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Introduction
Coal is one of the three major fossil fuel resources in the world that 

are combusted for energy, the other two being oil and natural gas. Coal 
combustion alone contributes up to 40% of the total global energy and 
the figures are ever-increasing, due to rising demand for electricity and 
the availability of coal reserves in many parts of the world. During the 
combustion of coal two types of ashes are generated: fly ash and bottom 
ash, in approximate mass fractions of 90% and 10%, respectively [1]. 
Fly ash (FA) is obtained by the electrostatic or mechanical precipitation 
of dust-like particles from the flue gas stream [2]. By the year 2000, the 
total coal FA production of the world was around 600 million tonnes, 
with only 20% being utilized beneficially, mostly in the cement industry 
[3]. FA is a rapidly accumulating solid waste material which causes 
enormous problems for disposal unless a way can be found to utilize 
it on a large scale.

At the same time, the threat of global warming caused by elevated 
levels of carbon dioxide (CO2) in the atmosphere is causing the scientific 
community to move towards greenhouse gas mitigation technologies 
[4]. Therefore, a great deal of research is being conducted on the capture 
and storage (sequestration) of atmospheric CO2 by various means. The 
placement of super-critical CO2 into geological media such as deep 
oceans, underground coal formations, saline aquifers and depleted 
oil/gas reservoirs is practised worldwide as a common method of CO2 
sequestration [4-7]. In addition, the accumulation of atmospheric 
carbon into above ground plant biomass and its addition to the soil 
organic carbon pool is achieved by the restoration of marginal land 
to forest [8]. The use of alkaline materials for the sequestration of 
CO2 by mineral carbonation is attracting interest among the scientific 
community as an innovative concept. In mineral carbonation, CO2 
is reacted with minerals to form solid carbonates [9]. This form of 
sequestration is truly a permanent method since the mineral carbonates 
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are stable over geological time periods of millions of years, rather than 
the hundreds to thousands of years of stability expected for other forms 
of sequestration [10]. Carbonation of alkaline solid waste materials 
(e.g., coal fly ash/bottom ash, municipal solid waste incinerator fly 
ash/bottom ash, oil shale ash, steel slag and cement kiln dust) for the 
permanent sequestration of CO2 brings added environmental benefits, 
by helping to manage these solid wastes in an environmentally-sound 
manner. In addition, it offers the possibility of trading carbon credits 
for the incineration companies if mineral carbonation is introduced as 
a finishing step to incinerator facilities [11,12].

Apart from its applications in the cement and geo-polymer 
industries, coal combustion FA is attracting attention as a material 
with the capacity to beneficially alter the properties of soil. Researchers 
have reported the potential of FA for engineering soils to increase the 
stability of soil by taking advantage of its self-cementing properties 
[13,14]. Moreover FA has been shown to have the potential to 
improve soil’s agronomic properties, including moisture- holding 
capacity and hydraulic conductivity, soil structure and texture, pH 
buffering capacity and the supply of macro- and micro-nutrients [15]. 
However, FA is not commercialised as a fertilizer or a soil ameliorant 
because of the possibility of contamination of soil and ground water 
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chemical properties and composition provide the greatest variability in 
FA. Chemically, 90-99% of FAs consist of Si, Al, Fe, Ca, Mg, Na, with 
K forming the major matrix [27]. It is also rich in trace elements like 
As, B, Mo, S, Se, Cd, Pb, Zn, Co and Hg [25]. The high level of soluble 
salts and heavy metals present in some FAs make them a hazardous 
waste material which cannot be directly deposited into landfills [11]. 
According to Adriano, et al., [30] most of these heavy metals are 
concentrated into smaller ash particles. It is reported that the amounts 
of organic carbon and nitrogen are low in FAs since they tend to oxidise 
during coal combustion [31]. The variable amount of unburned carbon 
present in FA gives it a colour ranging from grey to black [32]. FA 
can have a pH from 4.5 to 12, depending largely on the S, Ca and Mg 
content of the parental coal [16], but most FAs produced worldwide 
are alkaline because of the presence of hydroxides and carbonate salts 
of Ca and Mg [27,33]. The high content of soluble salts gives FA the 
values of the electrical conductivity of saturated extracts ranging from 
0.63 to 55 dS/m [33]. 

There is a great variation in the properties of coal FAs, as discussed 
above. It is therefore vital to select FA with the required characteristics 
before using it as a candidate material for any application, including 
carbon capture and storage and soil amendment.

Mineral Carbonation of FA for Carbon Sequestration
Mineral carbonation involves the uptake of atmospheric CO2 by 

alkaline oxides and hydroxides present in the candidate materials to 
form thermodynamically stable forms of carbonates [34,35]. It is one 
of the steps in natural rock weathering which comprises a complex 
series of chemical and mineralogical transformations [36]. Basically, it 
is an acid base reaction where an acid formed by dissolution of CO2 in 
water (H2CO3) is neutralised by a solid base (alkaline mineral). Under 
natural ambient conditions, Ca and Mg-bearing silicate minerals are 
carbonated to form Ca and Mg carbonates. In this process, the carbonic 
acid (H2CO3) which results from the interaction of atmospheric CO2 
with rain water converts the alkaline earth materials into carbonate 
minerals [37]. The sequence of reactions involved in the carbonation 
mechanism can be written as follows:

H2O+CO2 →H2CO3 Equation 1

H2CO3→H++HCO3
-→2H++CO3

-2 Equation 2

CaO+H2O→Ca(OH)2 Equation 3

Ca(OH) 2→Ca2++OH- Equation 4

Ca2++CO3
2-→CaCO3 Equation 5

at high dosages by the hazardous trace elements present in it and the 
undesirable pH changes caused by the addition of some FAs [16]. 
Therefore, pre-treatments are usually recommended before applying 
FA to soils to leach out toxic elements and to adjust its pH. According 
to Pandey and Singh [17] weathering helps to reduce the leachability 
of toxic elements, especially boron (B), after the addition of FA to soil. 
Nevertheless, it can contaminate ground water resources at dump 
sites. The addition of carbonated FA to soil may present a better 
option, since the carbonation reaction is proven to alter the chemical 
stability of ashes and improve their leaching behaviour. In addition, 
carbonation reduces the alkaline pH of the ashes to a range that is 
suitable for soil application. The mineral carbonation of FAs occurs 
naturally when they are exposed to atmospheric CO2 and moisture in 
collection ponds. However, this natural carbonation reaction which 
mimics rock weathering takes geological times to complete [18]. 
Therefore, the CO2 uptake efficiency under natural carbonation is very 
much slower to achieve FA carbonation and atmospheric CO2 removal 
rates comparable to the emission rates. Accelerated carbonation with 
enhanced reaction conditions has the potential to reduce the time 
required for carbonation down to hours or days [12]. Therefore, it 
appears to be a viable approach to the capture and storage atmospheric 
CO2 in a stable form.

This paper reviews studies of the accelerated carbonation of coal 
combustion FA under different reaction conditions to identify its 
CO2 sequestration potential. Furthermore, it discusses the benefits of 
accelerated carbonation of FA prior to its use as a soil amendment.

Properties of Coal Combustion FA
FA is the portion of ash produced by coal combustion which has 

sufficiently small particle size to be carried away from the boiler in the 
flue gas [19]. It is a complex heterogeneous material with an amorphous 
(glassy) structure with possibly some crystalline phases [20,21]. The 
primary components of the FA matrix are silica (SiO2), alumina (Al2O3) 
and iron oxides (Fe2O3) [22]. It also contains small contents of quartz, 
mullite, hematite and magnetite as the major mineral phases [23]. 

The mineralogical, physical and chemical properties of FA vary, 
depending on the type of coal burned, boiler type, collector set-up, and 
the efficiency of the collectors [24]. Therefore, the ashes produced by 
the burning of bituminous, anthracite and lignite coals have different 
compositions [25]. Generally two classes of FA can be identified: (a) 
Class F and (b) Class C, depending on the amounts of calcium, silica, 
alumina and iron content in ash coming from the parental coal. Class 
C FA is produced by burning lignite or sub-bituminous coal and 
generally contains more than 20% lime (CaO). These ashes show a 
self-cementing effect called pozzolonic activity, which is primarily 
governed by the CaO content. Burning of harder and older anthracite 
and bituminous coals produces Class F FA, which contains less than 
10% lime [26]. 

FA particles are very fine in texture with a grain size distribution 
of sandy silt to silty loam. Particle diameter can range between 0.01–
100 µm but most particles in a sample are 2–20µm, belonging to the 
silt-sized range [27]. Morphologically, FA is usually characterized as 
spherical non-opaque with a surface area range of about 1 m2/g. The 
spheres can be solid, hollow, irregularly shaped, or filled with smaller 
spheres [24]. Figure 1 shows a scanning electron micrograph (SEM) of 
a FA sample showing its typical spherical morphology and size range.

FA has a light texture and a low to medium bulk density varying 
from 1 to 1.8 gcm-3 [27-29]. It has dielectric property (dielectric 
constant, 104) and can be used in electronic applications [26]. The 

Figure 1: SEM image of FA [27].
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Naturally-existing primary minerals such as wollastonite (CaSiO3) 
and olivine (Mg2SiO4) are suitable to be used as feedstock for mineral 
CO2 sequestration [38]. The theoretical maximum CO2 uptake 
capacity of such silicate materials can be estimated as a function of 
their chemical composition, although the actual capacity may vary, 
depending on the availability of oxides for reaction and the presence 
of certain components which might influence the effective diffusivity 
and reactivity of CO2 [5]. The carbonation of industrial wastes and by-
products which contain significant amounts of calcium and magnesium 
that can be carbonated has received growing attention as a means 
of permanent CO2 sequestration over the past decade. Although the 
total sequestration capacity of wastes is limited compared to primary 
minerals, the use of alkaline solid wastes facilitates cost-effective ways 
of CO2 sequestration and provides environmental benefits by managing 
wastes usefully [34]. In addition, these residues tend to be more reactive 
in carbonation due to their chemical instability, whereas in minerals 
the surface needs to be activated either by physical or chemical pre-
treatment methods in order to increase the effective carbonation yield 
[10,12,34]. Table 1 presents a list of various alkaline solid wastes that 
are being researched for their potential use as feedstock for mineral 
CO2 sequestration.

From the current research literature, it is clear that coal FA has 
been drawing most attention as a material that can be used for mineral 
carbon sequestration. The potential of FA for mineral sequestration 
depends directly on the proportion of alkaline (Ca, Mg) oxides and/or 
hydroxides present in the FA matrix [28]. In FA, CaO may occur as both 
free lime and embedded in glassy spheres. Glassy spheres are formed 
from the reaction of free lime with SO2, or from free lime and alumino-
silicate melt, and reduce the availability of CaO for carbonation [39]. 
Since different FAs contain varying amounts of available oxides for 
carbonation, they show varying capacities to capture and store CO2. An 
experimental study using FA containing 4.1 wt% of CaO demonstrated 
that one tonne of FA can sequester up to 26 kg of CO2 [28]. According 
to Nayambura et al. [39] one tonne of bulk FA with 9.2 wt% of CaO 
carbonated in a brine solution sequestered up to 62.35 kg of CO2.

The energy consumption and costs of carbon sequestration 
through mineral carbonation is limited by the exothermic nature of the 
carbonation reaction [34]. Therefore, this method provides a promising 
route for reducing the atmospheric CO2 on a large scale. In addition, 
this is the only CO2 sequestration option available for countries where 
large deep underground reservoirs do not exist and ocean storage of 
CO2 is not feasible [48]. Their low cost and the widespread availability 
of FAs in industrial areas are two other advantages of using FA as a 
feedstock for CO2 sequestration. However, the natural weathering 
process under ambient conditions proceeds too slowly [12], and only 
becomes significant in the long term. Hence, natural weathering cannot 
contribute to the effective mitigation of global warming. Therefore, 
mineral sequestration aims to accelerate the reaction to obtain a viable 
industrial process [34].

Accelerated carbonation
In accelerated carbonation, the natural reactions occurring during 

rock weathering are accelerated by various means in order to reduce 
the time required for complete carbonation down to time-scales 
of hours or days [11,12]. It helps to effectively manage the excessive 
amounts of CO2 produced by some industries such as coal combustion 
and municipal solid waste incineration using the alkaline solid residues 
generated in the same sites. However, the widespread practical use of 
this technology has been limited by the factors such as the requirement 
to separate CO2 from the flue gas stream, the compression of CO2, and 
the transportation or safe storage of CO2 if needed [37].

The efficiency of the mineral carbonation reaction will depend 
on the mineralogy, and the chemical and physical properties of the 
candidate material and the operational parameters governing the 
carbonation process. Typically, in accelerated carbonation the mixture 
is carbonated in a gaseous CO2 rich environment [5]. The partial 
pressure of CO2 inside the reactor is identified as one of the parameters 
that influence the rate and the efficacy of the carbonation process [39]. 
In addition, researchers have been experimenting to optimize other 
process conditions such as the reaction temperature, the moisture 
content of the mixture, the contact time with the gas and the provision 
of adequate mixing between the gas and the material in order to 
achieve an efficient mineral carbonation process [5]. The effects of these 
parameters on the carbonation of fly ash can be evaluated from the 
findings available in the research literature which is discussed below.

Reaction temperature

The carbonation reaction with gaseous CO2 proceeds very slowly at 
atmospheric temperature and accelerates with increased temperature, 
since the leaching of Ca from the matrix becomes faster with increased 
temperature [38]. For example, CaO has been found to be carbonated 
on a time-scale of one minute at temperatures above 550°C [49]. 
However, if the temperature is raised too much, the solubility of CO2 
in water is lowered since the higher kinetic energy causes more motion 
in molecules which breaks the intermolecular bonds between CO2 and 
water, and allows CO2 to escape from the solution [50-53]. In this way, 
the chemical equilibrium is shifted such that free CO2 is favoured over 
the bound form. Therefore, at higher temperatures bicarbonate activity 
is low [18].

As a result, the temperature inside the reactor can only be 
increased up to a certain level before the formation of CO2 is favoured 
over carbonates. This highest allowable temperature that still allows 
spontaneous binding of CO2 is a function of the partial pressure of 
the CO2 in the reactor [18,22]. For example, at CO2 pressures of 1 
bar MgCO3 is stable up to temperatures of around 400°C and at 35 
bars CO2, MgCO3 is stable up to around 550°C [22]. Therefore, simply 
increasing the temperature until reaction rates are sufficiently fast 
would not work without sufficient pressurisation. Nyambura et al. 
[39] tested the carbonation efficiency of coal FA at two temperatures 
(30°C and 90°C) and concluded that there was no significant effect of 
temperature on reaction efficiency. At each temperature they observed 
the necessity of a high pressure of 4 MPa (over 1 MPa) to achieve high 
carbonation efficiencies. In a study of aqueous wollastonite (a primary 
mineral) carbonation Huijgen et al. [23] observed an increase in the 
rate of carbonation with reaction temperatures between 25 and 150°C 
at a pressure of 20 bars [38]. However, after 200°C the conversion 
rate of mineral into carbonate reduced due to the lowered activity of 
bicarbonate in water. Li et al. [34] carbonated six different types of 
MSWI ash under a temperature range of 21-91°C at a pressure of 3 bars 
and concluded that the higher temperature improves the reaction velocity 
but does not improve the sequestration of CO2 into the ash [11].

Alkaline solid waste material References
Coal fly ash [27,36,38]
Bottom ash [39-41]
MSWI ash [5,11,42,43]

Air pollution control residues [34,44]
Steel slag [33,45]

Oil shale solid residues [46,47]

Table 1: Potential alkaline solid wastes as a feedstock for mineral carbonation.
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reaction [12]. Figure 3 compares the outcomes of several studies of the 
effect of the moisture-to-solid ratio on the mineralization efficiency 
of alkaline wastes, based on the percentage dry weight gain after the 
reaction. 

According to the figure, all three types of MSWI ash show their 
maximum weight gain percentages at a 0.2-0.3 moisture-to-liquid 
ratio. At this moisture level, the mixture is more or less a solid. 
However, for materials of low solubility in which CaO is bound as 
silicates, the accelerated carbonation is best carried out in a slurry 
phase with a liquid-to-solid ratio of greater than one [38,51]. Reddy 
et al. [53] examined the possibility of point-source capture of the flue 
gas CO2 with coal FA generated in the same plant [37]. They found 
that the moisture content of the flue gas is the most important factor 
that governs the mineralization of the FA particles. A moisture content 
of 16% in flue gas gave the highest conversion efficiency of CO2 to 
carbonates.

In addition to the operational parameters discussed above, 
the contact time of reactants, particle size of the residue materials, 
provision of stirring and speed of mixing influence the aqueous 
mineralization of waste materials [5,38,39,44]. The evaluation of the 
up to date research findings regarding the effect of these parameters on 
the rate and the efficiency of the sequestration reaction does not allow 
drawing generalized conclusions but appears to be depended on the 
residual composition and several other situation specific conditions.

FA as a Soil Amendment
The research literature provides substantial evidence that FA 

incorporation in soil modifies the physico-chemical, biological and 
nutritional quality of the soil. With its dominant silt- sized particles, 
FA can alter the texture of both sandy and sandy clay soils to loamy, 
which is favourable for agricultural use [52]. In addition, the low bulk 
density of FA makes it a suitable additive to improve the bulk density 
of soils in a mixture [19]. The Ca2+ from FA promotes flocculation 
between soil particles and helps to maintain a desirable level of soil 
aggregation through cation bridging, particularly in clay soils [29,53]. 
The structural and textural changes in soil upon FA addition increase 
water retention capacity in sandy soils and hydraulic conductivity in 
clay soils [22,31,54]. Depending on its pH, FA can be used as a soil 
buffering agent to correct extreme acidity or alkalinity in problem 
soils [29]. FA contains almost all the essential plant nutrients except 
N [27]. In addition, the adjustment of the pH of problem soils into 
the neutral range helps increase the availability of the nutrients in the 
soil [55]. Researchers who added FA to agricultural soils have observed 
increased plant growth and crop production, which can be principally 

CO2 partial pressure inside the reactor

The research findings on the effect of CO2 pressure on the 
mineralization reaction appear contradictory, making it difficult 
to identify any trend. However, it is vital to understand that the 
conversion efficiency of the minerals and the conversion rate are two 
different aspects that have been researched. According to Rendek et 
al. [54], the time required for complete carbonation to be achieved 
decreased from over 2 days to 3.5 hours when the partial pressure of 
CO2 inside the reactor was increased from 2 to 17 bars [40]. In contrast 
Huijgen et al. [23] found an insignificant effect of CO2 partial pressure 
inside the reactor on the rate of mineralization pointing out that CO2 
mass transfer is not rate-determining but the leaching of Ca to the 
solution [38].

Montes-Hernandez et al. [41] showed that the degree of 
carbonation of CaO was independent of the pressure of CO2 and they 
therefore suggested a moderate pressure (10 bars) system for ex situ 
industrial level carbonation [27]. However, the initial rate of CO2 
transfer (sequestration rate) increased linearly with the pressure from 
10 to 40 bars, as shown in Figure 2.

The research literature does not provide any evidence to clearly 
identify the effect of CO2 pressure on the overall efficiency of the 
conversion of minerals into stable carbonates. Instead, CO2 partial 
pressure has been found to have an influence on the optimum reaction 
temperature [12].

Solid to liquid ratio

As shown in the equations for the carbonation reaction mechanism 
(Equations 1-5), water is necessary to promote the reaction. Without 
water, direct gas solid carbonation may occur, but at a very slow rate 
compared to aqueous carbonation [12]. In aqueous carbonation the 
overall reaction occurs as a three-step process: the leaching of Ca from 
the solid matrix; the dissolution of CO2 in water to form bi-carbonates; 
followed by the formation of carbonates. Of these, the first step is 
considered to be the rate-limiting step [10,12]. The moisture availability 
influences on making Ca and other alkaline cations available for the 
reaction by leaching them out to the solution from the solid matrix 
and forming the hydroxides. However, too much water can hinder the 
reaction by lowering the diffusion of CO2 due to the blockage of the 
pores in the solids [5]. Therefore, there is an optimum level of water 
which gives the maximum rate and efficiency of carbonation.

The sequestration potential of CO2 by alkaline materials is generally 
measured as the percentage dry weight gain after the carbonation 

Figure 2: Linear increase of initial rate of CO2 transfer with CO2 initial 
pressure. Figure 3: Effect of water-to-solid (w/s) ratio on carbonation efficiency.



Citation: Ukwattage NL, Ranjith PG (2018) Accelerated Carbonation of Coal Combustion Fly Ash for Atmospheric Carbon dioxide Sequestration and 
Soil Amendment: An Overview. J Pollut Eff Cont 6: 210. doi: 10.4172/2375-4397.1000210

Page 5 of 8

Volume 6 • Issue 1 • 1000210J Pollut Eff Cont, an open access journal
ISSN: 2375-4397

attributed to the enhancement of nutrient availability in soils and the 
improvement of available water capacity [15,21,56].

However, some problems are associated with the continuous use 
of FA, particularly unweathered ash, as a soil ameliorant. The primary 
concern is the potential leaching of hazardous metals into the soil from 
some Fas, especially when applied at high rates [57]. FA contains some 
biologically toxic elements in concentrations that greatly exceed their 
concentrations in soil [16,31]. Table 2 compares the concentration 
ranges of some of those elements of interest in FA and soil.

Continuous loading of soils with FA therefore leads to a tendency 
to accumulate these elements leached from the FA matrix into the soil. 
From the soil they can be taken up by vegetation or percolated into 
the ground water sources and cause serious contaminations [31]. Trace 
elements are persistent global pollutants and accumulation up to toxic 
levels of these elements is responsible for reductions in crop yields, 
leading to negative consequences for animal and human health [58,59]. 
The toxicity of B is one of the major limiting factors in the agricultural 
use of FA [16].

Another concern with FA addition to soil is related to the changes 
caused in soil pH and salinity. The pH of FA can be acidic or alkaline, 
depending on the source. Accordingly, FA is being used as a buffering 
agent to reclaim problem soils with undesirable alkalinity or acidity 
[29]. However, since most of the FAs produced worldwide have strong 
alkalinity in the pH range of 8 to 12, their addition as a soil ameliorent 
into agricultural soils can bring about unfavourable changes to soil 
pH [16]. This can then lead to increased bioavailability of some trace 
metals to levels that are toxic for plants and animals. For example, Riehl 
et al. [55] observed an increase in soil pH from 8.1 to 12 in calcaric soils 
amended with alkaline coal FA, which ultimately caused the mortality 
of soil micro fauna and increased mobility of Co, Ni and V [60].

The development of salinity in soils with added FA has limited its 
environmentally-beneficial final disposal. Salinity is a measure of the 
soluble salt content of a material which helps to conduct electricity in a 
solution and is therefore measured and expressed in units of electrical 
conductivity (EC). Increased salinity in soils created by added FA is 
attributed to the high levels of soluble salts of Ca, Mg, Na and B present 
in it [29]. According to Page and Elsiwee [58], FA from Nevada power 
plants increased soil salinity by 500 to 600% and caused a significant 
increase in soluble B, Ca, and Mg levels in soil. The development of 
salinity in soil can induce salt stress in plants and reduce plant growth 
and yield [61].

Owing to the above limitations, coal FA, particularly which has 

not undergone any ageing or pre-treatment, should be added to soil 
with special care. The dosage of FA that can be added to the soil with 
no potential deleterious effect on soil, plants or animals needs to be 
pre-determined before large-scale applications are carried out. The 
application of FA in conjunction with other bio solids such as sewage 
sludge, compost, poultry manure and blue green algae helps to reduce 
the detrimental effects by stabilizing the potentially toxic metals and 
increasing the pH buffering potential of coal FA [62-67]. Moreover, 
the treatment of fly ash prior to soil application can be practised to 
leach out the harmful elements. According to Pandey and Singh [17] 
careful weathering of FA helps to overcome the problem of B toxicity 
by reducing the B availability in FA to below toxic levels. In addition, 
washing is done to remove the contaminants present in FA. In this 
process, water or acid is used as the solvent to dissolve most of the 
hazardous chemicals and the soluble salts. The generation of large 
amounts of water is the main disadvantage of this method [68].

Similarly, the problems caused with soil pH and salinity by the 
addition of FA is affected by the extent to which it is weathered. 
Therefore lagooning, leaching and stockpiling are considered as 
minimizing the ill-effects of unweathered FA, and making it more 
suitable for soil addition [58]. In addition, the mixing of FA with other 
soil ameliorants is done to adjust its pH. For example, mixing alkaline 
FA with highly carbonaceous acidic materials is recommended to make 
compost for soil treatment [30]. Accelerated carbonation can also be 
used as a treatment method capable of improving the environmental 
and technical behaviour of different types of combustion residues [69]. 
The chemical and mineralogical transformations which occur during 
carbonation can alter the properties of FA to make it more favourable 
for soil application. However, very few research findings are available 
on the effect of accelerated carbonation on the chemical stability of coal 
combustion FAs, and this does not allow a clear picture of any beneficial 
effects to be drawn. Therefore, the scenario for MSWI ashes was used to 
visualize how well accelerated carbonation can contribute to changing 
the leaching characteristics and pH of combustion residues, even 
though MSWI ashes are more toxic and more problematic than coal 
combustion residues. The following sub-section discusses this issue in 
detail.

Effect of accelerated carbonation on metal leach ability 
characteristics of FA

As mentioned above, the ashes generated from coal combustion 
and municipal solid waste incineration are generally contaminated 
with toxic heavy metals, which tend to leach out in contact with water 
[70]. The extent of trace metal leaching from any solid waste material 
depends on the chemical species of the element, the bonding of the 
elements to the material, the solubility and diffusivity of element 
species, and the pH of the make-up water [56]. In FAs the toxic 
elements accumulate in a thin layer (<1000 Å) at the particle surface 
and therefore they may be more readily leached in water than other ash 
constituents [59]. With regard to pH, acidic FAs leach out almost all 
metals into water except B and Se, while alkaline FAs are responsible 
for releasing B, Ba, As, Cr, Cu, Ni, Se and Zn into water, of which some 
(B, Ba, Cr, Se) are of special concern as they often exceed the toxic 
limits set out in environmental regulations [59,71].

The process of carbonation has been identified as a way of 
converting FA into a solid waste material which may be allowable 
for disposal in landfills. In accelerated carbonation, the ash is treated 
with CO2 under improved reaction conditions to produce new 
mineral phases which are responsible for bringing about chemical and 
mineralogical changes which help to improve the leaching properties 

Element Concentration range in fly ash 
(µg/g)

Concentration range in soil 
(µg/g)

As 2.3-6,300 0.1-40
B 10-618 2-100

Cd 0.7-130 0.01-7.0
Cr 10-1,000 5-3,000
Cu 14-2,800 2-100
Mn 58-3,000 100-4,000
Mo 7-160 0.2-5.0
Ni 6.3-4,300 10-1,000
Pb 3.1-5,000 2-100
Rb 36-300 30-600
Se 0.2-134 0.1-2.0
Zn 10-3,500 10-300

Table 2: Elemental composition of FA and soil [58].
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of the ash after the reaction [11,41,42]. Formation of carbonate is 
one of the major changes affecting improved leaching behaviour. 
Generally, metal carbonates are less soluble than metal oxides and/
or hydroxides. Therefore, the conversion of oxides into carbonates 
favours heavy metal immobilization [69]. At the same time, the 
formation of insoluble oxides during accelerated carbonation causes 
the immobilisation of certain inorganic contaminants of concern such 
as Pb and Zn [72]. In addition, the changes in ash pH caused by the 
carbonation process, helps to reduce the potential for leaching of heavy 
metals. The presence of lime gives FA high alkalinity and increased 
metal leachability. Through its mineralogical changes, accelerated 
carbonation decreases the pH of alkaline ashes to values corresponding 
to the minimum solubility levels of heavy metals, which are generally 
considered as pH 7-10, and thus is responsible for reducing toxic metal 
levels in the ash leachate [5,11,71]. Another metal retention mechanism 
in carbonated ash is based on the affinity of metals to the newly-formed 
minerals, mainly calcite (CaCO3). Sorption and/or co-precipitation of 
toxic metals into new minerals can reduce their potential for leaching 
[42,69].

A great deal of research has focussed on the effect of accelerated 
carbonation on metal leachability of different ashes (fly ash, bottom 
ash, air pollution control residues) generated by municipal solid waste 
incineration. Many researchers have discovered the importance of 
pH changes during carbonation for the influence on metal mobility 
[5,11,69,73]. Whether the FA is fresh or carbonated, its metal 
leachability is largely governed by the solution pH [74]. For many of 
the trace elements there are characteristic metal release curves which 
depend on the pH. Based on the trend, a pH of 9-10.5 have been 
identified as the best pH for the carbonation reaction in order to obtain 
ashes with least metal leachability [44,69]. However, in most solution 
pH ranges carbonated FA shows a reduced potential for metal leaching 
compared with fresh FA for most of the elements of concern.

Particularly Pb and Zn leachability have been found to decrease 
significantly after carbonation. In many of the fresh ashes, Pb and Zn 
are present above the landfill acceptance value of 50 mg kg-1. However, 
after carbonation these figures are reduced to levels lower than 1 mg 
kg-1 [5]. Figures 4a and 4b shows the reduction of Pb and Zn leachability 
after the accelerated carbonation of 12 different types of ashes (MSWI 
and Coal FAs).

According to the Figure 4, almost all the ashes show markedly 
reduced leaching potential of Pb and Zn after the carbonation. Cappai 
et al. [9] observed a reduction of Cu release by 2 orders of magnitude 
after the carbonation of MSWI ash. Furthermore, the mobility of both 
Cr and Mo reduced by one order of magnitude.

In their experiments on supercritical fluid extraction with CO2 
for MSWI ash, Kersch et al. [30] observed successful reductions 
in leachability of Zn, Pb and Mn. Super-critical fluid extraction is 
a promising method to reduce the extent of metal leachability of 
hazardous wastes [70]. In this process the use of CO2 as the extracting 
fluid is attractive because of its high diffusivity and low viscosity which 
allow easy penetration into the smallest pores of particles such as FA. In 
accelerated carbonation, CO2 may play a similar role in immobilizing 
the toxic metal levels of ashes.

Effect of accelerated carbonation on alteration of pH and EC 
of combustion residues

The addition of FA to soil produces significant increases in the levels 
of pH and EC. The initial increase of pH is attributed to the dissolution 
of Ca, Mg and OH ions from FA [74]. With time the hydration and 

carbonation reactions transform CaO and MgO in FA to more stable 
secondary mineralogical products (carbonates), and as a result pH 
and EC are stabilized. However, under normal storage conditions 
this stabilization takes several years [59]. Accelerated carbonation 
facilitates the rapid adsorption of CO2 into alkaline materials which 
causes pH decrease and calcite precipitation. Li et al. [34] observed a 
lowering of the pH of fresh MSWI fly ash from 12-12.5 to 7-10 after 
accelerated carbonation. Similar results are reported by Fernandez 
Bertos et al. [20] that compared the changes in the pH of MSWI FA 
before and after carbonation [5]. They concluded that the pH of ashes 
falls below 8 (nearly neutral) after carbonation reactions take place, 
although it was as high as 12 before carbonation. The decrease in free 
oxides and hydroxides and the formation of calcites during accelerated 
carbonation improve the acid neutralization capacity of the ash 
which enhances its use in reclaiming problem soils [72]. According 
to Cappai et al. [9] MSWI FA showed a significant buffering capacity 
between neutral and alkaline values at pH around 7-8 after carbonation 
treatment [69].

Similar to the rise in pH, FA not subjected to any pre-treatment 
increases soil salinity (EC) due to the high level of soluble salt present 
in it. Carbonation can alter the EC of FA through the same mechanism 
which neutralizes its pH. The reduced leachability causes fewer solutes 
in the soil solution after the application of carbonated ashes into soil 
and thus it controls the raising of soil salinity.

Conclusion
Coal FA is a hazardous waste material which cannot be directly put 

Figure 4:  Metal release of different types of fresh and carbonated ashes 
[5,11,69].
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into landfills. Through accelerated carbonation it can be recovered to a 
non-hazardous waste that has the potential to be used on agricultural 
land while reducing the elevated levels of atmospheric carbon dioxide. 
Since the natural carbonation of alkaline minerals takes geological times 
to complete, the acceleration of this process through the manipulation 
of operational parameters is required to obtain a successful rate of CO2 
capture and storage. However, only a handful of research findings are 
available on coal FA carbonation, which limits the identification of its 
potential use in CO2 sequestration. Based on findings on MSWI ash, 
the optimization of operational parameters including supply of proper 
temperature and CO2 pressure combination, mixing with the water to 
the best water to solid ratio and preceding the reaction to sufficient 
time duration will allow the harnessing of the maximum advantage 
of CO2 sequestration for any given type of FA. After carbonation, the 
alteration of chemical and mineralogical properties in FA makes it a 
suitable candidate for soil application. Carbonation helps to reduce 
the leachability of toxic elements present in FA, mainly Pb and Zn. 
The conversion of alkaline oxides/hydroxides into carbonates also 
reduces the pH of extremely alkaline FA to the neutral-slightly alkaline 
range which is acceptable for soil addition. Hence, the accelerated 
carbonation of FA followed by its use on agricultural land could 
provide a beneficial route for the management of this solid waste. 
However, precise conclusions on the possible addition of coal FA to 
soil are impossible due to the lack of research evidence. This indicates 
the need for future research on coal FA in order to identify its possible 
use for CO2 sequestration and soil addition.
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