledge in this area, as we were able to generate very effective 
and cheap models using only two descriptors directly related to 
a chemical behavior. In contrast, models in the literature use 
four or more descriptors and are not always directly linked to 
a chemical mechanism. Other issues found in current literature 
are the low number of instances in certain studies for statistical 
significance. We would recommend revising the studies in this 
area to try and keep the number of molecules over 40 and the 
number of descriptors as low as possible.

This study has successfully generated two extremely effective 
QSAR models at practically zero cost for predicting the DPPH 
and ABTS values of RSA. Furthermore, both works comply with 
all the strict 5 OECD QSAR validation principles for regulatory 
purposes.
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