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Introduction
The solution of sparse linear systems is the most time-consuming 

step in running reservoir simulations; over 70% of time is spent on 
the solution of linear systems derived from the Newton methods [1]. 
If large highly heterogeneous reservoir models are applied, their linear 
systems are even harder to solve and require much more simulation time. 
Hence fast solution techniques are fundamental to large-scale reservoir 
simulations.

Linear solvers and preconditioners have been studied for decades 
and various techniques have been developed. Saad et al. developed 
the GMRES (generalized minimal residual) linear solver, which is 
a general purpose solver for nonsymmetric linear systems [2,3]. 
Vinsome designed the ORTHOMIN (orthogonal minimum residual) 
solver, which was originally developed for reservoir simulations [4]. 
The BICGSTAB (bi-conjugate gradient stabilized method) solver is also 
widely applied to reservoir simulations. These Krylov subspace linear 
solvers are general purpose and can be applied to any kinds of linear 
systems. When the matrices of linear systems are positive definite, 
multigrid methods are the most effective, including algebraic multigrid 
methods and geometrical multigrid methods. It is well-known that the 
convergence rates of these multigrid solvers are optimal [5-9].

Preconditioners are essential to the success of linear solvers. 
The incomplete LU factorization (ILU) preconditioners [2,3,10,11] 
and the incomplete Cholesky factorization preconditioner are the 
most commonly used preconditioners, which are efficient and easy 
to implement. The ILU methods are also the base of many advanced 
preconditioners, such as the domain decomposition methods [12]. For 
the black oil model, many multi-stage preconditioners [1,13,14] were 
developed to accelerate the solution of linear systems, such as the 
constrained pressure residual (CPR) preconditioner [15,16] and the 
fast auxiliary space preconditioner (FASP) [13]. Chen et al. proposed 
several CPR-like preconditioners for parallel reservoir simulations 
on distributed-memory systems [14]. These preconditioners solve a 
pressure equation using the multigrid solvers and an entire system using 
the ILU methods.

GPUs (graphics processing units) are extremely fast. Recently, 
GPU computing becomes more and more popular. However, GPUs 
have different architectures from CPUs, which means that special data 
structures and algorithms must be developed to utilize the power of the 
GPUs. NVIDIA developed a hybrid matrix format HYB for general 
sparse matrices [17,18]. NVIDIA also provides some fundamental 

scientific computing libraries, such as FFT (fast Fourier transform) [19], 
BLAS (basic linear algebra subprograms) [17-19], and sparse Krylov 
subspace solvers [20]. Saad et al. developed a type of a JAD (jagged 
diagonal) matrix for GPU computing and its corresponding SpMV 
(sparse matrix-vector multiplication) algorithm [10,11]. Chen et al. 
designed a hybrid matrix format, HEC (Hybrid of ELL and CSR), its 
SpMV algorithm [21], Krylov solvers [14,22-27] and classical AMG 
solvers [28]. Haase et al. developed a parallel AMG solver for GPU 
clusters [29]. Bell et al. from NVIDIA investigated fine-grained 
parallelism of AMG solvers using a single GPU [30]. Bolz, Buatois, 
Goddeke, Bell, Wang, Brannick, Stone and their collaborators also 
studied GPU-based parallel algebraic multigrid solvers [31-35]. 
Naumov [36] and Chen et al. [24] studied parallel triangular solvers 
for GPUs for point-wise matrices. Typical speedup of the GPU-based 
triangular solvers is around 2 [11,36]. More details can be found in 
[11,22-25,31-36].

For reservoir simulations, each grid block has several unknowns, 
such as pressure, temperature and saturations. If all unknowns in 
each block are numbered consecutively, the matrix A from the Newton 
methods has the following structure:
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where A is a non-singular matrix, each block A
ij (1 ≤ i, j ≤ n) is an m

× m matrix, and m is the block size. The same linear system also exists 
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in other applications where more than one equations exist. When m is 
unity, matrix A is a regular matrix or a regular point-wise matrix; when 
m>1, it is a block matrix. The block matrix A is equivalent to an nm×nm 
point-wise matrix. Here the following linear system is studied:

Ax = b, 			                                                           (2)

where b (∈Rnm) is the right-hand side and ×(∈Rnm) is the unknown 
to be solved. In practice, if A is ill-conditioned, an equivalent sparse 
linear system is solved:

M-1Ax = M-1b,			                                                     (3)

where M is a preconditioner or a left preconditioner. At each iteration, 
at least one preconditioning system, my = f, must be solved. M may be 
a point-wise ILU (k) preconditioner, an ILUT preconditioner, a block 
ILU (k) preconditioner or other pre- conditioners. The Krylov subspace 
solvers and point-wise ILU preconditioners, such as ILU (k) and ILUT 
preconditioners, are common methods to solve these linear systems, 
which are usually effective. However, when the condition number of 
A is large, the block ILU (k) preconditioner is generally a better choice 
than the point-wise ILU (k) preconditioner. The point-wise ILU (k) 
preconditioner and the block ILU (k) preconditioner have been studied 
and implemented on CPUs by Saad et al. [3].

The block ILU factorization has the form M = LU, where L and U 
are given as follows:
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where Iii is an identity matrix, i = 1, 2, . . . , n. The solution of the block 
ILU preconditioner on CPUs, Mx = b, is the same as the solution of the 
point-wise ILU preconditioner. The system is written as follows:

Ly = b, U x = y			                                                           (6) 

Equation (6) can be solved by block Gauss elimination in two 
steps. The first step is to solve the lower triangular system and the 
second step is to solve the upper triangular system. When parallelizing 
the GMRES solver and the block ILU (k) preconditioner on GPUs, 
the implementation of the GMRES solver is straightforward if an 
efficient sparse matrix-vector multiplication (SpMV) kernel and vector 
operations are provided. However, the parallelization of the block ILU 
(k) precon- ditioner is challenging. The reason is that the data on 
NVIDIA GPUs is stored on the global memory [19], and to achieve 
optimal efficiency, the data access pattern on GPUs should be coalesced. 

In addition, when the block size of A is variable, it introduces a difficulty 
in the design of a parallel block ILU (k) preconditioner on GPUs. In this 
paper, the point-wise and block ILU (k) preconditioners are studied. The 
triangular systems from the block ILU (k) factorization are reorganized 
and a three-step solution algorithm is proposed. The algorithm converts 
the block triangular systems to point-wise triangular systems; in this 
case, a unified method is obtained. This three-step algorithm works with 
any block size. Numerical experiments are performed to test the design 
of this parallel block ILU (k) preconditioner.

The framework of this paper is as follows: In §2, the GMRES solver 
and techniques for GPU computing are studied. In §3, the point-wise 
and block ILU (k) preconditioners are introduced and the solution 
techniques for the block triangular systems on GPUs are proposed. In 
§4, numerical experiments are carried to test the performance of the 
GMRES solver and the block ILU (k) preconditioner.

The GMRES Method
The GMRES solver is an iterative solution method for nonsymmetric 

linear systems developed by Saad and Schultz [2,3]. The method 
approximates a solution by a vector in a Krylov subspace with a minimal 
residual, where the Krylov subspace is defined by

K
m
= K

m
(A, r) = span{r, Ar, A2r, · · · , Am-1r}		                  (7)

In practice, the restarted GMRES solver is applied to save memory 
usage. The algorithm for the restarted GMRES (m) solver with a left-
preconditioner M is given in Algorithm 1.

From Algorithm 1, we can see that all operations except the 
solution of the preconditioning system are matrix-vector multiplication 
and vector operations:

y = αAx + βy,                                                                                          (8)

y = αx + βy,                                                                                                  (9)

z = αx + βy,                                                                                              (10)

a = <x, y>,                                                                                              (11)
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      2|||| xr =                                                                                                (12)

A vector is simply an array and algorithms for vector operations 
have been studied very well. NVIDIA also provides BLAS operations 
through the NVIDIA cuBLAS library. However, the sparse matrix-
vector multiplication (SpMV) operation is much more complicated 
than the vector operations. The reason is that the NVIDIA GPUs have 
different architectures from traditional CPUs [19,37] and algorithms 
that work well on CPUs may not work effectively on GPUs. Special 
data structures and algorithms for GPUs are required to design. The 
NVIDIA company developed parallel SpMV algorithms for CSR 
(compressed sparse row), ELL (EllPack), COO (coordinate) and HYB 
(Hybrid) matrices. The HYB matrix is a general matrix format for GPU 
computing, which is a hybrid of an ELL matrix and a COO matrix. 
Saad et al. designed a parallel SpMV algorithm for the JAD matrix. 
Here we use a hybrid matrix format HEC, which is shown by Figure 1 
[21]. An HEC matrix consists of two parts: an ELL matrix and a CSR 
matrix. The ELL matrix is regular and each row has the same length. 
When being stored on GPUs, the matrix is in column-major order. The 
CSR matrix stores the irregular part of a given matrix. The advantages 
of the HEC matrix are that it is easy to design a SpMV algorithm and it 
is also friendly to ILU preconditioners [21,22,24].

A sparse matrix-vector multiplication kernel [21] is developed as 
shown in Algorithm 2. The algorithm has two steps. The ELL part 
is calculated first and then the CSR part is processed. Each GPU 
thread calculates one row of the given sparse matrix. More details 
can be found in [21]. If the SpMV kernel and vector operations 
are implezhe GMRES solver and other Krylov linear solvers can be 
implemented straightforwardly. In the following sections, we will focus 
on preconditioners. 

 

Parallel Block ILU(k) preconditioner
In this section, the point-wise and block ILU(k) preconditioners 

are studied systematically. The point-wise ILU(k) precondi- tioner is 
introduced first and algorithms for incomplete LU factorization and 
the solution of triangular systems are presented. Then the block ILU(k) 
preconditioner is presented. The structure generation of the block ILU(k) 
preconditioner is based on the point-wise ILU(k) preconditioner. In the 
end, solution techniques for the block triangular systems are proposed.

The Point-wise ILU(k) preconditioner

Let A be an n × n point-wise matrix, which is equivalent to a block 
matrix with the unity block size. The matrix is stored by the CSR format 
matrix, which is demonstrated by Figure 2. The CSR matrix has three 
arrays, Ap, Aj and Ax. The length of A p is n + 1, which stores the start 
location of each row in Aj and Ax. For example, Ap(i) is the start 
location of row i and Ap(i + 1) is the start location of row i + 1. Aj 
stores column indices of all entries row-by-row and Ax stores values 
of all entries row-by-row. Usually only non-zero entries are stored in 

the CSR matrix to save computation and storage. The CSR matrix also 
defines the sparsity pattern P of matrix A.

The ILU preconditioner M is defined as M = LU, and the L and the 
U are
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The factorization algorithm of the ILU(0) preconditioner is 
described by Algorithm 3, in which A

ij in L and U is from Algorithm 
3, i = 1, 2, . . . , n.

Figure 1: HEC matrix format.

Figure 2: CSR matrix format.
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The solution for the preconditioning system, Mx = b, is 
straightforward using Gauss elimination, which is equivalent to system 
(6). The algorithm is shown in Algorithm 4, which has two steps. The 
first step is to solve the lower triangular system Ly = b, and the second 
step is to solve the upper triangular system Ux=y. GPU-based parallel 
algorithms for the solution of triangular systems have been developed 
[36].

Regarding as the Algorithm 4, we should mention that the algorithm 
is highly sequential. Let us take the solution of the lower triangular 
system, Lx = b, as an example. The ith component of x is solved as 
follows:

1

1

1 i

i i ij j
jii

x b A x
A

−

=
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= − 
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∑

To solve for xi, we must know x
1
, x

2
, …, and x

i−1
, which introduces 

data dependence and is the bottleneck of parallelization. The solution of 
the upper triangular system is similar. The level schedule method was 
introduced to parallelize the solution of triangular systems as shown in 
Algorithm 7, which will be discussed in detail.

To study a higher level ILU(k) preconditioner, a level for each 
entry is defined. The initial level for each entry Ai is defined as                         

0,   ( , ) ,
,   ( , ) .ij

i j P
L

i j P
∈ 

=  ∞ ∉ 
                                                                               (15)

The definition means that if one entry exists in the given sparse 
matrix A, it has a level of zero; otherwise, it has a level of infinity. 
During the factorization process, the entry A

ij is updated by line 5 of the 
Algorithm 3, and its level is updated by the following formula:

{ }min , 1ij ij ik kjL L L L= + +                        (16)

The point-wise ILU (k) is obtained if fill-ins whose levels are less 
than or equal to k are allowed; the algorithm is shown in Algorithm 5.

Algorithm 5 can also calculate the structure of the point-wise ILU 
(k) preconditioner by discarding entries whose levels are greater than k. 
In practice, we calculate its structure first, and then initialize the values 
of all entries using the original matrix A. The fill-ins have values of 
zero. At the end, by using the algorithm for the ILU (0) factorization, 
the point-wise ILU (k) preconditioner is computed. The resulting 
preconditioning system is solved by Algorithm 4. Algorithms 3 and 5 
are from [3] and more details can be found in [3].

Block ILU(k) preconditioner
The block ILU (k) preconditioner is similar to the point-wise ILU 

(k) preconditioner. The difference is that all operations on the block ILU 
(k) preconditioner are performed on blocks, which are m × m matrices. 
The generation of the block ILU (k) preconditioner consists of two 
steps. The first step is to calculate the structure of the block ILU (k) 
preconditioner.  The second step is to factorize the block matrix.

For the sparse block matrix A, if block A
ij exists, then (i, j) belongs 

to the point-wise matrix P. The P defines the sparsity pattern of the 
block matrix A. If Algorithm 5 is applied to P, then the structure of 
the ILU(k) reconditioner for P, P

k , can be obtained. The structure of the 
block ILU(k) preconditioner for A can be derived by filling zero blocks 
using P

k . By using the block ILU(0) factorization algorithm, the block 
ILU(k) factorization can be obtained.

The block ILU(0) factorization is shown in Algorithm 6. All 
operations on matrix A are matrix operations, such as the inverse of the 
diagonal matrix A

kk , A
−1 and the matrix-matrix multiplication A

ik
×A

kj
. 

The lower block triangular matrix L and the upper block triangular 
matrix U are the same as in (4) and (5). The preconditioning system 
Mx=b is equivalent to system (6), which can be solved by the forward 
and backward block Gauss elimination. The implementation on CPUs 
is straightforward. In the next section, solution techniques on GPUs are 
proposed. 

Solution for block triangular systems on GPUs

When implementing equation (6), a lower triangular linear system, 
Lx = b, and an upper triangular linear system, U x = b, are required to 
solve. For a point-wise matrix, the level schedule method [3,11] was 
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adopted to parallelize the solution of triangular linear systems. The idea 
is to group all unknowns xi into different levels so that the unknowns 
within the same level can be computed simultaneously [3,11]. For the 
lower triangular problem, the level of x

i (1 ≤ i ≤ n) is defined as

l(i) = 1 + max l( j), for all j such that L
ij = 0, i = 1, 2, . . . , n,                         (17)

Where L
ij is the (i, j)th entry of L, l(i) is zero initially and n is the 

number of rows. The level schedule method is described in Algorithm 
7. For GPU computing, each level in Algorithm 7 can be parallelized. 
Parallel triangular solvers for GPUs have been developed [38], which 
were designed for point-wise matrices. The HEC matrix format [21] 
was adopted for the parallel triangular solvers, which is demonstrated 
in Figure 1 [21]. The number of levels in Algorithm 7 depends on the 
lower triangular matrix L. The ideal case is that there is only one level 
and the solution process is fully parallelized. The worst case is that the 
number of levels equals the number of rows; in this case, the solution is 
completely sequential. The GPUs have the lowest performance.

 
The level schedule method can also be applied to block matrices. 

However, since the block size is variable, it is difficult to design algorithms 
that can match the architectures of GPUs with a variable block size. 
Here, we reorganize the ILU factorization using three matrices:

M = LD(D-1U ) = LDU
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The L and U
s can be converted to a regular point-wise lower 

triangular matrix L
t and a point-wise upper triangular matrix U

t . The 
preconditioning linear system Mx = b is equivalent to the following 
equation,

L
t DU

t x = b,                                              (21)

Which can be solved in three steps: 

L
t y = b,   z = D−1y,   U

t x = z.                                 (22)

Then the block triangular problems are converted to point-wise 
triangular problems. The linear systems L

t
y = b and U

t 
x = z can be 

solved by the traditional level schedule method, and the system z = D-1y 
is a matrix-vector multiplication operation. By using the algorithms 
developed in [38], a parallel solver for block triangular linear systems on 
GPUs is developed, which works with arbitrary block size. Its algorithm 
is shown in Algorithm 8.

Numerical Experiments
In this section, numerical experiments are carried out to test the 

restarted GMRES solver and the block ILU(k) preconditioner. The 
experiments are performed on our workstation with Intel Xeon X5570 
CPU and NVIDIA Tesla C2070 GPUs.  The operating system is the 
CentOS X86 64 with CUDA Toolkit 5.1 and GCC 4.4. All CPU codes are 
compiled with -O3 option and use one thread only. All calculations use 
double precision. The solver is GMRES (20). The termination criterium 
is 1e-4 for the relative error and the maximal number of iterations is 200.

The matrices employed in this section are listed in Table 1. Two 
of them are from the matrix market [39]. Here the speedup is defined 
as s=tc/tg, where t

c and t
g mean the CPU time and GPU time, 

respectively. If s is greater than 1, it means that the GPU-version 
linear solver is faster than the CPU-version linear solver. If it is less than 
1, then the GPU-version solver is slower than the CPU-version solver.

Example 6.1 The matrix is the parabolic fem from the matrix 
market [39].  The summary is given in Table 2.  The block ILU(k) 
with different block sizes and levels are tested. The GPU time is the 
running time for the GPU-version linear solver and preconditioner, 
and the CPU time is the running time for the CPU-version linear solver 
and preconditioner. The number of iterations and the speedup are also 
collected.

From Table 2, we can see when the block size is one, the performance 
of the block ILU(k) preconditioner with different level settings is 
similar. The speedups are between 7.41 and 7.83. The results show 
that the GPU-version linear solver is much faster than the CPU-version 
linear solver. When the block size is five, the speedups are between 6.10 
and 6.86. The reason is that if we increase the block size, Algorithm 

# of Rows Non-zeros NNZ/N
Parabolic fem 525825 2100225 4.0
Atmosmodd 1270432 8814880 6.9

P3D7P 3375000 23490000 7

Table 1: Matrices for numerical experiments

Block size Level GPU time (s) CPU time(s) # Iter # Speedup
1 0 0.08 0.71 20 7.83

1 1 0.087 0.686 20 7.57

1 2 0.087 0.67 20 7.41

5 0 0.184 1.16 20 6.23
5 1 0.183 1.14 20 6.10
5 2 0.183 1.28 20 6.86

Table 2: Summary of Example 4.1
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7 has less parallelism and the performance of GPUs is limited. From 
Table 2, we can also find that the case with a larger block size uses 
more computation time [40]. The reasons are that a small block has 
m × m entries, the given matrix A is sparse, and many zero entries 
are filled-in. These fill-ins introduce extra computations. However, the 
advantage is that when the matrix is ill-conditioned, the block ILU(k) 
preconditioner with a larger block size is more stable.

Example 6.2 The matrix used in this example is the atmosmodd 
[39]. The results are given in Table 3.

In this example, levels up to 3 are computed for the block ILU(k) 
preconditioner.  When the block size is one, the ILU(0) preconditioner 
has a speedup of 6.28, which means that the GPU-version linear solver 
is 6.28 times faster than the CPU-version linear solver. The speedup of 
the ILU preconditioner decreases from 6.28 to 2.68 when increasing the 
level k. In this case, more entries are filled-in, the data dependence of 
triangular systems becomes stronger and stronger, and the parallelism 
becomes less and less. The situation is similar for the block ILU(k) 
preconditioner with larger block sizes [41]. When the block size is two, 
the speedups are between 2.39 and 6.57. When the block size is four, 
by increasing the level, the speedup decreases from 7.02 to 2.69. This 
example demonstrates that the GPU-version linear solver is faster than 
the CPU-version linear solver.

Example 6.3 The matrix is P3D7P, which is from a three-
dimensional Poisson equation, i.e., a pressure equation.  The numerical 
summaries are shown in Table 4.

Three different block sizes and four different levels are applied. 
When the block size is one, the speedup of the linear solver with the 
ILU(0) preconditioner is 8.35. When the levels become higher, more 
entries are filled-in; in this case, the speedup becomes lower, from 8.35 
to 3.73.  When the block size is two, the speedup also becomes lower 
if the levels are increased, which varies from 8.12 to 4.00. The GPU-
version linear solver is much faster than the CPU-version linear solver. 
However, when the block size is four, the performance of the GPU-
version linear solver is low. The linear solver with the block ILU(0) 
preconditioner has a speedup of 2.35 only and the GPU-version linear 
solver with the block ILU(1) preconditioner is slower than the CPU-
version.

Example 6.4 This example tests the linear solver GMRES without a 
preconditioner. The results are shown in Table 5.

For the matrix parabolic fem, the GPU-version linear solver is 
9.56 times faster than the CPU-version. For the matrix atmosmodd, 
its speedup is 10.8 while the speedup of the linear solver for the matrix 

P3D7P is 11.48. The results show that our GPU-version linear solver 
is much faster than the CPU-version linear solver. Compared with 
Examples 4.1-4.3, we can see that the ILU preconditioner is harder to 
accelerate than the linear solver.

Conclusions
This paper studies the restarted GMRES linear solver and the 

ILU(k) preconditioners systematically, including the point-wise 
ILU(k) preconditioner and the block-wise ILU(k) preconditioner. 
Their factorization algorithms and solution algorithms are presented. 
The techniques for parallel solutions on GPUs are proposed. These 
techniques work for arbitrary block sizes and arbitrary levels of the 
block ILU(k) preconditioner. Numerical experiments have been 
carried out to test the speedup of the GPU-version linear solver and 
preconditioner. From these experiments, we can see that the GPU-
version linear solver is much faster than the CPU-version linear solver. 
These experiments also demonstrate that the solution of triangular 
systems is the bottleneck of a parallel GPU-based linear solver and 
parallelism becomes lower when we increase the block size and the 
level k of the block ILU(k) preconditioner. More efforts need be made 
to overcome these issues.
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